ASEN 4028 Senior Projects - Spring 2019 Manufacturing Status Review

Auto-Tracking RF Ground Unit for S-Band

Team: Trevor Barth, Anahid Blaisdell, Adam Dodge, Geraldine Fuentes, Thomas Fulton, Adam Hess, Janell Lopez, Diana Mata, Tyler Murphy, Stuart Penkowsky, Michael Tzimourakas

Advisor: Professor Dennis Akos

Project Overview

Project Purpose & Objectives

Mission Statement: The ARGUS ground station is designed to be able to track a LEO satellite and receive a telemetry downlink using a platform that is both portable and more affordable than current S-Band ground stations.

- Commercial-off-the-shelf (COTS) where possible
- Interface with user laptop
- Portable: 46.3 kg (102 lbs), able to be carried a distance of 100 meters by two people

Levels of Success

	Mechanical	Software	Electronics
Level 1	 Transportable in back of truck Assembled < 6 hours Track LEO satellites at 5°/sec Communicate with LEO satellite at 10+° elevation above horizon 	- Take TLE data and for az/el pointing commands - Data packets demodulated using QPSK - BER $\leq 10^{-5}$	 Provide power to all sub- systems System used with monitor, keyboard, and mouse
Level 2	 Transportable by unpowered rolling vehicle Assembled < 2 hours Reconfigurable for other frequency bands 	 Able to predict LEO satellite locations to less than 2.75° deg accuracy Reconfigurable for other frequency bands 	 System used with personal laptop interfaced using secure shell over a Cat-5 ethernet cable Reconfigurable for other frequency bands
Level 3	- Two people carry 100 meters - Assembled < 1 hour	- BER $\leq 10^{-9}$	

Critical Manufacturing Elements

CME	Reason	Predicted Required Hours
Dish Modifications	Precise modification required for reliable communication	80
Mounting System & Tripod	Stable antenna base critical to closing link with satellite	15
Command Motor Controller & Drive Motors	Several steps of software must work together to achieve accurate control	40
Tracking GUI & Signal GUI Interfacing	Software must work in conjunction with all electronics and user simultaneously	40

Project Schedule

ARGUS

Spring Semester START Purchase SDR Purchase LNA Purchase Microcontroller Purchase NUC Purchase Electronics Case **Dish Shipping** Implement Tracking on NUC and Mic... Implement Software into SDR Build Demo Dish MSR Test RF Components Losses Calibrate SDR Calibrate Tracking Software Modify Dish Kit Motor-Controller Testing Motor Testing Test Pointing Accuracy Test SDR TRR Test Modified Antenna **AIAA** Paper Due Last Machining Day Fully Integrate System SFR **Test Full System** Senior Design Expo **Final Report Due**

Manufacturing: Mechanical

Critical Manufacturing Area: Mechanical

Mechanical - Components

Mechanical - Demonstration Dish

• Demonstration Dish Purpose

- To learn basic assembly process for modified version
- To learn how to make modifications
- Lessons Learned:
 - Large flat surfaces forced into curves are not ideal
 - Smaller sections will be easier: less binding/folding
 - Lots of slop in center hub -- may modify
 - Assembly required 3 people
 - Rivets and mesh are very strong
 - Modified dish will be much easier to assemble

Status: Completed / || Hours: 18 of 18 || Deadline: 2/4/2019

Mechanical - Modified Dish

- Slow shipping of dish kit caused later start time
 - Work on off-days and weekends to offset slow start
- All additional components and tools purchased and prepared
- Challenges:
 - Splitting up outer ring for panels
 - Buckling of the mesh

Status: On Track || Hours: 3 of 83 || Deadline: 2/28/2019

Mechanical - Modified Dish

• Still need to machine aluminum tabs

- Can be done in stacks in CNC machine
- Files are prepared
- Doing test print
- Modification to center hub

Status: On Track || Hours: 3 of 83 || Deadline: 2/28/2019

Mechanical - Tripod and Motor System Mount

- Changed selected tripod from CDR to accommodate uneven ground
- Need to create adapter plate to connect tripod to motors
 - Tripod and motor have not arrived 0
- Current plan:
 - Surveying tripod Ο
 - Create adapter plate Ο

Status: Delayed || Hours: 0 of 15 || Deadline: 2/25/2019

Mechanical - Progress Report

	Task	Hours Completed/Total Working Hours	Expected Deadline Date
Demo Dish	Assemble dish	18/18	Completed
	Cut tabbed aluminum sheets	2/12	2/8/19
	Cut mesh panels	1/4	2/6/19
Dish	Assemble panels	0/20	2/11/19
Modification	Drill connecting holes in ribs	0/12	2/11/19
	Assemble full dish	0/20	2/28/19
	Motor/Tripod interface plate	0/15	2/25/19

Manufacturing: Software

Critical Manufacturing Area: Software

Software - Overview

- Overview:
 - Tracks and displays future passes and current location of specified sate llite
 - Control antenna pointing position
 - Receive signal, display, and save bit stream to file
- Inputs:
 - $\circ \quad Lat/Lon/Alt \ from \ GPS \ or \ QTH \ file$
 - TLE text file
 - Signal Frequency & Bandwidth
 - Adalm Pluto Signal
- Outputs:
 - Binary text file of demodulated signal
 - Tracking GUI & Signal Processing GUI

Software - Status

Status: On Track

Software - Integration

Manufacturing: Electrical

Critical Manufacturing Area: Electrical

Manufacturing

Wiring Assembly

Radio Frequency Path Design

Power Supply

Critical Element

Cables 🗸

LNA 🗸

Motor Controller \checkmark

NUC 🗸

GPS 🗸

SDR 🗸

Power Converters

Feeds

Electrical Status Report	Task	Hours Completed/Total Man Hours	Expected Deadline Date
	Feed to SDR	0/0.5	2/15/19
Wiring Assembly	NUC Connections	0/0.5	2/15/19
	Motor Connections	0/1	2/30/19
	Component Assembly	0/0.5	2/08/19
Radio Frequency	Loss Testing	2/3	2/08/19
Path Design	Demo Dish Gain Testing	0/10	2/16/19
	Modified Dish Gain Testing	0/10	3/08/19
	LNA Power Interface	0/2	2/08/19
Power Supply	Motor Interface	0/3	2/20/19
	NUC interface	1/1	Completed

• Gain test depends on dish construction (Estimated modified dish completion 2/28/19)

System Integration

Mechanical

Software

Electrical

Budget

System Integration Plan

ARGUS

ARGUS

Overall Project Status: On Track

Under budget with 38% left Currently 33% total labor accomplished

Critical Elements:

- Modification of Dish
- System Integration
- Program Demonstration

Subsystem	Hours Completed/Total Hours	
Electrical	10/189	
Software	100/140	
Mechanical	120/284	
Management	20/130	
Total	250/743 (≈33%)	

Budget

Cost Plan

Subsystem	Cost
Electrical	\$308.26
Software	\$1099.16
Mechanical	\$3139.15
Miscellaneous	\$ 12 7.4 1
Money Spent	\$4673.98
EEF Grant	+\$2500
Remaining Budget	\$2826.02
Total	\$7500

Procurement Status-Remaining Items

Remaining Items			
Item	Status	Estimated Delivery Date	
Motor	Ordered	February 20th	
S-Band Feeds	Ordered	February 20th	
Tripod	Ordered	February 8th	
TravelCases	Not Ordered	Needed by March 1st	
Motor System Power Converters	Ordered	February 5th	
Sheet Metal	Not Ordered	Needed by March 1st	

Uncertainties: Delivery time from the Netherlands

Questions?

Backup Slides

Software - Progress Report

	Task	Hours Completed / Total Hours	Expected Deadline Date
Satellite Tracking	Predict Az/El over satellite pass	50 / 50	Completed
Software Interfacing	Laptop/NUC Interfacing	2 / 4	2/17/19
	Motor Interfacing	10 / 20	2/20/19
	User Interface	50 / 50	Completed
Data Reception	SDR data reception	40 / 50	2/10/19
	GPS data reception	10 / 10	Completed

Task Breakdown Structure

ARGUS

Spring Semester

Mechanical

Assemble Demo Dish Convert SolidWorks to SolidCam for ... MSR Finalize Tab Design Order Bolts Order Tripod Order Materials for Motor Adapter Pla... CNC Mill the tabs Drill Holes in Ribs and in Tabs Cut Mesh into 12 sections **Rivet Tabs to Mesh** Attach Bolts to Ribs Test Fit TRR Assemble Final Design Compare Demo and Modified **Test Final Assembly Time**

13

ARGUS

Spring Semester

Mechanical

Software

Electrical

Obtain Motor Controller Power Conve... MSR

Test RF Components Test Power Converter

Solder LNA Power Connection

Device Cable Management Scheme Finalize Electronics Box Layout

Test Motor Functionality

Create Electronics Box Power Ports Create Electronics Box Connections

Test All Connections

Test Connection Assembly

TRR

Test Full Antenna Gain

ARGUS

Spring Semester START Purchase SDR Purchase LNA Purchase Microcontroller Purchase NUC Purchase Electronics Case **Dish Shipping** Implement Tracking on NUC and Mic... Implement Software into SDR Build Demo Dish MSR Test RF Components Losses Calibrate SDR Calibrate Tracking Software Modify Dish Kit Motor-Controller Testing Motor Testing Test Pointing Accuracy Test SDR TRR Test Modified Antenna **AIAA** Paper Due Last Machining Day Fully Integrate System SFR **Test Full System** Senior Design Expo **Final Report Due**

Tracking Overview

Design Requirements and Satisfaction

Antenna Subsystem

FR 1.0	The ground station shall be capable of receiving signals from a Low Earth Orbit satellite between 2.2 - 2.3 GHz, in Quadrature Phase Shift Keying (QPSK) modulation with a Bit Error Rate (BER) of 10 ⁻⁵ , a bit rate of 2 Mbit/s, and a G/T of 3 dB/K.
FR 4.0	ARGUS shall weigh less than 46.3 kg (102 lbs) and be capable of being carried a distance of 100 meters by two people.

RF Ham Design Reflector

• Meets specified 27 dB at 2.3 GHz requirement; however, fails to meet mobility requirement

Modification of Reflector

Current RFHam dish:

- Assembly time 6+hours
- Single continuous mesh
- Multiple tools

Modifications:

- Assembly time less than 1 hour
- Split into 12 connectable pieces
- Fewer than 4 tools

Modularity:

- 22 gauge aluminum sheet attaches to ribs
- Petals attach to central hub

Modification of Reflector

✓ ☐ Meets mobility requirements (FR.4)

Antenna Gain Calculation

Estimated Efficiency

Gain at 53.7% efficiency	28.08 dBi
Gain at 35% efficiency	26.22 dBi
Required gain	26.2 dBi

✓ ☐Meets bandwidth and gain requirements (FR.1)

Tracking Hardware Subsystem

FR 2.0The ground station shall mechanically steer a dish/antenna system to follow
a LEO satellite between 200 km to 600 km between 10° elevation and 170°
elevation.

STK: Tracking Rate Verification

DR 2.3 The antenna motor shall be able to move the antenna at a slew rate of **5.0** %

Azimuth Rate (deg/sec)

Angular Rate (deg/sec)

Elevation Rate (deg/sec)

Antenna Motor System

- Specs:
 - Azimuth
 - Range: 0° to 360°
 - Speed: 7.2%sec
 - Elevation
 - **Range:** $\pm 90^{\circ}$
 - Speed: 7.2%sec
 - Maximum Load: 30 kg
 - \circ Position sensors with accuracy: 0.2°
 - Mass: 17.8 kg

Tracking Overview

Az/El angular command

Software Interface

Enable serial communication Input lat/long Calibrate Select target Engage

Tracking Software Subsystem

FR 2.0The ground station shall mechanically steer a dish/antenna system to follow a LEO
satellite between 200 km to 600 km between 10° elevation and 170° elevation.

Tracking Software Demonstration

FR 2.0	The ground station shall mechanically steer a
	dish/antenna system to follow a LEO satellite
	between 200 km to 600 km between 10° elevation
	and 170° elevation.

Calibration & Manual Control Frames

Azimuth and Elevation Calibration

DR 2.2 The pointing control accuracy must be within **3.25°** to maintain downlink capabilities throughout the entire pass.

- Manual Control Frame Dither around Sun, find strongest signal strength
- Calibration Frame Set current pointing angles to predicted Sun location

Azimuth and Elevation of MTI over Boulder

Upcoming Pass Frame

Upcoming Passes for MTI over Boulder: Pass 1: Start: Mon Nov 26 18:05:36 2018, Azimuth: 55.65° Finish: Mon Nov 26 18:11:00 2018, Azimuth: 120.54° Maximum Elevation: 3.04° Pass 2: Start: Mon Nov 26 19:35:38 2018, Azimuth: 10.82° Finish: Mon Nov 26 19:45:50 2018, Azimuth: 195.04° Maximum Elevation: 82.28° Pass 3: Start: Mon Nov 26 21:09:20 2018, Azimuth: 330.76° Finish: Mon Nov 26 21:14:42 2018, Azimuth: 266.4° Maximum Elevation: 3,22°

STK: Upcoming Pass Verification

DR 2.2 The pointing control accuracy must be within **3.25°** to maintain downlink capabilities throughout the entire pass.

ARGUS (Mountain Time)

Upcoming Passes for MTI over Boulder: Pass 1: Start: Sun Dec 2 18:03:20 2018, Azimuth: 60.53° Finish: Sun Dec 2 18:08:01 2018, Azimuth: 115.76° Maximum Elevation: 2.1° Pass 2: Start: Sun Dec 2 19:32:59 2018, Azimuth: 12.35° Finish: Sun Dec 2 19:43:11 2018, Azimuth: 192.14° Maximum Elevation: 84.43° Pass 3: Start: Sun Dec 2 21:06:27 2018, Azimuth: 333.89° Finish: Sun Dec 2 21:12:18 2018, Azimuth: 262.7° Maximum Elevation: 4.08° Recalculate

ARGUS

Az/El Plot Frame

STK: Azimuth/Elevation Verification

DR 2.2 The pointing control accuracy must be within **3.25°** to maintain downlink capabilities throughout the entire pass.

ARGUS

STK

Signal Conditioning & Processing

FR 1.0The ground station shall be capable of receiving signals from a Low Earth Orbit
satellite between 2.2 - 2.3 GHz, in Quadrature Phase Shift Keying (QPSK) modulation
with a Bit Error Rate (BER) of 10⁻⁵, a bit rate of 2 Mbit/s, and a G/T of 3 dB/K.

GNURadio Software Diagram

GNURadio Software Demonstration

Bit Error Rate

FR 1.0 The ground station shall be capable of receiving signals from a Low Earth Orbit satellite between 2.2 - 2.3 GHz, in Quadrature Phase Shift Keying (QPSK) modulation with **a Bit Error Rate (BER) of 10⁵**, a bit rate of 2 Mbit/s, and a G/T of 3 dB/K.

BER is governed by the system Signal to Noise Ratio (SNR)

- Must have SNR ≥ 10.4dB to achieve BER of 10⁻⁵
- Current system $SNR \approx 17.2 \text{ ld B}$
 - BER \cong 8.9e-9
 - Determined using ASEN 3300 link budget and typical transmit values

Mobility

FR 4.0	ARGUS shall weigh less than 46.3 kg (102 lbs) and be capable of being
	carried a distance of 100 meters by two people.

Mobility: Mass Estimate

Components	Mass	Components	Mass
Feed	1 kg	Tripod	5 kg
Dish + connecting tabs	7 kg	SDR	0.12 kg
Az/El motors	12.8 kg	Electronics	2.2 kg
Motor Controller	5 kg	Case	8.4 kg
NUC	1.2 kg	AC-DC converters	2.3 kg
Total	45.0 kg < 46.3 kg	✔ □Meets Mass Req	uirement (FR4.0)

Verification and Validation

Test Plan

Component Test: Jan. 15th - Feb. 11th

Antenna:

- Dish manufacturing
- Motor calibration
- Feed functionality

Signal Processing:

- GNURadio
- Predict
- GPS

Hardware:

- Power Transformer
- Capacitor
- Motor Functionality
- Component weights

Integration Test: Feb. 11th - Mar. 11th

Antenna System:

- Gain
- Beamwidth

Signal Processing Test:

- QPSK demodulation
- BER
- Cat5 connection

Motor System Test:

- Rotation rate
- Rotation range

Systems Test: Mar. 11th - April 2 lst

Antenna System:

- S-Band sate llite signal reception

Signal Processing Test:

- S-Band signal processed

Motor System Test:

- MTI + Yaogan 6 tracking

Mobility:

- Transport and assembly > 100 m

Signal Processing System Level Test

Equipment Needed	Procurement
Laptop	Owned
GNURadio	Open Source

Possible Measurement Errors

- NUC Processing Speed
- Reconfigurability
- Length of test (time)

Signal Processing System Level Test

Objective	 Verify NUC Processing speed Cat5 data port connection GNURadio on S-Band signal
Location	ITLL
FR Ve rifie d	FR 1: BER, QPSK Demodulation, Bandwidth FR 3: Reconfigurability FR 5: Cat5 Connection

Data Needed	Compared To	Expected
BER	Matlab estimation	8.9E-9
QPSK Signal	Matlab generated signal	Matlab generated signal

Antenna Gain/Beamwidth Test

Antenna Gain/Beamwidth Test

Obje ctive	 Verify antenna gain Verify half power beam width (HPBW)
Location	Rural location or RF test range
FR Verified	FR 1: Gain, Beamwidth

Data Needed	Compared To	Expected
Gain	Efficiency model, dish kit specs	29.5dBi at 2.4GHz
Beamwidth	Idealized estimates, dish kit specs	6.5°

Potential Measurement Issues

- External signal noise
- Signal reflection from ground
- Incorrect feed placement
- Pointing accuracy

Motor System Level Test

Motor System Level Test

ARGUS

Objective	 Test cable wrap Show motor control system Test encoders
Location	ITLL
FR Verified	FR 2: Slew rate, range of motion

Data Needed	Resolution	Expected
Rotation Rate	0.2°/s	7.2 °/s
Rotation Angle	1°	10°-170°

Possible Measurement Errors

- Timing accuracy
- Angle measurement accuracy

Mobility System Level Test

Mobility System Level Test

Objective	 Verify weight requirements Demonstrate mobility Show assembly is under 60min 	
Location	Business field	
FR Verified	FR 4: Mass, assembly time	

Data Needed	Requirement	Expected
Weight	46.3 kg	45.4 kg
Assembly Time	60 min	35 min

Looking Forward

- Critical items to be worked on:
 - Modified Antenna
 - Parabolic Dish
 - Signal Processing
 - Interface ARGUS GUI on Motor Controller

- Tests
 - SDR
 - GPS
 - RF Components
 - Motor Functionality
 - Connections