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The act of constructing a measure requires a number of important assumptions.  Principle among these
assumptions is that the construct is unidimensional.  In practice there are many instances when the assumption
of unidimensionality does not hold, and where the application of a multidimensional measurement model is
both technically appropriate and substantively advantageous.  In this paper we illustrate the usefulness of a
multidimensional approach to measurement with the Multidimensional Random Coefficient Multinomial Logit
(MRCML) model, an extension of the unidimensional Rasch model.  An empirical example is taken from a
collection of embedded assessments administered to 541 students enrolled in middle school science classes
with a hands-on science curriculum.  Student achievement on these assessments are multidimensional in
nature, but can also be treated as consecutive unidimensional estimates, or as is most common, as a composite
unidimensional estimate.  Structural parameters are estimated for each model using ConQuest, and model fit
is compared.  Student achievement in science is also compared across models.  The multidimensional approach
has the best fit to the data, and provides more reliable estimates of student achievement than under the
consecutive unidimensional approach.  Finally, at an interpretational level, the multidimensional approach
may well provide richer information to the classroom teacher about the nature of student achievement.
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Measuring is a combination of art and sci-
ence—the art gives us the momentum, and the
science keeps us on track. Wright and Masters
(1982, p. 3) have identified four basic require-
ments for measuring:

1.  The reduction of experience to a one dimen-
sional abstraction,

2.  more or less comparisons among persons and
items,

3.  the idea of linear magnitude inherent in posi-
tioning objects along a line, and

4.  a unit determined by a process which can be
repeated without modification over the range of
the variable.

These provide us useful ground rules for the
science of measuring, but unfortunately, the art
of measuring often hands us something that
doesn’t quite conform to these fundamental rules.

In general, a latent domain can be
deconstructed into subcomponents, and these
subcomponents can in turn be deconstructed (see
Figure 1), and so on until the number of latent
domains requiring estimation may well equal the
number of items being administered!  In such a
scenario when items are allowed to contribute to
more than one domain, the number of dimensions

are no longer identifiable parameters.  The art of
assessing dimensionality is to find the smallest
number of latent ability domains such that they
are both statistically well-defined and substan-
tively meaningful.  In the context of classroom
assessment, for example, one would want to use
dimensions that were sufficiently fine (i.e., so
many) that they were instructionally useful, yet
not so many that they overwhelmed the teacher
(and/or student).  Another factor that limits the
number of dimensions is the practical issue of
administering and scoring items.

The focus of this paper is on maintaining the
advantages of these requirements in cases where
the instrumentation involves complexities beyond
simple unidimensionality.  By “simple unidimen-
sionality”, we mean the case when instrument
creators intend that every item measures the same
single dimension (note that this is an intent, and
would always need to be both theoretically and
empirically justified).  There are two rather com-
mon cases where simple unidimensionality may
be a problematic assumption.

First, there is the case when an instrument is
designed to be unidimensional, but results in scores
that are interpreted multidimensionally.  Many
instruments are designed with what is termed an
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Figure 1.  Example of a Multidimensional Taxonomy
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“instrument blueprint” that indicates the underly-
ing structure of the domain being measured.  These
underlying structures are almost invariably some
sort of set of sub-dimensions, or even a cross-ref-
erencing of sub-dimensions.  For example, in
achievement testing, it is very common to find a
skills-by-content analysis of the target domain, in
which case each of the types of skills and content
is a potential dimension. It is sometimes very hard
to resist the temptation to report scores on these
subscales.  For example, the Stanford 9 (Harcourt
Educational Measurement) reports a single score
for its mathematics test, but also subscale scores
for “mathematical procedures” and “mathemati-
cal problem solving”.  Also, some technical pro-
cedures require using subsets of the items (e.g.,
linking subsets).  In these cases there is a potential
for problems if a multidimensional perspective has
been overlooked.  Ackerman (1992, p. 67) points
out that if a test is truly multidimensional, it be-
comes impossible to rank order test-takers with-
out implicitly or explicitly weighting the
dimensions.

Second, some instruments are explicitly de-
signed with items meant to measure multiple
domains of ability.  The SAT I (The College
Board), for example, is administered and reported
with two independent sections—math and ver-
bal.  Nonetheless the summed score from the two
sections is often reported as a single measure of
performance.  When performance on an instru-
ment has a multidimensional interpretation, then
the proper modeling of these as separate, though
not necessarily unrelated, dimensions is a pre-
requisite before a measure can be properly con-
structed.1

The purpose of this paper is to illustrate the
usefulness of a multidimensional approach to
measurement.  We will use the example of a
teacher working within a classroom as the cen-
tral context, but the points we will make general-
ize far beyond this context.  The next section
briefly introduces and describes a multidimen-
sional item response model known as the multi-
dimensional random coefficients multinomial
logit (MRCML) model.  The model is then illus-
trated with an example from a classroom setting

in which students are being taught from a struc-
tured science curriculum.  The heart of this pa-
per takes a set of assessments administered to
students, and analyzes how the interpretation of
student performance might change in the context
of a multidimensional model.

A Multidimensional Item Response Model

The potential usefulness of multidimensional
item response models has been recognized for
many years and there has been considerable re-
cent work on the development of multidimen-
sional item response models and, in particular,
on the consequences of applying unidimensional
models to multidimensional data, both real and
simulated (Ackerman, 1992; Ackerman, 1994;
Camilli, 1992; Embretson, 1991; Folk and Green,
1989; Kelderman and Rijkes, 1994; Kupermintz,
Ennis, Hamilton, Talbert, and Snow, 1995; Luecht
and Miller, 1992; Reckase, 1985; Reckase and
McKinley, 1991; Walker and Beretvas, 2000).
Despite this activity it appears that the applica-
tion of multidimensional item response models
in practical testing situations has been limited.
This has probably been due to (a) the statistical
problems that have been involved in developing
and fitting such models and (b) the difficulty as-
sociated with the interpretation of the parameters
of existing multidimensional item response mod-
els.  We address (a) directly below, and then turn
to (b) for the remainder of the paper.

The MRCML model and its applications
have been previously and more extensively in-
troduced in other settings (Adams, 1997; Wang,
1999; Wang, Wilson, and Adams, 1997).  Much
of the notation used here is borrowed directly
from these sources.  The MRCML model is an
extension of the Rasch family of item response
models, and is built up from a basic conceptual
building-block.  To illustrate this building block,
assume first that for an item i with ordered cat-
egories of response indexed by k there corre-
sponds a unique dimension among a larger set of
possible dimensions2 denoted by d (d = 1,…, D).
The persons responding to a given item are in-
dexed by P(P,=1,...,P).  Then, we model the log
odds of the probability a person’s response in cat-
egory k of item i (P

ik
) compared to category k-1
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(P
ik-1

) as a linear function of latent ability on that
dimension (θ

d
), and the relative difficulty of cat-

egory k (δ
ik
):

-1

P
log θ - δ

P
ik

d ik
ik

 
= 

 
(1)

Moreover, each person is measured by a pro-
file of estimates θθθθθ = (θ

1
, ... ,θ

D
 ), where the dimen-

sions are allowed to be non-orthogonal.  For
category k of item i, the associated difficulty, δ

ik
,

indicates the relative difficulty of being in category
k as opposed to category k-1, commonly called a
“step difficulty.”  The θ

d
 in equation 1 represents

the latent ability of the person as a function of the
dimension of ability mapped onto item i.  Thus,
for example, in an achievement testing context,
the dimensions might be components of the cur-
riculum.  The mapping then would indicate that
item i was related to only component d, and the
value of δ

ik
 would indicate whether it was rela-

tively easier or harder for a student to be classi-
fied as achieving category k-1 compared to k.

For a slightly more formal presentation of
the MRCML model, we borrow further from the
notation developed in Adams, Wilson and Wang
(1997).  Let items be indexed i = 1, ..., N with
each item having K

i
 + 1 possible response cat-

egories (k = 0, 1, …, K
i
).  The random variable

X
ik
 is introduced such that

1 if response to item  is in category ,

0 otherwise.ik

i k
X


= 


Then the MRCML model can be written at the
item category level as
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where q has been collected into a D by 1 column
vector with D corresponding to the number of
hypothesized dimensions in a given instrument.
Item and category parameters represented by δ

ik

in (1) have been gathered into the vector ξ.  The
matrices A and B are known as the scoring and
design matrices respectively, and are used to
specify the functional form of the model relative
to the hypothesized mapping of items to dimen-

sion (B) and difficulty parameters (A).  The de-
sign and scoring matrices give the MRCML
model the flexibility to represent a wide range of
Rasch family models, including multidimensional
forms of the Dichotomous Rasch Model, the Rat-
ing Scale Model (Andrich, 1978), the Partial
Credit Model (Masters, 1982), the Facets Model
(Linacre, 1989), the Linear Logistic Test Model
(Fischer, 1973), the Item Bundle Model (Wilson
and Adams, 1995), and others designed for more
complex situations involving raters and other
measurement features.  The MRCML model is a
direct extension of the unidimensional random
coefficient multinomial logit (RCML) model
(Adams and Wilson 1996), which takes the same
form except that the scoring vector b

ik
, and abil-

ity vector θθθθθ in (2) are modeled as scalar values.

The item parameters and the population
means and variances of the new theta parameters
in the MRCML model are estimated by the mar-
ginal maximum likelihood technique.  Log re-
sponse probabilities are summed up over items
and persons into a likelihood function.  Maxi-
mum likelihood estimates and asymptotic stan-
dard errors are found iteratively using the EM
algorithm (Bock and Aitken, 1981; Dempster,
Laird, and Rubin, 1977).  A detailed discussion
of parameter estimation in the MRCML can be
found in Adams, Wilson and Wang (1997).  We
now describe a context which we will use to il-
lustrate certain features of multidimensional mea-
surement.

Methods

Instrumentation and Sample

The Science Education for Public Under-
standing Program (SEPUP) is based at the
Lawrence Hall of Sciences on the campus of the
University of California at Berkeley.  Starting in
the early 1990s, SEPUP staff began development
of a science curriculum for middle school stu-
dents called “Issues, Evidence and You” (IEY).
A focus of IEY is on making middle school sci-
ence a more hands-on, issue oriented experience.
A prominent feature of IEY is that unlike most
secondary school curricula, an embedded assess-
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ment system has been designed concurrently with
the curriculum itself.  Assessment developers
from the Berkeley Evaluation and Assessment
Research (BEAR) Center in UC Berkeley’s
Graduate School of Education have worked with
SEPUP curriculum developers and science teach-
ers using the curriculum to design what Roberts,
Wilson and Draney (1997) describe as a “com-
prehensive, integrated system for assessing, in-
terpreting and monitoring student performance.”
SEPUP assessments are criterion referenced,
hence student performance is rated within a tax-
onomy of performance categories.  For more de-
tail on the IEY curriculum, see SEPUP, 1995.  For
a deeper look at the principles behind this as-
sessment system, see Wilson and Sloane (2000).

The IEY curriculum has four topic areas:
Water Usage and Safety,  Materials Science, En-
ergy, and Environmental Impact.  SEPUP assess-
ments include embedded assessments throughout,
a pre-test at the outset of the IEY curriculum, a
post-test at the end, and three “link tests” in be-
tween the four topic areas.  The link tests are use-
ful to teachers as a means of assessing student
performance during the course of a school year.
From a technical standpoint, the link tests help to
disentangle the effects of students’ changing

proficiencies from the difficulty of assessment
activities.  From the standpoint of our discussion
of multidimensionality, the IEY link tests are im-
portant because all items on the test can be linked
to one of four SEPUP “variables”3: Designing and
Conducting Investigations (DCI); Examining Evi-
dence and Tradeoffs (ET); Understanding Con-
cepts (UC); and Communicating Scientific
Information (CSI).  These four descriptors are
variables in the sense that performance along each
of them should change as students demonstrate
more or less achievement on each.  Figure 2 de-
scribes the SEPUP variables in greater detail.  Here
we think of science ability as the higher order la-
tent variable, and the four SEPUP variables as the
disaggregated components of this composite vari-
able, much as the example illustrated in Figure 1.
This structure suggests the desirability of a theory-
driven confirmatory analysis, with each SEPUP
variable treated as a unique, but non-orthogonal
dimension of science ability.

Students taking the IEY curriculum are given
three link tests during the course of a school year,
usually at a transition point between topic areas.
On each link test there are five open-ended items.
As an example, the first item from the first IEY
link test reads:

Scientific Process:

Designing and Conducting Investigations (DCI)—designing a scientific experiment, per-
forming laboratory procedures to collect data, recording and organizing data, and ana-
lyzing and interpreting the results of an experiment.

Evidence and Tradeoffs (ET)—identifying objective scientific evidence as well as evalu-
ating the advantages and disadvantages of different possible solutions to a problem based
on the available evidence.

Scientific Concepts:

Understanding Concepts (UC)—understanding scientific concepts (such as properties
and interactions of materials energy, or thresholds) in order to apply the relevant scien-
tific concepts to the solution of problems.

Scientific Skills:

Communicating Scientific Information (CSI)—organizing and presenting results of an
experiment, or explaining the process of gathering evidence and weighing tradeoffs in
selecting a solution to a problem effectively, and free of technical errors.

Figure 2.  The SEPUP Variables
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You must decide which energy source to
use to power a car: gasoline, electricity,
or natural gas.  To do this you must first
design an experiment to identify the most
efficient source of energy.  In the space
below, first describe your experimental
procedures, including a data table that
you would use to organize your data.
Then indicate how you would use the data
to show you which form of energy is most
efficient for running your car.

The answers given by students to such items
are scored along one or more of the four SEPUP
variables.  In this example, the item was scored
along the DCI and ET variables.  One link test
item might yield as many as three different vari-
able scores for a particular student.  Student re-
sponses are scored with separate scoring guides
for each variable, though each scoring guide fol-
lows the same general framework  (Biggs and
Collis, 1982). In the general framework, there are
five score categories, ranging from a “0”, indi-
cating an “off-task or irrelevant response”, to a
“4”, indicating that a student has “gone way be-
yond what was expected as a correct answer in
some significant way.”  It is important to note

that these scores are hierarchical.  That is, stu-
dents cannot receive a score of a “3” if their re-
sponses do not meet all the criteria for a score of
a “2”.  The scoring guide for the SEPUP variable
DCI is given in Figure 3.  Each item is also ac-
companied by exemplars for each score level to
guide application of the scoring guide.

In what follows, each link test prompt re-
sponse scored along one of the four SEPUP vari-
ables is treated as a distinct item.4  During the
1994-95 school year, data from three link tests
were collected, encompassing responses from
541 students taking the IEY curriculum.  Re-
sponses from 14 prompts yielded 34 items.
Twelve prompts were scored along the DCI vari-
able, 11 along the ET variable, seven along the
UC variable, and four along the CSI variable.

 Procedures

Two fairly common approaches might be
taken in the attempt to assess student performance
on the SEPUP link test items: the unidimensional
approach and the consecutive approach.  Both of
these approaches are illustrated graphically in Fig-
ure 4.  In the unidimensional approach, the sum of
scores received on the 34 items, ranging between

 
 
 

Score 

Designing Investigation: 

Response states problem  and 
general approach for the 
investigation. 

Selecting and Recording 
Procedures: 

Response reflects recognition and 
recording of relevant procedures 
performed completely, accurately, 
and safely. 

Organizing Data: 

Response accurately records and 
logically displays data.  

Analyzing and Interpreting Data:  
 

Response accurately summarizes 
data; detects patterns and trends; 
and draws valid conclusions based 
on the data used. 

4 Accomplishes Level 3 AND goes 
beyond in significant way, e.g. 
describing limitations of approach 
or design, or describing relevant 
controls and variables.  

Accomplishes Level 3 AND goes 
beyond in significant way, e.g. 
identifying alternative procedures to 
effectively carry out test. 

Accomplishes Level 3 AND goes 
beyond in significant way, e.g. 
innovation in the organization or 
display of data. 

 
Accomplishes Level 3 AND goes 
beyond in significant way, e.g. 
explaining unexpected results, 
judging the value of investigation, 
suggesting additional relevance 
investigation, etc. 

3 Includes complete statement of the 
problem and/or design which 
demonstrates complete 
understanding of the problem and 
the design. 

Reflects choice and recording of 
appropriate procedures completely 
and accurately. 

Logically reflects complete and 
accurate data; minor errors in data 
may exist. 

Analyzes and interprets data 
correctly and completely; 
conclusion is compatible with data 
analysis. 

2 Incompletely states a problem or the 
design of an experiment. 

Reflects appropriate choice; some 
steps are not fully described OR are 
omitted. 

Reports data logically and may 
contain minor errors BUT records 
are incomplete. 

 
Notes patterns or trends but does so 
incompletely. 

1 States incorrect problem that 
demonstrates lack of understanding 
of problem or design of 
investigation. 

Indicates incorrect or inappropriate 
choice and/or recording of 
procedures. 

Reports data BUT records are 
illogical and/or contain major errors 
in the data. 

Attempts an interpretation, but ideas 
are illogical OR show a lack of 
understanding. 

0 
 
Does not include problem or design 
of investigation. 

Missing, illegible, or no record of 
relevant procedures. 

Missing, illegible, or no record of 
data included. 

Missing, illegible, or no analysis or 
interpretation of data included. 

X Student had no opportunity to respond. 
 
Figure 3.  Scoring Guide:  Designing and Conducting Investigations (DCI) Variable
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0 and 136, could be treated as the sufficient statis-
tic for a single estimate of student ability in sci-
ence.  The probability of a response in each of the
five categories of the 34 link test items is

1

1 2

1 2 3

P(0) = 1 γ
P(1) = exp(θ δ τ ) γ

P(2) = exp(2θ 2δ τ τ ) γ

P(3) = exp(3θ 3δ τ τ τ ) γ

P(4) = exp(4θ 4δ ) γ

p i

p i

p i

p i

− −

− − −

− − − −

−

(3)

where γ = the sum of the numerators in the five
equations.  Item difficulty has been divided into
two components, the average difficulty of the item
(δ

i
), and the incremental, or “step” difficulty of a

response in a higher category of item i (τ
1
, τ

2
, τ

3
,

τ
4
).  The sum of the step difficulties for each

SEPUP variable are constrained to equal zero to
allow for parameter identification, hence τ

4 
is set

equal to the negative sum of τ
1
, τ

2
, τ

3
 and does

not need to be estimated directly.

Modeling the RCML equations with the soft-
ware package Conquest (Wu, 1998) produces
estimates for a total of 47 parameters—45 item
(δ) and step (τ) difficulties, one population mean,
and one population variance.  Three different step
difficulties are estimated for each of the four
SEPUP variables because each variable was
scored under differing scoring guide criteria.5  As
we noted in equation 3, each item has one pa-

rameter, δ
i
, and each variable has three param-

eters, τ
1
, τ

2
, τ

3
.  Note that the sum of the item

difficulties has also been constrained to zero for
parameter identification, resulting in one fewer
free item difficulty parameters.  An equally ac-
ceptable identification approach would have been
to constrain the population mean of student abil-
ity (θ) to equal zero.

The unidimensional approach has the advan-
tage of parsimony in modeling student perfor-
mance, summarizing student achievement with a
single number and its associated standard error.
Furthermore, the reliability of student ability es-
timates is quite high at .90.  Yet a clear disadvan-
tage is that the differential information about
student achievement relative to the profile of four
SEPUP variables is lost.

As an alternative, one might model science
ability using the consecutive approach.  In this
approach, the sum of scores on items associated
with each of the four SEPUP variables are treated
as four different sufficient statistics and modeled
independently as unidimensional constructs.  So
in essence, the consecutive approach is just the
unidimensional approach repeated for each hy-
pothesized dimension, and the RCML model above
can again be applied to estimate item and person
parameters.  In such an approach 50 parameters
would be estimated: four separate means and vari-
ances for student ability plus a total of 30 item

Figure 4.  Modeling Science Ability

Unidimensional Approach

SCI = Sum of raw scores on all 34 link test items for
student p
Xi = Individual link test items
θS = Single estimate of latent science ability

Consecutive Approach

DCI = Sum of raw scores on 13 DCI items for student p
ET = Sum of raw scores on 12 ET items for student p
CSI = Sum of raw scores on 4 CM items for student p
UC = Sum of raw scores on 7 UC items for student p
θ = Four independent estimates of latent science ability
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parameters and 12 step parameters.  Note that the
parameter estimates from the unidimensional ap-
proach could also be used in a similar way.  This
would effectively be modelling the projection of
each subscale into a single dimension.

The consecutive approach has the advantage
of producing ability estimates and standard er-
rors for each of the SEPUP variables.  Yet the
consecutive approach ignores the possibility that
performance across the SEPUP variables might
be interrelated.  When the number of items de-
fining each dimension is small, the standard er-
rors of the consecutive estimates are substantially
larger than a combined unidimensional estimate.
As Table 1 indicates, the upshot of this is a re-
duction in reliability6 for each SEPUP variable
relative to the unidimensional reliability estimate.
The reduction in reliability is substantial: .19 for
the DCI variable, .16 for the ET variable, .12 for
the CSI variable, and .21 for the UC variable.

The multidimensional approach can be
viewed as a compromise between the unidimen-
sional and consecutive approaches, one that in-

corporates the best of both approaches; the scores
on each variable are treated as distinct informa-
tion about each student, yet by incorporating the
correlation between the latent variables, the loss
in reliability for each of the four SEPUP variable
ability estimates is small relative to the unidimen-
sional composite estimate.  Figure 5 illustrates
the multidimensional approach.  Note how there
is a direct influence of the DCI latent variable on
the DCI observed responses through the straight
arrows, but that there is also an influence from
each of the other latent variables through the cor-
relations represented by the curved lines.  This
approach can be modeled using MRCML to esti-
mate latent abilities across the four SEPUP vari-
ables simultaneously.  Applying (2) yields the
following set of equations at the item level.

1

1 2

1 2 3

P(0) = 1 γ
P(1) = exp(θ δ τ ) γ

P(2) = exp(2θ 2δ τ τ ) γ

P(3) = exp(3θ 3δ τ τ τ ) γ

P(4) = exp(4θ 4δ ) γ

pd i d

pd i d d

pd i d d d

pd i

− −

− − −

− − − −

−

(4)

where γ is again the sum of the numerators in all
five equations.

Here the probability of a response in any of
the five item categories is a function of a student’s
latent ability (θ

pd
) on the SEPUP variable associ-

ated with item i, and item and step difficulty (δ
i
 +

τ
kd

).  Note that the MRCML item equations are iden-
tical to the RCML equations, except that both θ and
τ are now a function of the SEPUP variable (i.e.

Figure 5.  Modeling Science Ability

Multidimensional Approach

DCI = Sum of raw scores on 13 DCI items for student p
ET = Sum of raw scores on 12 ET items for student p
CSI = Sum of raw scores on 4 CM items for student p
UC = Sum of raw scores on 7 UC items for student p
θ = Four correlated estimates of latent science ability
AB, AC, AD, BC, BD, CD = Dimensional correlations

Table 1
SEPUP Consecutive

Dimension Reliability

DCI .71

ET .74

CSI .78

UC .69

Unidimensional Reliability = .90
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dimension) upon which the item has been scored.
There are now four populations means for each
SEPUP variable, four variance estimates, and six
covariance estimates.  The four sets of item diffi-
culties are all constrained to sum to zero.  Altogether,
a total of 56 parameters would be estimated using
ConQuest: 42 item and step parameters, and 14
population (person) parameters.7

Results

Because the multidimensional approach is
hierarchically related to the unidimensional ap-
proach, the model fit can be compared relative
to the change in the deviance (G2) value, where
the difference in deviance between the two mod-
els is approximately distributed as a chi-square
with 13 degrees (60-47) of freedom.  As Table 2
indicates, the difference in deviance between the
two models is 357.  This suggests that the multi-
dimensional model fits the data significantly bet-
ter than the unidimensional model.  On the basis
of a comparison of Akaike’s Information Crite-
rion (Akaike 1981), the multidimensional model
fits the data better than both the unidimensional
and the consecutive model.  These indicators of
statistical significance lead one to expect that
there will also be differences between the mod-
els at the interpretational level.  We illustrate sev-
eral of these below with respect to a) reliability,
b) estimated correlations among dimensions, and
c) student ability estimates under the different
models.

Earlier the claim was made that an advan-
tage of the multidimensional approach is an im-
provement in reliability relative to the consecutive
approach, and Table 3 supports this claim.  Un-
der the multidimensional approach, the reliabil-
ity for each SEPUP dimension comes closer to
the unidimensional reliability estimate.  In the
case of the ET variable, the reliability of the
multidimensional ability estimate is actually equal

to the unidimensional estimate.  For the other
three SEPUP variables, the reliability of the mul-
tidimensional ability estimates fall between those
estimated using the consecutive and unidimen-
sional approaches.  This result is consistent with
a previous investigation by Wang, Wilson and
Adams (1997).

The multidimensional and consecutive ap-
proaches can also be compared with respect to esti-
mated correlations between the SEPUP variables.
The numbers below the diagonal of the four by four
matrix in Table 4 shows the correlation between
each of the four SEPUP variables under the multi-
dimensional model.  The numbers above the diago-
nal of Table 4 show the variable correlations
calculated from consecutive model estimates.  Un-
like the variance-covariance matrix produced by
ConQuest using the multidimensional model, this
latter set of correlations is attenuated due to mea-
surement error.  Hence in the consecutive approach
the true correlations between the SEPUP variables
are underestimated8. With respect to the
disattenuated correlations on the lower diagonal of
Table 4, all four variables enjoy moderate to strong
correlations, ranging from about .6 to .8.  The low-
est correlations tend to involve the CSI variable.

Restricting our attention to the multidimen-
sional model, Figure 6 plots the standardized
ability estimates of the SEPUP students in logit

Table 2
MODEL AIC G2 # of parameters

Unidimensional 33470 33564 47

Consecutive (4) 33442 na 51

Multidimensional 33087 33207 60

Table 3

SEPUP Consecutive Multidimensional
Dimension Reliability Reliability

DCI .71 .83

ET .74 .90

CSI .78 .80

UC .69 .79

Unidimensional Reliability = .90

Table 4

Correlations Between SEPUP Variables

DCI ET CSI UC

DCI 1.00 .55 .45 .60

ET .73 1.00 .66 .55

CSI .59 .83 1.00 .43

UC .81 .79 .64 1.00

Multidimensional Correlations below diagonal
Consecutive Correlations above diagonal
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Table 5

Discrepant Cases:  Multidimensional Ability
Estimates

DCIθ̂ ETθ̂ CSIθ̂ UCθ̂
.76 -.71 -1.23 .83

.69 -.96 -1.33 -.11

.17 -1.01 -1.06 .43

.78 1.98 2.17 .96

-.15 .97 .93 -.22

1.32 2.18 2.38 1.26

-.43 .21 .14 -.83

.14 -.56 -.98 -.40

.71 1.00 1.16 .13

.95 1.19 .55 1.52

values (positive values indicate higher estimated
ability) for the DCI dimension against the stan-
dardized estimates of the ET dimension.  In the
SEPUP example it seems that in general, a high
estimated ability in one dimension implies a high
estimate of ability in another dimension.  None-
theless, it is worth noting that while the two di-
mensions exhibit a fairly strong correlation at .73,
there are a significant number of students who
differ by a full standard deviation when their abil-
ity estimates are compared across dimensions.  In
four dimensions, the number of “discrepant”
cases might be larger still.  To capture this, stan-
dardized ability estimates on all four dimensions
can be compared for the full sample of 541 stu-
dents using a sum of squares indicator, DI for
each student.

( )
4 2

1

DI θ θp d
d =

= −∑ (5)

If we arbitrarily set the threshold for a dis-
crepant case at DI

p 
= .5, there are 162 students

(30%) in the sample for whom dimensional esti-
mates might reveal differing stories about under-
lying student ability.  To make the point more
concrete, consider an example.  Table 5 shows
ten students from the SEPUP sample who had DI
values greater than .5.  Each of the four columns
of the table give the students’ corresponding stan-
dardized dimensional ability estimates in logit
values.  The values in each of the four columns
represent related aspects of the overall domain

of science achievement, and as such they are gen-
erated from a multidimensional model.  It should
be clear upon inspection that interpreting any one
of these estimates as a general, unidimensional
measure of science ability is likely to either un-
derestimate or overestimate student ability on the
excluded dimensions.

Analyzing examples of discrepant cases is
an indication that there might be important edu-
cational ramifications of ignoring multidimen-
sionality when assessing student performance.
For many students in the SEPUP sample, a
teacher might do well to represent performance
as unidimensional.  Because the four SEPUP vari-
ables are positively correlated, most students who
perform well on one variable also perform well
on the others.  However, in this example we sug-
gest such an analysis might be misleading for
roughly 1/3 of the students in the SEPUP sample.
This might seem reasonable in a statistical sense,
but will be problematic for teachers hoping to
respond to the needs of all their students.

Consider the simulated case of two such stu-
dents, “John” and “Shelly.”  The response vec-
tors of these students to the SEPUP link items
are specified a priori such that John and Shelly
have DI values of .54 and 1.32 respectively.  As
shown in Table 6, the DI value of .54 for John
corresponds to raw scores of 30 points on the 13
DCI items, 24 on the 12 ET items, 10 on the four
CSI items, and 14 on the seven UC items.  Ap-
plying the consecutive model, one could use these

Figure 6.  Standardized Student abilitly Estimates
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four numbers as the basis for four separate abil-
ity estimates:

j j j jDCI ET CSI UC
ˆ ˆ ˆ ˆ θ ,  θ ,  θ , and  θ

 Now consider John’s classmate, Shelly, with
a DI value of 1.32.  Shelly receives raw scores of
30, 34, 12 and 22 on the DCI, ET, CSI and UC
items.  Four separate ability estimates are again
generated under the consecutive model:

s s s sDCI ET CSI UC
ˆ ˆ ˆ ˆθ ,  θ ,  θ , and  θ

A comparison of ability estimates along the
four variables shows that while

s j s j s j

s j

ET ET CSI CSI UC UC

DCI DCI

ˆ ˆ ˆ ˆ ˆ ˆ θ  > θ ,  θ > θ , and  θ > θ ,

ˆ ˆ note that θ = θ   (.244).

In words, Shelly’s achievement in science is
greater than John’s when compared relative to
the ET, CSI and UC variables, but equal to John’s
on the DCI variable.  This last relationship
changes if a multidimensional approach is
adopted because the correlation between dimen-
sions affects the dimensional ability estimates.
Now, since the four variables are positively cor-
related,

s j

s j

DCI DCI

DCI DCI

ˆ ˆ θ > θ , 

ˆ ˆwhere θ = .487 and θ = -.079.

The estimate of Shelly’s science achievement
is now greater than that on John’s even though
they have identical raw scores on the DCI items,
because the MRCML model takes into account
the higher ability estimates for Shelly along the
other three variables.  Such simulated results are
only suggestive because the dimensional esti-

mates using the SEPUP data have not been made
with great precision. The standard error of the
estimates is shown in parentheses for Table 6,
and for each student it is approximately .3 logits.
The two θ

DCI 
estimates are not statistically dis-

tinct at the conventional .05 significance level.

Discussion

In many assessment situations there is a de-
sire to either disaggregate the scores from a test
into subcomponents and report them as separate
dimensions of performance; or to aggregate the
scores of test subcomponents and report this as a
single dimension of performance.  Both these
scenarios are a departure from the measurement
ideal of simple unidimensionality.  The RCML
and MRCML models are useful tools when the
objective is to measure more than one latent do-
main.  In this paper, the RCML model has been
used to illustrate what we term the consecutive
approach, while the MRCML model has been
used to illustrate the multidimensional approach.
Our example taken from the SEPUP assessment
system highlights some important differences
between the two approaches.  The essential dif-
ference is that the consecutive approach is sim-
ply a unidimensional model repeated a number
of times using subsets of the full range of items
on a given instrument.  Because there are fewer
items defining each latent domain, the standard
error of measurement for person estimates is nec-
essarily larger, and the reliability of the estimates
is smaller than the full unidimensional model.  We
present the multidimensional approach as an im-
provement over the consecutive approach.  The
approach provides distinct estimates for multiple
latent domains, yet by modeling the domains as

Table 6

Comparing Ability Estimates of Two Hypothetical Students

“JOHN” “SHELLY”

SEPUP Raw Score Consecutive Multidimensional Raw Score Consecutive Multidimensional
Dimension on Items Abilitly Estimate Ability Estimate on Items Ability Estimate Ability Estimate

DCI 30 .244 (.24) -.079 (.33) 30 .244 (.24) .487 (.33)

ET 24 -.865 (.37) -.871 (.36) 34 .497 (.35) .971 (.36)

CSI 10 -.059 (.70) -.009 (.54) 12 1.535 (.78) 2.02 (.51)

UC 14 -.418 (.46) .014 (.38) 22 .848 (.45) 1.51 (.34)

Note: Consecutive and multidimensional ability estimates in logit values, standard errors in parentheses.
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interrelated, the reliability of the estimates comes
closer to that found under the full unidimensional
model.

Beyond the statistical rationale for a multi-
dimensional approach, we believe that there are
important interpretational differences as well,
particularly in classroom settings.  Treating stu-
dent performance that is multidimensional in na-
ture as unidimensional can have the effect of
misrepresenting student ability.  This is less of a
danger when the dimensions in question have a
moderately high and positive correlation, as in
the case of the SEPUP data from our example.
Nonetheless, we introduce the notion of discrep-
ant cases to show that even when dimensions are
well correlated, a relatively large number of stu-
dents could still have their performance misrep-
resented.  In a high stakes setting, this could have
troubling consequences.

The data example used in this paper is prob-
ably a simplistic approach to modeling both uni-
dimensional and multidimensional student ability.
We ignore what is a likely violation of local item
independence in the “bundling” of items within
a common prompt.  In addition, we ignore the
fact that student responses were scored by dif-
ferent teachers, and that these teachers may have
scored students with different levels of severity.
Finally, student responses are treated as if they
had occurred at one point in time when in fact
the responses occurred over the course of a school
year.  This analysis is not an attempt to draw in-
ferences in any absolute sense about student per-
formance in SEPUP.  Rather, it has been meant
as an illustration of the relative merits of a multi-
dimensional approach to a unidimensional ap-
proach in the context of classroom measurement.

Footnotes

1 There is a third case, where individual items
are designed to measure two or more dimensions.
This has been termed “within-item multidimen-
sionality” (Adams, Wilson and Wang, 1997), and
is beyond the scope of this paper.

2  Note that the MRCML approach allows a
broader interpretation than this—the case we are
assuming is termed a “between-item” model
(Adams, et al., 1997).
3 There are actually five SEPUP variables.  The
variable “Group Interaction” has been excluded
from this discussion because it was not calibrated
within the scope of the SEPUP evaluation project.
4 This ignores the measurement issue of local item
dependence.  The methods we discuss can be
extended to deal with this, but for the sake of
clarity, we will ignore this issue here.  See Wil-
son and Adams (1995) for a way to do this within
the MRCML framework.
5 In general, step difficulty may be modeled for
each item separately.  In this case, the same scor-
ing guide was used across all items within each
SEPUP variable, so a model that keeps the pat-
tern constant within each variable makes sense,
and has been found to be empirically accurate
(Wilson and Sloane, (2000)).
6 The reliability coefficient is calculated using an
approach described in Mislevy, Beaton, Kaplan
and Sheehan (1992) as the ratio of the variance
in expected a priori ability estimates from the
sample over the estimated variance of the popu-
lation.  The resulting coefficient is conceptually
analagous to person separation reliability, and
more convenient to calculate given the emprical
Bayes, MMLE underpinnings of the MRCML
model.
7 For the example used in this paper, all item and
step parameters are anchored to values previously
estimated using ConQuest by Draney and Peres
(1998).  When item anchor values are used, there
is no need for model identification constraints,
hence in what follows we consider the multidi-
mensional model with respect to a total of 60
parameters rather than 56.
8 This result is illustrated by simulation studies
and theoretical arguments in Adams, Wilson and
Wang 1997.
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