

ASPECT-RATIO REDESIGN OF EAGLE OWL FOR STORMCHASING

TEAM	Matt Alexander, Carson Brumley, Will Butler, Alejandro Corral, Elliott Davis, Ryan Davis, Cody Goldman, Thomas Kisylia, Connor Myers, Erika Polhamus, Alec Stiller, Yuma Yagi
ADVISOR	Dr. Donna Gerren
SPONSOR	Dr. Brian Argrow

AGENDA

- Project Overview
- Scheduling
 - Test Overview
- Airframe Testing Status
- Avionics Testing Status
- Takeoff Testing Status
- Project Budget
- Backup Slides

PROJECT OVERVIEW

Overview Schedule Airframe Avionics Takeoff Budget Backup

PROJECT OBJECTIVES

- Aspect-ratio Redesign of Eagle-owl for Stormchasing (ARES) will build upon the previous Eagle Owl project by designing, building, and testing a box-wing unmanned aircraft with a flush airdata sensing system (FADS) to measure relative wind velocity with the objective of creating a high endurance system that can eventually fly into extreme weather conditions.
- The ARES rendition of Eagle Owl will increase the aspect ratio, add an hour of endurance, integrate an autopilot, pressure sensors, and a temperature sensor which are incorporated in the FADS system, all within the wings of the aircraft.

CONOPS

Location: CU Boulder South Campus

*customer defined

FUNCTIONAL BLOCK DIAGRAM

BASELINE DESIGN REVIEW

ARES TRR 7

CU BOULDER

BASELINE DESIGN REVIEW

CU BOULDER

LEVELS OF SUCCESS

	Data Capture	Landing	Navigation & Control	Flight
Level 1	FADS system integrated and recording continuous pressure data while powered. Record continuous local temperature and inertial measurements to onboard storage while powered	Airframe can survive a simulated landing cycle outside of flight test	Control surfaces are actuated in response to RC input and autopilot feedback look; autopilot verified by feeding in test data on ground	Provide flight models and simulations to show that the design can complete design objectives
Level 2	Level 2 objectives are the same as Level 1 objectives	Landing method allows for consecutive takeoff and landing cycles with only power replacement/recharge	Autopilot achieved with ability to maneuver the aircraft in a 600m diameter circle while staying within visual sight	Takeoff with no damage to sensors, structure, or operators. Achieve steady, level flight with no more than 3m divergences
Level 3	Calibrate FADS system such that if the data is converted to aircraft-relative wind velocity it will be to within 1 m/s and 1° of accuracy	Consecutive takeoff and landing cycles occur a minimum of 10 times	Full flight with takeoff and landing achieved with autopilot	Flight endurance is 1 or more hours with all systems powered

CRITICAL PROJECT ELEMENTS

CPE	Description
Airframe Testing	Construction of a functional aircraft is integral to the project's success. With no aircraft, nearly all project objectives are not met.
Avionics and Science	ARES must have an avionics system on board to achieve its power needs for all other CPEs. The FADS system must be integrated into this system as well to measure and record data.
Autopilot and Control	The autopilot and control CPE is driven by the need to maintain stability and must achieve an automated, large diameter circular flight.
Propulsion	To maintain flight, the ARES aircraft must have an on board propulsion system. This must be able to provide enough thrust efficiently enough to achieve a 1 hour flight time.
Takeoff	The aircraft must be able to take off successfully in order to achieve any of its other top level successes. Without this, the project risks not meeting several requirements.

SCHEDULING

Overview Schedule Airframe Avionics Takeoff Budget Backup

AIRFRAME SCHEDULE

Task name	Start da 8	End date	Janua	ary			February	/		
			3 Week	4 Week	5 Week	6 Week	7 Week	8 Week	9 Week	10 Week
 Airframe Manufacturing 	01/14/	03/08/				Airframe Ma	nufacturing			
Finish Center Strut Design	01/14/	02/01/	Finish (Center Strut	Design					ω
Obtain Materials	01/14/	03/01/			0	btain Materia	ls		- 1	2
Cut Out Joints	01/22/	02/12/		→	Cut Out	Joints				1
Determine Material for Sidewalls (Test	01/29/	02/04/			Dete.		6.0			0
Make Plastic Inserts for Joints	01/29/	02/05/			Make					
Cut EPP Foam for Wings (Both Models)	02/03/	02/22/				GULEPH	Foam for Wi	ngs (
Attach Inserts to Rods	02/05/	02/07/				→ A				1
Cut Out Sidewalls (Test Model)	02/05/	02/14/					ut S			
Final Test Model Assembly	02/08/	02/15/				→ F	inal T			
Make Prop Motor Mount	02/12/	02/19/					Make			
Make Control Surfaces (Full Model)	02/15/	02/24/						Make Co	5	
Make Center Strut	02/19/	02/23/								
Cut out Electronics Locations in Airfoil	02/22/	03/01/						→ C	Cut ou	
Attach Control Surfaces (Full Model)	02/22/	03/01/						→ # #	ltach	1.00
Insert Servos / Piano Wire (Full Model)	02/22/	03/03/							nsert Ser	
Make Carbon Fiber Plate	02/22/	03/04/							Make Carb	1 -
Attach Motor Mount (Full Model)	02/25/	03/03/							Atta	6
Foam cut mold foam	02/26/	03/01/		Comp	lete				Foa	
Insert Avionics Components (Full Model)	02/27/	03/06/		In Pro	gress				Inse	
Insert Controls Components (Full Model)	02/27/	03/06/		Not St	arted				⊷ ∭inse	
Insert Propulsion Components (Full M	02/27/	03/06/		Critica	D Path					
Attach Motor/Spinner/Prop to Mount (F	03/04/	03/06/		Dead		ACD				A −
Cut Out Sidewalls and Strut (Full Model)	03/04/	03/08/		Deadl	ine at i	VISK				+
Attach Carbon Fiber Plate (Full Model)	03/04/	03/08/								→ A
Final Full Model Assembly	02/22/	03/08/						+ E	Final Full Mc	el A.

Overview

Schedule

Airframe

Avionics

AVIONICS SCHEDULE

Task name		Start date	End date	Janua	iry			February	/		
				3 Week	4 Week	5 Week	6 Week	7 Week	8 Week	9 Week	10 Week
 Avionics Manufacturing 	(j)	01/14/	03/05/	2//////////////////////////////////////		A	vionics Manu	facturing			
Epoxy FADS Boards and Add Tubing	(j)	01/14/	01/22/	Epoxy F							3/
Get Code to Build on Pixhawk4	(j)	01/14/	02/01/	Get Coo	le to Build o	n Pix	1				12
FADS Code to Write to SD	(j)	01/21/	01/29/		FADS C						19
Create Teensy / 9V Power Circuit	(i)	01/21/	01/28/		Create						
Circuit Board Construction	(j)	01/21/	02/05/		Circuit B	oard Cons	tr				
FADS Code to Pull Data	(j)	01/22/	02/12/		F/	DS Code t	to Pull I ata				
Pixhawk 4 "Mixer File"	(j)	02/05/	02/26/				P	'ixhawk 4 "M	ixer File"		
Compile FADS Code on Teensy	(j)	02/12/	02/19/					Co npi			
Finalize FADS Code	í	02/12/	03/01/		mplete			🛶 🔤 ina	alize FADS (Code	
Create Propulsion Power Circuit	i	02/13/	02/18/	l In	Progress		1	Cr			
Build Servo/Control Surface Connections	(i)	02/15/	02/24/		ot Starte	d k			huil Ser		
Pixhawk 4 R/C Flight Capable	(i)	02/19/	02/28/	— Cr	itical Pat	h			Pixhav	vk	2
Develop Flight Plans on Pixhawk4	(i)	02/19/	03/04/	De	eadline a	t MSR				p Flight F	9 -
Combine All Components and Prep for DITL	(i)	02/26/	03/05/							→ Combi	

TAKEOFF SCHEDULE

Task name	Start dal	End dat	Janua	ary			Februar	y			Mar	ch
			3 Week	4 Week	5 Week	6 Week	7 Week	8 Week	9 Week	10 Week	11 Week	
√ Takeoff Manufacturing	01/14/	03/12/				Takeoff	Manufacturi	ng				
Obtain Takeoff Materials	01/14/	01/22/	Obtain T	222						ω		
Bead Blast, Drill, & Tap Center Rail	01/18/	01/27/	L→ E	Bead Bla	-					lo l		
Cut, Drill, & Tap Center Support Rods	01/18/	01/27/	→ C	ut, Drill,	-					5		
Drill & Tap Holes for Center Rail Clips	01/18/	01/27/	L, D	Drill & Ta	H					9		
Weld Center Rail Clips	01/25/	01/28/		L→ W	/e							
Cut, Drill, & Tap Legs	01/25/	02/02/			ut, Dril							
Drill & Tap Tail Post	01/25/	02/02/		D	rill & T							
Cut & Drill Rubber Stoppers	01/25/	02/02/		C	ut & D					i		
Obtain Scrap Metal for Release	01/29/	02/02/										
Bend, Drill, & Tap Plate Metal for Release	01/29/	02/08/			Bend, I	Drill,						
Bend, Drill, & Tap Lever Arm	01/29/	02/08/			Bend, D	Drill,						
Drill & Tap Tube for Release	01/29/	02/08/			Drill &	Tap						
Bend, Drill, & Tap Carriage Clip for Release	01/29/	02/08/			Bend, D	Drill,						
Drill & Ream Standoffs	02/01/	02/08/			Dr	rill & 🗕						
Cut, Drill, & Tap Carriage Plate Metal	02/03/	02/08/			4	Cu				i		
Add Brackets to Support Rail	02/07/	02/09/				A						
Obtain Additional Takeoff Materials	02/08/	02/15/				C	btain					
Attach Carriage Clip for Release	02/08/	02/12/										
Bend, Drill, & Tap Sheet Metal for Carriage U	02/08/	02/12/				E						
Bend, Drill & Tap Sheet Metal for Carriage Clips	02/08/	02/12/										
Final Takeoff Assembly	02/12/	02/15/					→ Fin					
Make Initial Repairs	02/12/	02/24/		Comple	ete		Make	Initial Re				
 Iterative Test/Manufacturing Cycle 	02/19/	03/12/		In Drog	rocc			Iterativ	re Test/Man	u ^f acturing Cy	444/12	
Finalize Release Mechanism	02/19/	02/22/		III PIOg	ress							
Align Carriage on Rail	02/24/	02/28/		Not Sta	arted				A			
Redistribute Carriage Weight	02/27/	03/03/		Critical	Path							
Update Models for Bungee Length	02/27/	03/06/		Deadli	ne at M	ISR			Upd		_	
Get Carriage Up to Speed	03/04/	03/12/		Deauli	ic at IV					Get Car	1110	

Overview

Schedule

Airframe

Avionics

Takeoff Budget

Backup

TESTING SCHEDULE

Task name	Start da	End date	У			Februar	У			Marc	:h				April	
			4 Week	5 Week	6 Week	7 Week	8 Week	9 Week	10 Week	11 Week	12 Week	13 Week	14 Week	15 Week	16 Week	17 Week
~ Unit Testing	01/21/	03/12/				Unit Tes	ting									
Microcontroller Setup	01/21/	01/25/							ω							
Pixhawk Setup	01/21/	01/25/	P						6							
Battery Charging / Discharging	01/25/	02/02/	B	attery					2							
Pixhawk Sensor Calibration	01/26/	02/15/	4	Pixhawk S	ensor Calib	ration			1			_	1.5.5			
Bungee Recovery Testing	01/30/	02/06/		Bunge	Ð							Com	plete			
FADS in Fridge (Seal Test)	02/05/	02/14/			FADS	n		-523				In Pr	ogress			
FADS in Wind Tunnel	02/11/	02/24/	L			🚽 FAIS in	Wind Tu						- O.	J		
Ballistic Mass Takeoff	02/15/	02/24/				→ ■	Ballistic M		i				starteo	1 L		
Control Surface Response	02/19/	03/04/					-) Contro	Sunace			-	Critic	cal Pat	h		
Takeoff Speed Tuning	02/26/	03/12/						Takeo	Speed Tur			Dear	lline a	MSR		
✓ Initial Field Testing	02/15/	03/12/					Init	ial Field Tes	ing			Deat	anne a			
Propulsion Dynamometer ①	02/15/	03/04/				+	Propulsion D	namometer								
Test Airframe Model Glide	02/15/	03/08/				4	rest Ainra	ne Model G	ide							
Test Airframe Model Takeoff Launch 🕕	02/22/	03/12/						est Ainram	Model Take							
Test Airframe Model Takeoff Stability	02/22/	03/12/						stAnnam	Model Take							
Test Airframe Model Takeoff Survival	02/22/	03/12/						est/Ainram	Model Take	- 22						
Test Airframe Model Landing Survival	03/01/	03/12/						4 1	🖻 LAirframe	-						
✓ Full Systems Testing ①	03/05/	04/22/									F	ull Systems	Testing			
Avionics Day in the Life	03/05/	03/13/							→ Avioni	cs						
Controls Day in the Life	03/05/	03/13/				L.			Contro	ols						
Powered Takeoff	03/18/	03/21/									→ Pov-					
RC Short Flight 🕕	03/22/	03/26/									L. 87	11/12-				
Autopilot Short Flight 🕕	03/27/	04/01/										Au	- E			
Full Flight	04/02/	04/22/											L Contraint	Full Flig	nt	-

TEST OVERVIEW

TEST OVERVIEW

SAFETY PROCEDURES

- Mechanical
 - Takeoff System has safety procedures and documentation for launch procedure
 - Safety Pin on the rail has been proven to stop carriage
 - Safety Glasses are required to use
 - Hazard Tape to signify dangerous zones on the system
- Electrical
 - LiPo Batteries are stored at recommended voltage of 3.85V
 - ABC Fire Extinguisher owned by ARES in case of fire
 - Grounding wrist strap
- System
 - Team members have reviewed and understand ARES components that can cause harm and how to avoid them (Prop, LiPo's, Airframe, Takeoff Carriage)

AIRFRAME TESTING

Overview Schedule Airframe Avionics Takeoff Budget Backup

ARES TRR 19

CHANGES SINCE CDR

- Control surfaces resized (width 0.61 m to 0.50 m)
 - Manufacturing limitations
- Temporarily using corrugated plastic instead of honeycomb
 - Shipping delays
- Extension of honeycomb near joints
 - Helps prevent shear
- Sleeve on center strut screws into ribs

MODEL GLIDE TEST

Driving Requirements

D.R. 2.2: L/D ratio greater than the Eagle Owl (L/D > 12)D.R. 2.1.3: Stable flight without a tail boom

- **Test Fixtures/Facilities:** Takeoff system, Model plane, measuring tape
- **Procedures:** Clear landing area, launch plane, record video, postprocess data to calculate approximate L/D

Risk Reduction: Satisfy D.R 2.2, 2.1.3 without risking electronics or control surfaces

Status: 2/15 - 3/8 In progress

Device	Measurement	Accuracy
Measuring Tape	Inches	±1/8 in

MODEL LANDING TEST

Driving Requirements

D.R. 6.1: Land so that it can take off in 15 minutesD.R. 6.4: The landing system won't put any person in danger

Status: 3/1 - 3/12 In progress

• Test Facilities/Equipment: Test performed in an open outdoor location with the model airframe and the takeoff system

• **Procedure:** Launch with takeoff system, land in open area, assess damage

Risk Reduction: Satisfy D.R 2.2, 2.1.3 without risking electronics or control surfaces

GLIDE/LANDING VIDEO

SHORT RC FLIGHT TEST

Driving Requirements

- DR 2.1.3: Stable flight without a tail boom
- **DR 4.1:** Autopilot demonstrates steady level flight for at least 2 minutes

- **Test Fixtures/Facilities:** Takeoff system, ARES full airframe, trained pilot, CU Boulder South Campus
- **Procedures:** Launch aircraft, perform basic maneuvers, PixHawk 4 records performance to tune gains
- Compare: Gains modeled for CDR
- Calculate: Stability coefficients, PID control gains

Risk Reduction: Validate the airframe's response to wind disturbances and tune gains with ArduPlane

ARES TRR

24

Status: 3/22-3/26 Not Started

SHORT RC FLIGHT TEST

ARES flight models using aerodynamic data

- Stability matrix made in Athena Vortex Lattice (AVL)
- Use linear P-D control with
 MATLAB
- Perturbation inputs are different initial states

Response to a perturbation in cruise speed

AVIONICS TESTING

Overview Schedule Airframe Avionics Takeoff Budget Backup

CHANGES SINCE CDR

REP.

- Autopilot software changed to ArduPlane from PX4
 - ArduPlane includes differential elevons and gain auto-tuning
- 9V and conditioning circuit changed to 3 AA's in series
 - Allows for addition of a switch, less components
- CircBoard added for I2c pull-up resistors
 - These were built in on Arduino used for testing

FADS INTERFACE TEST

Driving Requirements

DR 5.3: Pressure and temperature sensors report at the same rate of 1 Hz **DR 5.5:** The on-board computer communicates simultaneously with 12 sensors

- **Test Fixtures/Facilities:** Projects Room, FADS boards, microcontroller
- Procedures: Connect 12 sensors to microcontroller, power system, record pressure and temp, confirm data stored on SD card

FADS PCBs

Schedule

Airframe

Overview

Microcontroller

Avionics

Risk Reduction: Confirms capability of electronic interfaces prior to integration into airframe

Budget

Backup

Takeoff

Status: Complete 2/25-2/28

FADS WIND TUNNEL TEST

Driving Requirements

DR 5.1.3: Pressure sensors shall be accurate up to 200 Pascals

- **Test Fixtures/Facilities:** ITLL Wind Tunnel, FADS circuit, sting balance, scanivalve pressure sensor
- **Procedures:** Integrate FADS into wing \bullet section, insert in wind tunnel and vary airspeed, record data, pull FADS and pitot probe data, post-process to calculate P/T errors

Risk Reduction: Verify requirement prior to integration to ensure accurate data collection

FADS in ITLL Wind Tunnel

FADS WIND TUNNEL TEST

MOTOR DYNAMOMETER TESTING

Driving Requirements

DR 1.2: System produces enough thrust for flight **DR 1.2.1:** System capable of reaching between 10-30 [m/s]

- **Test Fixtures/Facilities**: Testing in Composites Lab. Requires Dynamometer, thermal anemometer, optical tachometer
- **Procedures**: Place Dynamometer setup in test wind tunnel, record dynamic and static thrust, compare to eCalc and mathematical models and requirements

Risk Reduction: Collect motor thrust response to incoming wind and gain understanding of throttle requirements

Status: Completed 1/30

Device	Measurement	Accuracy
Dynamometer Load Cell	Thrust (g)	± 0.5%
Thermal Anemometer	Wind Speed (m/s)	± 3%
Optical Tachometer	Propeller RPM	± 0.3%

DYNAMOMETER TEST RESULTS

eCalc Data vs. Interpolated Test Results for 59% Throttle

Value	eCalc	Dyna Test	Error (%)
RPM	5622	6254	+10.1
Thrust (g)	513	576	+10.8

Conclusion: Our propulsion system satisfies DR 1.2 and DR 1.2.1. Able to establish flight settings based on test results and analysis

TAKEOFF TESTING

Overview Schedule Airframe Avionics Budget Backup

CHANGES SINCE CDR

- Pads added to stop carriage
- "L" brackets instead of clips on rail
 - Stronger connection prohibits sagging
- Torque Inhibitors to help guide carriage
 - Prevent carriage torque on rail

- Pin release instead of lever
 - Safer and more reliable release
- Base plate added with rebar stakes
 - Safety

LAUNCH VELOCITY TEST:

AIRFRAME

CU BOULDER

Driving Requirements

D.R. 3.2: Bring the aircraft to its desired initial velocityD.R. 3.3: Capable of 10 consecutive takeoffs

- **Test Fixtures/Facilities:** Launch system, test airframe, open space, slow motion camera
- **Procedure:** Follow safety guidelines, launch model using takeoff system, capture on video for speed analysis

Risk Reduction: Verify DR 3.2 and DR 3.3 prior to system use with ARES to reduce risk from damaging avionics components

Overview Schedule Airframe Avionics Takeoff Budget Backup

Status: 2/22 - 3/12 In progress

Expected Results: Achieve desired velocity and heading for consecutive takeoffsValidated Models: Launch Velocity Model

LAUNCH VELOCITY TEST: MASS

Moncuramant

• Test Fixtures/Facility: Engineering Center Quad, Launch System, 4kg sandbag

- Procedure: Film each takeoff with connected mass, use GUI to determine takeoff velocity
- Calculate: Launch Velocity (V_f) and Launch Force (F)
- Compare: Ballistic Models to data recorded

	Device	measurement	Accurac
with ARES to remove risk from damaging avionics components	iPhone 10 Camera	Position on Rail [m]	± 6.1%
TAKEOFF TEST VIDEO

LAUNCH VELOCITY TEST RESULTS

• Test Results:

- o _V_{Max} ≅ 7.86 m/s
- Occurs at ≅ 0.429 s
- Failure Analysis: System not reaching needed speed, max speed not far enough along rail
 - Qualitative solution shorten bungees, reduce carriage mass
 - Quantitative solution retest with accelerometers
- Model Inaccuracy: Point mass assumption, inability to accurately predict friction, inaccurate carriage mass

Driving Requirements All Functional Requirements and Design Requirements

- Test Description (follows ConOps process):
 - Power on ARES Aircraft
 - Confirm recording of temperature and pressure data
 - Confirm RC connection by actuating surfaces & powering motor
 - Launch ARES from Takeoff Launch System at CU South Campus
 - Fly up to 100m altitude, allow autopilot to fly 300m radius circle
 - Continue flight for > 1 hour, descend, and land
- Validate: All levels of success

Takeoff/Ascent Path 1 hour Flight Circle

FLIGHT TEST LOCATION

CU Boulder South Campus - Open Space

- Flight access requirements:
 - AMA card of pilot
 - FAA registration number of drone
 - Permission to fly from Director of Flight Operations, Dan Hesselius

PROJECT BUDGET

Overview Schedule Airframe Avionics Takeoff Budget Backup

PROCUREMENT SUMMARY

- CA Composites Carbon Honeycomb
 - Expected delivery 3/4/19 (via tracking number)

- All other expected components and materials have been ordered and delivered
 - Enough material for 3 complete airframes
 - Unexpected items will be purchased as needed

BUDGET SUMMARY

<u>CU BOULDER</u>

Subsystem	Spent	
Airframe	\$2,021.91	
Avionics	\$101.42	
Controls	\$716.00	16
Propulsion	\$789.04	
Takeoff	\$782.17	
Spent in Fall	\$316.41	
Total	\$4726.95	

*Note: We have spent \$302.48 since MSR.

Left: \$273.05

Airframe Takeoff Budget Overview Schedule Avionics

ACKNOWLEDGEMENTS

CU BOULDER PESSIANS REFE

- Dr. Brian Argrow
- Dr. Donna Gerren
- Dr. Jelliffe Jackson
- Dr. Dale Lawrence
- Dr. Kathryn Wingate
- Dr. Marcus Holzinger
- Matt Rhode
- Bobby Hodgkinson
- Adrian Stang
- Cory Dixon

- Trudy Schwartz
- John Mah
- Josh Mellin
- Ian Cooke
- Christine Reilly
- Dan Hesselius
- Ken Jochim
- Murray Lull
- Christopher Choate

QUESTIONS?

Overview Schedule Airframe Avionics Takeoff Budget Backup

ARES TRR 45

BACKUP SLIDES

Overview Schedule Airframe Avionics Takeoff Budget Backup

BACKUP TABLE OF CONTENTS

• Airframe

- Powered Takeoff
- Joint Shear
- Landing Models
- Drag Polar
- Avionics & Propulsion
 - Motor Dynamometer
 - Charging/Discharging
 - Autopilot
 - Control Block Diagrams
 - RC Short Flight

- Takeoff
 - Bungee Recovery
 - Launch Velocity
 - Takeoff Models
- System Test
 - Testing Tables
 - Full System Tests

AIRFRAME BACKUP

Overview Schedule Airframe Avionics Takeoff Budget Backup

POWERED TAKEOFF TEST

Driving Requirements

DR 1.1: The system shall have an in-flight power system.

DR 1.2: The system shall have an integrated propulsion system capable of producing enough thrust for flight.

DR 1.2.1: The propulsion system shall be capable of producing enough thrust for the aircraft to reach a range of 10-30 [m/s] flight speeds.

<u>Rationale:</u> Satisfy D.R. 1.1, D.R. 1.2, and D.R. 1.2.1. Critical to mission success because a lack of power to the sensor and propulsion systems will result a mission failure.

<u>Test Facilities/Equipment:</u> Test will be performed in an open outdoor location with the integrated airframe/electronics system and the takeoff system.

<u>Procedure:</u> Perform takeoff procedure with motor on and producing thrust. Measure velocity through onboard instruments or visual observation.

Risk Reduction: Verify requirements without risking the aircraft in a lengthy flight cycle

Status: Unstarted

Expected Results/Model Validation: Expect satisfaction of D.R.'s 1.1, 1.2, 1.2.1.

Model validation in backups.

POWERED STABLE TAKEOFF TEST

Driving Requirements

DR 3.0: The aircraft shall demonstrate a controlled takeoff.D.R. 3.1: The takeoff system shall be able to control the heading of the aircraft after takeoff to within plus or minus 45 degrees of the expected lateral heading.

- Test Description:
 - Place Takeoff subsystem components: Takeoff Stand, Bungees, Base Plates, Rebar, and ARES Airframe Test Model with motor, speed controller, receiver and batteries attached
 - Secure ARES Launch Stand to ground in open field via rebar and base plates
 - Launch the Airframe Test Model at 10° AoA
 - Measure the distance moved laterally post takeoff for 2 seconds (Δy) and film each launch
 - Calculate: Launch Velocity (V_{r}), Launch Force (F)

Risk Reduction: Verify DR 3.1 without using ARES full flight model

Device	Measurement	Accuracy
Measuring Tape	Distance [m]	± 1mm
iPhone 10 Camera	Height [m]	± 6.1%

STRUCTURE: JOINT SHEAR

Each joint can support at least 200lbs of shear force. A single screw supported 50lbs before failure. This is much less than our predicted forces on takeoff or landing.

- F Shear force applied to screw
- d Minimum distance from screw to edge of honeycomb

Result

LANDING MODELS

Avionics

Driving Requirements

D.R. 6.1: The aircraft shall land such that it can take off again within 15 minutes. D.R. 6.4: The landing system shall not put any person in danger at any point. During landing, everyone involved will be a safe distance of 5 meters away.

Backup

Budget

LANDING MODELS

Driving Requirements

D.R. 6.1: The aircraft shall land such that it can take off again within 15 minutes.D.R. 6.4: The landing system shall not put any person in danger at any point. During landing, everyone involved will be a safe distance of 5 meters away.

THEORETICAL DRAG POLAR

CU BOULDER

Budget

Overview

AVIONICS / PROPULSION BACKUP

Overview > Schedule > Airframe > Avionics > Takeoff > Budget > Backup

• Pictures of test setup:

- Main takeaways of tests:
 - Max throttle static thrust is **1140g**
 - Optimal Throttle is **59%** (test showed 724g on 100% charge and over hour of endurance)
 - Estimated Thrust at Flight Speed of 11.1 m/s is **576g**
 - Tests show motor performs better than expected but still agree with models' predictions.

MOTOR DYNAMOMETER TESTING

• Results Comparison

Value	eCalc		Static Experimental			Dynamic Experimental (Low)	Dynamic Experimental (Medium)	
Thrust %	56	64	72	49.5	59	100	59	59
RPM	5400	6000	6600	6800	7989	-	-	7096
Thrust (g)	471	581	703	520	723	1140	656	600

• Note eCalc was verified using experimental data last semester and is very reputable among professionals here at CU

- Possible Sources of Error:
 - Anemometer: Wind speed reading may not have been representative of what propeller actually experienced due to turbulent vortex produced from box fan.
 - Risk: Low
 - Localized velocity distribution did not vary by more than a few km/hr which equates to less than 1 m/s discrepancy
 - Dynamometer: Box fan produced heavy oscillations when turned on which may have affected readings.
 - Risk: Low
 - Dynamometer senses vibrations so their presence can be detected; vibrations were in the up/down direction not axial.

• Dynamic 'wind test' results

Wind Speed	Thrust	RPM
0m/s	700g	7941
5.56m/s	656g	-
8.06m/s	600g	7096

REP.

• Static versus Dynamic Model for Testing Comparison/Verification

AVIONICS CHARGING/DISCHARGING

Driving Requirements

DR 1.1.1: The power system shall provide power to the propulsion system, autopilot, GPS, radio controller and flight computer.

DR 1.1.2: The power system shall be rechargeable or replaceable between flights.

- Test Description:
 - Using Avionics and Propulsions subsystem components: 4 LiPo batteries (3200mAh), Power Management Board (PMB), ESC, and Propulsions Motor
 - Connect batteries to (PMB), then connect ESC to PMB, then Motor to ESC
 - Run the motor at a constant throttle
 - Record: the battery voltage (v) and time stamp (t) every minute for one hour
 - Calculate: The discharge curve of the 4 LiPo Batteries in parallel

Risk Reduction: Verify DR 1.1.1 prior to airframe integration to remove risk of power outage during flight

Device	Measurement	Accuracy
Fluke Multimeter	Voltage [V]	± 0.15%
Stopwatch	Time [s]	±.01s

AVIONICS CHARGING/DISCHARGING

- Main Takeaways:
 - Ran test with charged batteries to ensure endurance requirement (V_i = 4.24v)
 - Motor ran for over an hour with
 550-720g thrust range
 - At the hour mark, changed the thrust output to see its effect on the battery
 - FR 1.0 has been met
 - Level 1 Success criteria conditionally is met

FADS FRIDGE TEST

Driving Requirement

DR 5.2.1: The temperature sensor shall be accurate to within 0.1 K.

Backup

Risk Reduction: Verify DR 5.1.3 and DR 5.2.1 prior to integration to ensure accurate data collection

Overview Schedule Airframe Avionics Takeoff Budget

Test Description:

- Integrate FADS into wing section
- Connect microcontroller
- Insert in Wind Tunnel and vary airspeed
- Record pressure and temperature
- Pull FADS and Pitot Probe Data
- Post-process to calculate P/T errors

Device	Measurement Accura	
Scanivalve	Press. [Pa]	± .20%, ± 5 Pa*
Thermometer	Temp. (*C)	?
		ARES TRR 66

AVIONICS AUTOPILOT POWER

LU BOULDER PARAMAN REFE

Driving Requirements

DR 4.3: The autopilot shall be powered by an on-board system within the aircraft.

- Test Description:
 - Controls and autopilot system wiring completed with all components: Pixhawk
 4, Power Management Board, RC Receiver, Airspeed Sensor, Servos, ESC,
 Motor, and microSD card connected.
 - Plug in LiPo batteries to system in order to begin arming.
 - Turn on RC transmitter controller to finish autopilot arming cycle.
 - Use RC controller to test functionality of servos,
 - Record: voltage levels of ESC connector and servo rail using handheld multimeter.
 - Check microSD card after test to verify data was collected.

Risk Reduction: Verify that the autopilot system and its components can all be powered at the correct voltage using the components present on the aircraft

Device	Measurement	Accuracy
Fluke Multimeter	Voltage [V]	± 0.15%

A.P. RC TRANSMITTER TEST

Driving Requirements

DR 4.4: The aircraft shall be able to receive and complete inputs from customer provided RC ground station.

DR 4.7: The autopilot system shall be able to send commands to actuators and the propulsion system to move control surfaces and make speed adjustments.

- Test Description:
 - Using Autopilot Subsystem components: Pixhawk 4, PWM, Battery, Sensirion Airspeed Sensor, TBD Servos, Speed Controller, Propulsions Motor, and 58D Rec. & Trans.
 - Assemble and connect Autopilot components outside of airframe
 - Move autopilot system 300m away from Taranis X9D
 - Power <u>on</u> subsystem and provide RC inputs through Taranis X9D
 - Record: Response time of servos and propulsion motor and distance between transmitter and receiver

Risk Reduction: Prove RC transmission distances for true flight operation and quantify delay (if any)

Device	Measurement	Accuracy
Taranis X9D	Res. Time [ms]	0-9ms
Rangefinder	Dist. [yard]	±0.5yards

A.P. PITOT TUBE CALIBRATION

Driving Requirements

DR 4.6: The autopilot system shall be able to send commands to actuators and the propulsion system to move control surfaces and make speed adjustments.

Bernoulli's Equation $\Delta p = 0.5 \rho v^2$

- Place Autopilot subsystem components: PWM, Pixhawk, Battery, and SD outside of Wind Tunnel Test Section
- Secure Autopilot Pitot Tube in Test Section
- Run Wind Tunnel at 5 to 15 m/s and save data recorded by A.P. Pitot Tube and W.T. Pitot Tube
- Use data recorded to calibrate A.P. Airspeed Sensor

Risk Reduction: Verify that airspeed sensor used to prevent stall will function properly

DeviceMeasurementAccuracySensirion Airspeed SensorPress. [Pa]± 3%ScanivalvePress. [Pa]±.20%, ± 5 Pa*

A.P. CONTROL SURFACE RESPONSE

CU BOULDER

Driving Requirements

DR 4.5: The autopilot shall be able to continuously downlink its data during test flights.DR 4.6: The autopilot system shall be able to send commands to actuators and the propulsion system to move control surfaces and make speed adjustments.

- Test Description:
 - Using Autopilot Subsystem components: Pixhawk 4, PWM, Battery, Sensirion Airspeed Sensor, TBD Servos, Speed Controller, Propulsions Motor, and 58D Rec. & Trans.
 - Setup: fully integrate electronics and actuators into airframe
 - **Motion:** With power <u>off</u> move/shake aircraft. Check and verify that wiring/connections remain intact
 - Controls: Turn power <u>on</u>, establish RC link, then use Taranis X9D to actuate control surfaces.
 Check that wiring/connections remain intact.
 - **Record:** Response time of servos and motor.

Risk Reduction: Ensure desired control surface deflection prior to flight tests

Overview	Schedule	Airframe	Avionics	Takeoff	Budget	Backup
----------	----------	----------	----------	---------	--------	--------

Device	Measurement	Accuracy
Taranis X9D	Res. Time [ms]	0-9ms
iPhone 10	Deflection [Deg]	±3.2%

DIAGRAM

PITCH CONTROL BLOCK DIAGRAM

CU BOULDER
YAW CONTROL BLOCK DIAGRAM

SHORT RC FLIGHT TEST

Overview

Schedule

Airframe

Avionics

Takeoff

Budget

Backup

ARES TRR 74

TAKEOFF BACKUP

Overview Schedule Airframe Avionics Takeoff Budget Backup

CHANGES SINCE MSR

- 90° bend removed from legs
- New bungees
 - K band did not stretch
- 4 bungee connection points on carriage
- "L" brackets instead of clips on rail
 - Stronger connection prohibits sagging
- Torque Inhibitors to help guide carriage on rail
 - Carriage was torquing on rail and not sliding
- Pin release instead of lever
 - Safer and more reliable release
- Airfoil negatives in wing clips
 - To hold the aircraft more stable
- Base plate added with rebar stakes
 - For safety

BUNGEE RECOVERY TESTING

Driving Requirements

DR 3.3: The takeoff system shall be capable of a minimum of 10 consecutive takeoffs. **DR 3.3.1:** The takeoff system shall accommodate 10 takeoffs without violating takeoff parameter constraints defined in DR 3.1 and DR 3.2.

Objective:

 Validate the degradation of the bungees after each simulated launch

• Test Description:

- <u>Rationale:</u> Quantify the reduction in bungee strength over their use to verify that DR 3.3 will not have failure due to the bungees
- <u>Test Fixtures/Facilities:</u> The bungees will be tied to a fixed surface in the ASEN Senior Projects Lab and tested for force of stretch using a spring scale
- <u>Procedure</u>: Tie Bungee to fixed surface, measure out a length of 1.305m on the bungee, measure out a pull distance of 2m, pull the bungee 100 times recording distance required to create 25lbs of force

Risk Reduction: Ensure bungees response to operation is nominal and will not impact takeoff system

Device	Measurement	Accuracy
Spring Scale	Weight [lbs]	± 1%

BUNGEE RECOVERY TEST RESULTS

- Test Results:
 - The Bungee shows little to no degradation over 100 tests
 - Reduction of 0.01m (0.77%)
 - Loss of 0.843 N

LAUNCH VELOCITY TEST

Driving Requirements

DR 3.2: The takeoff system shall be able to bring the aircraft to its desired initial velocity before it leaves the takeoff system.D.R 3.3: The takeoff system shall be capable of a minimum of 10 consecutive takeoffs.

Objective:

 Validate the Launch System's ability to provide the required V_{Launch} = 11.1m/s
Validate the dogradation of the

degradation of the bungees after each launch

Takeoff GUI Data vs Time

Overview Schedule Airframe Avionics Takeoff Budget Backup

<u>CU BOULDER</u>

CDR LAUNCH VELOCITY MODEL

CU BOULDER

NEW LAUNCH VELOCITY MODEL

STABLE TAKEOFF TEST

Driving Requirements

DR 3.0: The aircraft shall demonstrate a controlled takeoff.D.R. 3.1: The takeoff system shall be able to control the heading of the aircraft after takeoff to within plus or minus 45 degrees of the expected lateral heading.

Objective:

- Validate the Launch System's ability to provide even tension to launch ARES
- Validate and record the deflection of ARES wings during takeoff

Test Facilities/Equipment: Test will be performed in an open outdoor location with the ARES airframe and takeoff system.

SYSTEM TEST BACKUP

Overview Schedule Airframe Avionics Takeoff Budget Backup

AIRFRAME TESTING SUMMARY

Test	Driving Req.	Date	Method	Location/ Facility	Level of Success
Airframe - Model Glide	DR 2.1.3 & DR 2.2	02/15/19	Testing	CU ECCR Courtyards	Flight 1
Airframe - Model Takeoff Launch	DR 3.1 & DR 3.2.1	02/22/19	Testing	CU South Campus	Flight 1
Airframe - Model Takeoff Survival	DR 3.4	02/22/19	Testing	Boulder Aeromodeling Society	Flight 1
Airframe - Model Landing Survival	DR 6.1 & DR 6.4	02/22/19	Testing	CU South Campus	Landing 1
Airframe - Powered Takeoff Test	DR 1.1 & DR 1.2 & DR 1.2.1	03/18/19	Testing	CU South Campus	Flight 2
Airframe - Short RC Flight Test	DR 2.1.3 & DR 4.4	03/22/19	Testing	CU South Campus	N & C - 1 Flight - 2

Overview Schedule Airframe Avionics Takeoff Budget Backup

AVIONICS TESTING SUMMARY

Overview

Takeoff

Budget

Test	Driving Req.	Date	Method	Location/ Facility	Level of Success
Av Autopilot Power	DR 4.3	01/21/19	Testing	ASEN Electronics Lab	-
Av Battery Charging/ Discharging	DR 1.1.1 & DR 1.1.2	01/25/19	Testing	ASEN Senior Projects Lab	-
Av Autopilot Sensor Calibration	DR 4.6	01/26/19	Testing	ITLL Wind Tunnel	-
Av Autopilot RC Transmission	DR 4.3 & DR 4.4	NEED DATE	Testing	ASEN Senior Projects Room	Navigation/Control 1
Av FADS in Fridge	DR 5.1, DR 5.2.1, DR 5.3, DR 5.5.2, DR 5.5.3, DR 5.6	02/22/19	Testing	Team Member Home	Data Capture 1
Av FADS in Wind Tunnel	DR 5.1.3, DR 5.3, DR 5.5.2, DR 5.5.3	02/25/19	Testing	ITLL Wind Tunnel	Science 1 & 3
erview Schedule Airframe Avionics Takeoff Budget Backup ARE					

Backup

ARES TRR 86

AVIONICS TESTING SUMMARY

Test	Driving Req.	Date	Method	Location/ Facility	Level of Success
Av Dynamometer	DR 1.2 & DR 1.2.1	02/25/19	Testing	CU ASEN Composites Lab	-
Av Control Surface Response	DR 4.4 & DR 4.6	03/3/19	Testing	CU Business Field	Navigation/Control 1
Av Avionics Day in the Life	FR 5.0 & All 5.0 DR's	03/13/19	Testing	ASEN Senior Projects Lab	Data Capture 1 & 2
Av Autopilot Day in the Life	FR 4.0 & All 4.0 DR's	03/13/19	Testing	ASEN Senior Projects Lab	N & C - 1 Flight - 1

TAKEOFF TESTING SUMMARY

Test	Driving Req.	Date	Method	Location/ Facility	Level of Success
T.O Bungee Recovery	DR 3.3 & DR 3.3.1 & DR 3.4.3	01/30/19	Testing	ASEN Senior Projects Room	-
T.O Launch Velocity	DR 3.2 & DR 3.3	02/22/19	Testing	Boulder Aeromodeling Society	-
T.O Stable Takeoff/ Wing Deflection	DR 3.0 & DR 3.1	02/22/19	Testing	CU South Campus	Flight 2

OBSERVATION TESTING SUMMARY

Test	Driving Req.	Date	Method	Location/ Facility	Level of Success
Takeoff Observational	DR 3.3.1, DR 3.7, DR 3.7.1, DR 3.7.2	-	Visual/Mathematical	ASEN Senior Projects Room	-
Wing Design Observational	DR 2.1, DR 2.1.1, DR 2.1.2, DR 2.1.4, DR 2.2	-	Visual/Mathematical	ASEN Senior Projects Room	-
Avionics Observational	DR 1.1.3, DR 5.1.1, DR 5.1.2, DR 5.2, DR 5.3.1, DR 5.4, DR 5.5, DR 5.5.1, DR 5.5.2, DR 5.5.3, DR 5.6.1	-	Visual/Mathematical	ASEN Senior Projects Room	-
Propulsions Observational	DR 1.2.2	-	Visual/Mathematical	ASEN Senior Projects Room	-
Autopilot Observational	DR 4.4.1 & DR 4.6	-	Visual/Mathematical	ASEN Senior Projects Room	
Landing Observational	DR 6.2, DR 6.2.1, DR 6.2.2, DR 6.4	-	Visual/Mathematical	ASEN Senior Projects Room	-

FULL SYSTEM TESTING SUMMARY

Test	Driving Req.	Date	Method	Location/ Facility	Level of Success
ARES Autopilot Short Flight	All Functional & Design Requirements	03/27/19	Testing	CU South Campus	
ARES Full System Flight	All Functional & Design Requirements	04/1/19	Testing	CU South Campus	All Success Criteria 2 & 3

FADS DAY IN THE LIFE

Driving Requirements

FR 5.0: The aircraft shall simultaneously measure external temperature, inertial flight data, and pressure on the airframe surface at multiple points with a flush airdata sensing (FADS) system. The recorded data shall be stored on-board and converted to relative wind speed after flight. **(All 5.0 Related DR's)**

- Test Description (follows ConOps process):
 - With components integrated onto airframe, AA batteries are connected and FADS power is turned on.
 - Assure Teensy and board LEDs are lit
 - Leave the sensors on to take data for the hour flight time
 - After the hour is completed, check to assure LEDs are still lit
 - Remove the SD card and analyze the data

Risk Reduction: Verify FADS subsystem is capable of running for mission time and confirm subsystem prior to flight

AUTOPILOT DAY IN THE LIFE

Driving Requirements

FR 4.0: The aircraft shall be piloted by an autopilot during the steady flight regime of the mission.

All 4.0 Related DR's

- Test Description:
 - With components integrated onto airframe, LiPo batteries are connected to begin system arming.
 - RC controller is turned on and the pairing is verified.
 - GPS fix is verified with flashing blue LED on module.
 - Servo and motor control verified with simple commands.
 - Triple switch changed to alter between full manual, stabilized, and mission autopilot control.
 - Takeoff, loiter circling, and landing cycles are tested.

Risk Reduction: Verify Autopilot subsystem is capable of running for mission time and confirm subsystem prior to integration

ARES AUTOPILOT SHORT FLIGHT

Driving Requirements

DR 3.0: The aircraft shall demonstrate a controlled takeoff.D.R. 3.1: The takeoff system shall be able to control the heading of the aircraft after takeoff to within plus or minus 45 degrees of the expected lateral heading.

• Test Description:

Overview

Schedule

Airframe

- Power on ARES Aircraft
 - Confirm recording of temperature and pressure data
 - Confirm RC connection by actuating surfaces & powering motor

Budget

Backup

- Launch ARES from Takeoff Launch System at CU South Campus
- Fly up to 100m altitude, allow autopilot to fly 300m radius circle
- Continue flight for 3 Autopilot flight circles, descend, and land
- Validate: Conditionally met all Design and Functional

Takeoff

Risk Reduction: Conditionally Validate system operation and response to auto-piloted flight prior to Full System Flight Test

Avionics

