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MASS-MULTIVARIATE ANALYSIS
* ERPs were sampled every 5ms
across 62 electrode sites
* The following model was
evaluated at each combination
of time x spatial location:
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* False-discovery rate multiple
comparisons corrections were
applied across all time x spatial-
location combinations

CONTEXT BASED SEMANTIC SIMILARITY

GloVe vector space representations

(Manning et al 2014) were collected for

all words presented in the stories. To
generate a context similarity measure,
the vector representations for the 10-
prior content words to a given were
summed and compared to the current
word vector by computing the cosine
angle between the current word vector
and the summed context vector.
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