

PRELIMINARY DESIGN REVIEW

INtegrated Flight-Enabled Rover For Natural disaster Observation

Customer: Barbara Streiffert, Jet Propulsion Laboratory Faculty Advisor: Jelliffe Jackson

Adam Archuleta, Devon Campbell, Tess Geiger, Thomas Jeffries, Kevin Mulcair, Nick Peper, Kaley Pinover, Esteben Rodriguez, Johnathan Thompson

PRESENTATION OUTLINE

•Project Overview

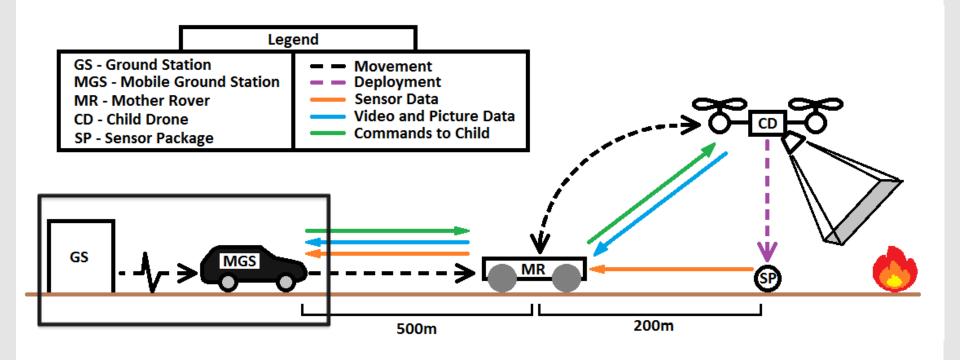
- •CONOPS
- •FBD
- •Baseline Design
- •Feasibility Studies
 - •Child Drone
 - Communications
 - Software
- •Summary
 - •Feasibility Summary
 - •Budget
 - •Test Plans

PROJECT CONTEXT AND OVERVIEW

INFERNO MISSION STATEMENT

Design and create an **aerial sensor package** delivery system for future integration with a natural disaster observation system.

INFERNO PROJECT HERITAGE



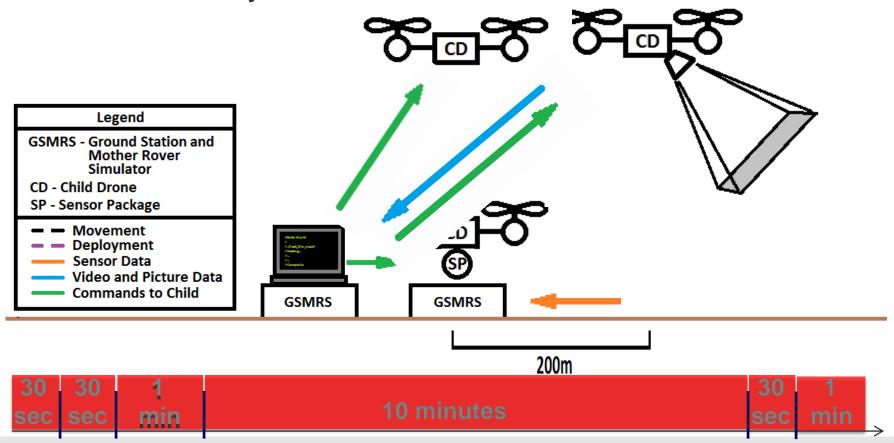
- TREADS disassembled
- INFERNO is not reliant on heritage systems

FIRE TRACKER SYSTEM

Project Context

Child Drone

> Communication


Software

Future Work

INFERNO SCOPE: CONCEPT OF OPERATIONS

The CD (Hydrosit in a state of the second of

FUNCTIONAL REQUIREMENTS

Functional Requirement	Description
FR 1.0	The GSMRS shall transmit wireless commands to the CD
FR 2.0	The CD shall receive wireless commands from the GSMRS
FR 3.0	The CD shall take off from the GSMRS
FR 4.0	The CD shall fly to GPS coordinates
FR 5.0	The CD shall deploy the SP to a ground location of interest (LOI)
FR 6.0	The CD shall be capable of recording video footage
FR 7.0	The CD shall be capable of capturing photos

Communication

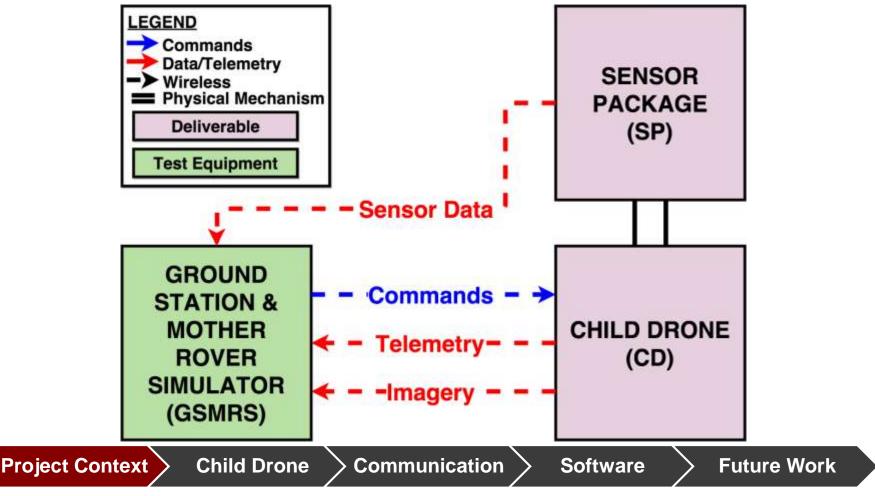
Software

Child Drone

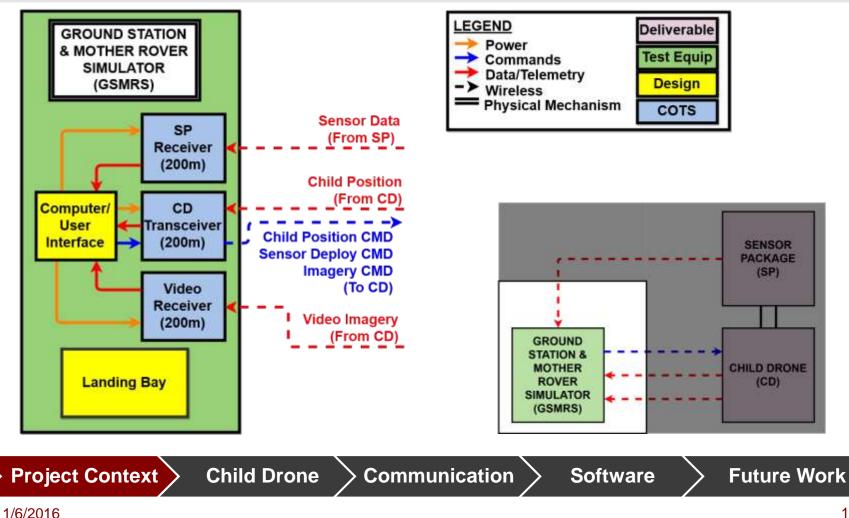
1/6/2016

Project Context

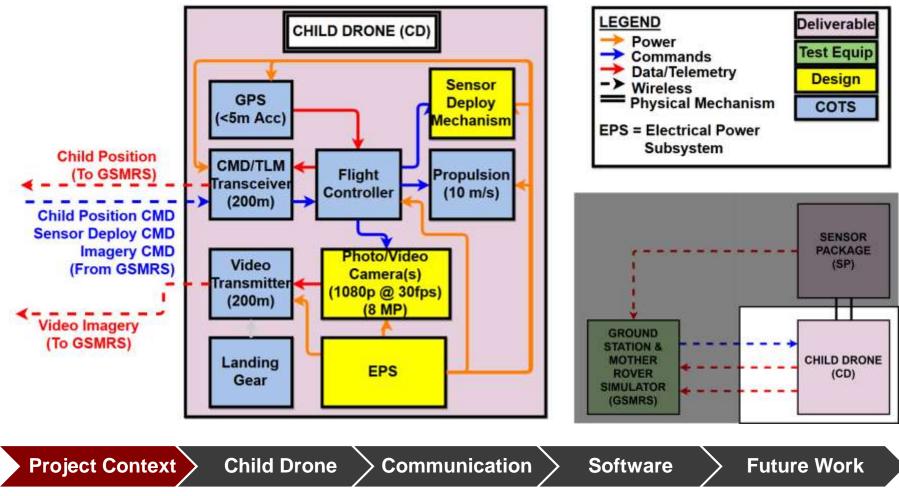
Future Work


FUNCTIONAL REQUIREMENTS

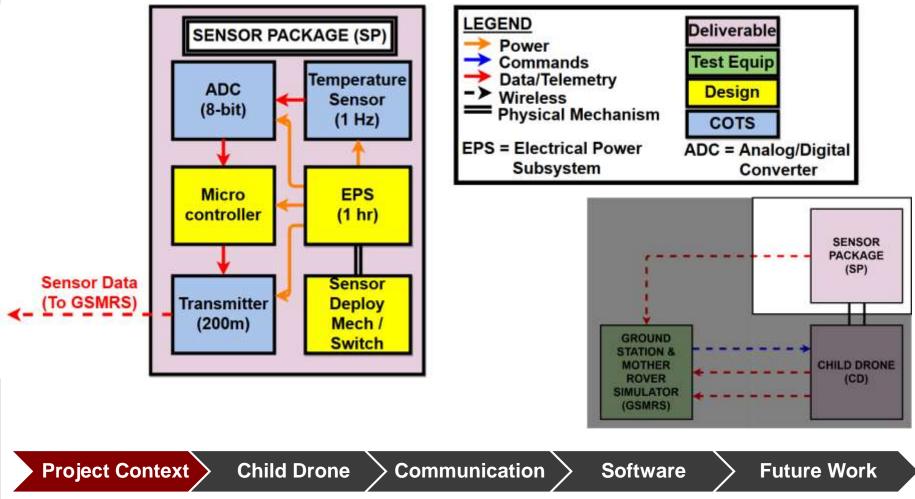
Functional Requirement	Description
FR 8.0	The CD shall transmit wireless data to the GSMRS
FR 9.0	The GSMRS shall receive wireless data from the CD
FR 10.0	The CD shall land on the GSMRS docking bay
FR 11.0	The SP shall acquire ground temperature data after deployment
FR 12.0	The SP shall transmit wireless data to the GSMRS
FR 13.0	The GSMRS shall receive wireless data from the SP



FUNCTIONAL BLOCK DIAGRAM



FUNCTIONAL BLOCK DIAGRAM: GSMRS



FUNCTIONAL BLOCK DIAGRAM: CHILD DRONE

FUNCTIONAL BLOCK DIAGRAM: SENSOR PACKAGE

AIRFRAME TRADE STUDY: RATINGS

		Helicopter		Multicopter		CoaxCopter	
Criteria	Weight	Rating	Score	Rating	Score	Rating	Score
Availability	0.33	4	1.32	4	1.32	1	0.33
SW Integration	0.33	4	1.32	4	1.32	2	0.66
HW Integration	0.20	3	0.60	5	1.00	3	0.60
Ease of Flight/Stability	0.10	3	0.30	5	0.50	1	0.10
Safety	0.04	1	0.04	3	0.12	5	0.20
Total	1	3.5	58	4.2	26	1.8	89

Project Context

Child Drone

Communication

Software

Future Work

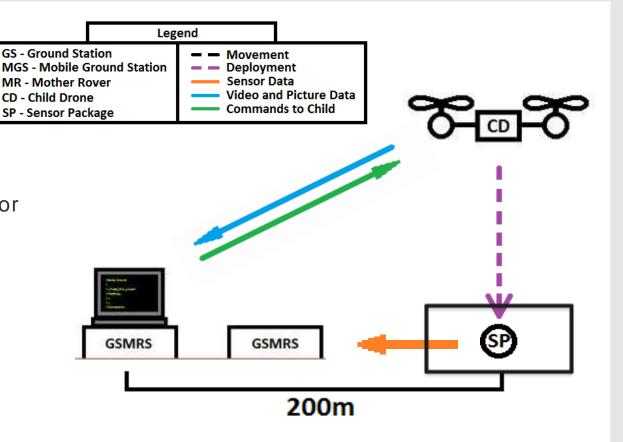
BASELINE DESIGN: INFERNO

- Child drone
 - Fixed Wing
 - Rotor Wing
 - Lighter Than Air
- Down Selected to Rotor Wing
 - Helicopter
 - Multirotor
 - CoaxCopter
- Final Choice: Multirotor

Legend GS - Ground Station Movement MGS - Mobile Ground Station Deployment Sensor Data MR - Mother Rover Video and Picture Data CD - Child Drone **Commands to Child** SP - Sensor Package

Project Context Child Drone GSMRS

GSMRS


200m

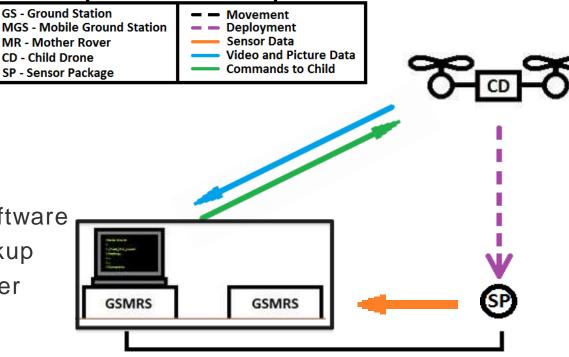
Software

BASELINE DESIGN: INFERNO

- Sensor Package
 - Custom Built
 - Transmitter
 - Power
 - Structure
 - Temperature Sensor
- Design Concerns
 - Mass
 - Survivability
 - Communications

Project Context

Child Drone



BASELINE DESIGN: INFERNO

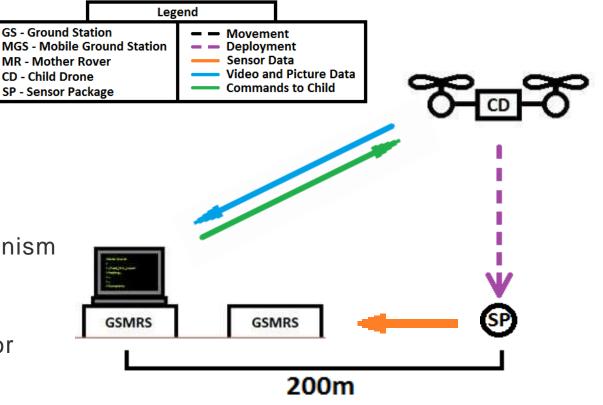
Legend

• GSMRS

- Commanding
- Information Hub
- Data Processing
- Components
 - Ground Control Software
 - Mother Rover Mockup
 - Receiver/Transmitter
 - Laptop

200m

Project Context Child Drone


Communication

Software

BASELINE DESIGN: SYSTEM

- GSMRS
 - Laptop
 - COTS Software
- Child Drone
 - Multicopter
 - COTS Software
 - Imaging System
 - Deployment Mechanism
- Sensor Package
 - Custom Built
 - Temperature Sensor
 - Data Transmission

Project Context

Child Drone

> Communication

CHILD DRONE FEASIBILITY ANALYSIS

CHILD DRONE: OVERVIEW

Requirement	Description
FR 2.0	The CD shall receive wireless commands from the
	GSMRS
FR 3.0	The CD shall take off from the GSMRS
FR 4.0	The CD shall fly to GPS coordinates
FR 5.0	The CD shall deploy the SP to a ground location of
	interest (LOI)
FR 6.0	The CD shall be capable of recording video footage
FR 7.0	The CD shall be capable of capturing photos
FR 8.0	The CD shall transmit wireless data to the GSMRS
FR 10.0	The CD shall land on the GSMRS docking bay

Communication

Software

Child Drone

1/6/2016

Project Context

Future Work

CHILD DRONE: OVERVIEW

Requirement	Description
FR 2.0	The CD shall receive wireless commands from the GSMRS
FR 3.0	The CD shall take off from the GSMRS
FR 4.0	The CD shall fly to GPS coordinates
FR 5.0	The CD shall deploy the SP to a ground location of interest (LOI)
FR 6.0	The CD shall be capable of recording video footage
FR 7.0	The CD shall be capable of capturing photos
FR 8.0	The CD shall transmit wireless data to the GSMRS
FR 10.0	The CD shall land on the GSMRS docking bay

Project Context

CHILD DRONE FEASIBILITY: MASS BUDGET

Communication

- Child Drone "BUS"
 - Frame, motors, props, battery lift all mission systems
- Must be able to:
 - Take off/land from GSMRS (FRs 3.0, 10.0)
 - Carry electronics, imaging, and payload (FRs 5.0, 6.0, 7.0)
 - Fly for 15 minutes (FR 4.0)

Child Drone

Components	Estimated Mass (g)
Flight Electronics	80
Imagery System	185
SP/Deployment	400
Mechanism	400
Total	665

Software

1/6/2016

Project Context

Future Work

CHILD DRONE FEASIBILITY: FLIGHT/POWER MODEL

- Early hovering flight performance/power model (FR 4.0)
 - Worst case scenario
- Assumptions:
 - Steady, incompressible 1D flow
 - Ideal disk actuator
 - Electronics power draw negligible
 - 1630 m altitude
 - $\eta_{motor} * \eta_{prop} = 0.405$

CHILD DRONE FEASIBILITY: POSSIBLE AIRFRAMES

- 3DR X8+
 - Ready-to-fly coaxial quadcopter
 - Takeoff weight 2.560 kg
 - Takeoff weight w/ payload
 3.144 kg (FRs 4.0, 6.0)
 - 14.8 V battery
 - Small footprint (FRs 3.0, 10.0)
 - Power achievable with LiPo

• FEASIBLE

Parameter	Calculated
Total Current	40.0 A
Total Power	591 W
Charge Required (15 min, 25% margin)	12,500 mAh

Project Context > Ch

CHILD DRONE FEASIBILITY: POSSIBLE AIRFRAMES

- DJI F450
 - Quadcopter kit
 - Frame weight 0.282 kg
 - Takeoff weight w/ payload
 2.136 kg (FRs 4.0, 6.0)
 - 14.8 V battery
 - Small footprint (FRs 3.0, 10.0)
 - Power achievable w/ LiPo

• FEASIBLE

Parameter	Calculated
Total Current	24.6 A
Total Power	364 W
Charge Required (15 min, 25% margin)	7,700 mAh

Project Context

CHILD DRONE FEASIBILITY: POWER BUDGET

Component	Time Used	Current	Capacity
Flight Controller	15 min	50 mA	13 mAh
Transceiver	15 min	215 mA	54 mAh
GPS Module	15 min	20 mA	5 mAh
SP Deployment Module	10 sec	450 mA	2 mAh
		TOTAL:	74 mAh

Percent of Total Charge Consumed:

3DR X8+: 0.7%

DJI F450: 1.3%

CHILD DRONE FEASIBILITY: SUMMARY

Requirement	Feasible?
FR 3.0: Take off from GSMRS	YES
FR 4.0: Fly to GPS waypoints	YES
FR 5.0: Deploy the SP	YES
FR 10.0: Land in GSMRS docking bay	YES

Project Context

COMMUNICATIONS FEASIBILITY ANALYSIS

COMMUNICATIONS OVERVIEW

Requirement	Description
FR 1.0	The GSMRS shall transmit wireless commands to the CD
FR 2.0	The CD shall receive wireless commands from the GSMRS
FR 8.0	The CD shall transmit wireless data to the GSMRS
FR 9.0	The GSMRS shall receive wireless data from the CD
FR 12.0	The SP shall transmit wireless data to the GSMRS
FR 13.0	The GSMRS shall receive wireless data from the SP

Successful Communication is a Critical Project Element

Project Context

Child Drone

Communication

Software

Future Work

COMMUNICATIONS OVERVIEW

Requirement	Description
FR 1.0	The GSMRS shall transmit wireless commands to the CD
FR 2.0	The CD shall receive wireless commands from the GSMRS
FR 8.0	The CD shall transmit wireless data to the GSMRS
FR 9.0	The GSMRS shall receive wireless data from the CD
FR 12.0	The SP shall transmit wireless data to the GSMRS
FR 13.0	The GSMRS shall receive wireless data from the SP

Successful Communication is a Critical Project Element

Project Context

Child Drone

Communication

Software

Future Work

COMMUNICATIONS OVERVIEW

Requirement	Description
FR 1.0	The GSMRS shall transmit wireless commands to the CD
FR 2.0	The CD shall receive wireless commands from the GSMRS
FR 8.0	The CD shall transmit wireless data to the GSMRS
FR 9.0	The GSMRS shall receive wireless data from the CD
FR 12.0	The SP shall transmit wireless data to the GSMRS
FR 13.0	The GSMRS shall receive wireless data from the SP

Successful Communication is a Critical Project Element

Project Context

Child Drone

Communication

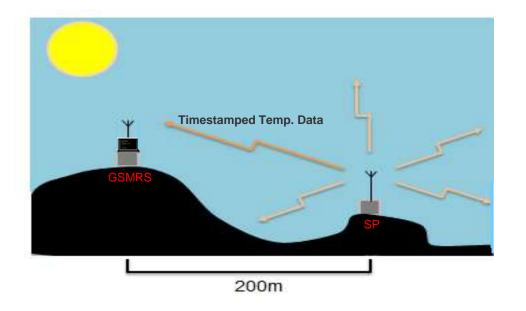
Software

Future Work

COMMUNICATIONS: LINK MARGIN CALCULATION

• Initial calculations for link margin based on below equation:

Transmit Power + Transmit Gain + Receive Gain - Space Loss - Fade Margin = Power Received


- System specifications give values for required minimum power received
- Link Margin = $P_r P_{r_{min}}$
- If *Link Margin* > *Design Margin* then the link is viable

COMMUNICATIONS: SENSOR PACKAGE LINK ASSUMPTIONS

Communication

Child Drone

Assumptions

Primary loss: Space path loss

Additional losses accounted for in "Fade Margin"

Design Margin = 6 dB

Isotropic Emission

"Line of Sight" data transmission

Weather conditions free of rain/snow and fog

Software

Project Context

Future Work

COMMUNICATIONS: SENSOR PACKAGE LINK FEASIBILITY

Sensor Package Link

- Xbee on both ends of communication link (FR 12.0, FR 13.0)
- Timestamped temperature data rate
 ~ 110 bps (FR 11.0)

	Xbee-Pro 900HP (900MHz)	Xbee-Pro ZigBee (2.4GHz)
P_t	-6 dBW	-12 dBW
G _t	1 dB	1 dB
G _r	1 dB	1 dB
Ls	78 dB	86 dB
Fade Margin	10 dB	10 dB
$P_{r_{actual}}$	-92 dBW	-106 dBW
$P_{r_{min}}$	-140 dBW	-130 dBW
Link Margin	48 dB	24 dB

Project Context

Child Drone

Communication

Software

Future Work

COMMUNICATIONS: CHILD DRONE LINK ASSUMPTIONS

Assumptions

Primary loss: Space path loss

Additional losses accounted for in "Fade Margin"

Design Margin: 8 dB (Uplink) 6 dB (Downlink)

"Line of Sight" data transmission

Weather conditions free of rain/snow and fog

COMMUNICATIONS: CHILD DRONE TELEMETRY/COMMAND LINK

3DR Radio Set

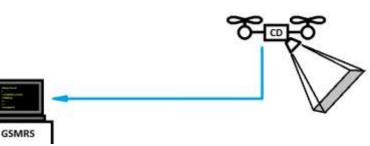
- Allows GSMRS to send commands and receive telemetry (FR 1.0, FR 2.0)
- Allows CD to transmit telemetry and receive commands (FR 8.0, FR 9.0)
- 3DR Radio Set
 - Uplink Data Rate: 64 kbps
 - Downlink Data Rate: 64 kbps

	3DR Radio Set
P_t	-10 dBW
Gt	-2 dB
Gr	-2dB
L _s	78 dB
Fade Margin	10 dB
P _{ractual}	-96 dBW
$P_{r_{min}}$	-147 dBW
Link Margin	51 dB

Project Context

Child Drone

Communication


Software

Future Work

COMMUNICATIONS: CHILD DRONE IMAGING LINK

3DR Video Transmitter

- Allows CD to transmit video (FR 6.0, FR 7.0, FR 8.0)
- Allows GSMRS to receive video (FR 9.0)
- 3DR Video Transmitter
 - Uplink Data Rate: 64 kbps
 - Downlink Data Rate: 7.5 Mbps

	3DR Video Transmitter
P_t	3 dBW
G _t	14 dB
Gr	14 dB
L _s	94 dB
Fade Margin	10 dB
<i>P</i> _{ractual}	-73 dBW
P _{rmin}	-120 dBW
Link Margin	47 dB

Project Context

Child Drone

Communication

COMMUNICATIONS: LINK FEASIBILITY SUMMARY

• Link Margin is feasible for SP-GSMRS and CD-GSMRS

SP Link		CD Imaging System Link	CD Command Link	
P _t	-6 dBW	3 dBW	-10 dBW	
G _t	1 dB	14 dB	-2 dB	
G _r	1 dB	14 dB	-2 dB	
L _s	78 dB	94 dB	78 dB	
Fade Margin	10 dB	10 dB	10 dB	
<i>P_{ractual}</i>	-92 dBW	-73 dBW	-96 dBW	
P _{rmin}	-140 dBW	-120 dBW	-147 dBW	
Link Margin	48 dB >> 6 dB	47 dB >> 8 dB	51 dB >> 8 dB	

Project Context

Child Drone Commu

Communication

Software

Future Work

COMMUNICATIONS: LINK FEASIBILITY SUMMARY

Requirement	Feasible?
FR 1.0: GSMRS Transmits commands to the CD	YES
FR 2.0: CD receives commands from the GSMRS	YES
FR 8.0: CD transmits data to the GSMRS	YES
FR 9.0: GSMRS receives data from the CD	YES
FR 12.0: SP transmits data to the GSMRS	YES
FR 13.0: GSMRS receives data from the SP	YES

Project Context

Child Drone Commur

Communication >

Software

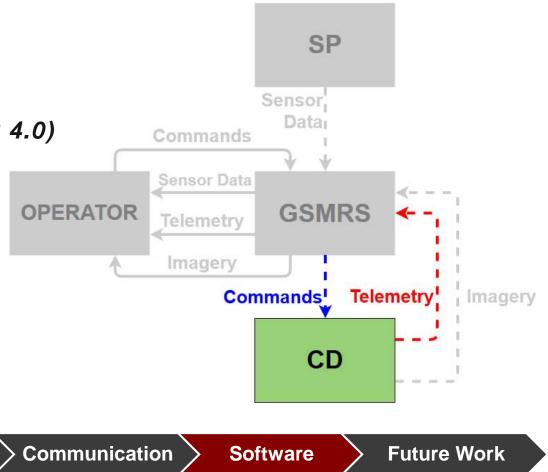
Future Work

SOFTWARE FEASIBILITY ANALYSIS

SOFTWARE FEASIBILITY: CHILD DRONE OVERVIEW

Requirement	Description
FR 1.0	The GSMRS shall transmit wireless commands to the CD
FR 2.0	The CD shall receive wireless commands from the GSMRS
FR 4.0	The CD shall fly to GPS coordinates
FR 5.0	The CD shall deploy the SP to a ground location of interest (LOI)
FR 8.0	The CD shall transmit wireless data to the GSMRS
FR 9.0	The GSMRS shall receive wireless data from the CD
FR 11.0	The SP shall acquire ground temperature data after deployment
FR 12.0	The SP shall transmit wireless data to the GSMRS
FR 13.0	The GSMRS shall receive wireless data from the SP

Project Context



SOFTWARE FEASIBILITY: CHILD DRONE FUNCTION

- Read commands from transceiver (FR 2.0)
- Execute commands
 - Flight to coordinates (FR 4.0)

Child Drone

- Deploy SP (FR 5.0)
- Send telemetry to transceiver (FR 8.0)

1/6/2016

Project Context

SOFTWARE FEASIBILITY: CHILD DRONE

Communication

- ArduPilot Software
 - Manual/GPS flight control (FR 4.0)
 - Servo actuation (FR 5.0)
 - 3DR Radio integration (FRs 2.0, 8.0)

Child Drone

- 5 years of flight heritage
- Rover integration
- COTS Flight Controllers
 - Pixhawk
 - APM 2
 - Erle-Brain
- FEASIBLE

Project Context

SOFTWARE FEASIBILITY: SENSOR PACKAGE OVERVIEW

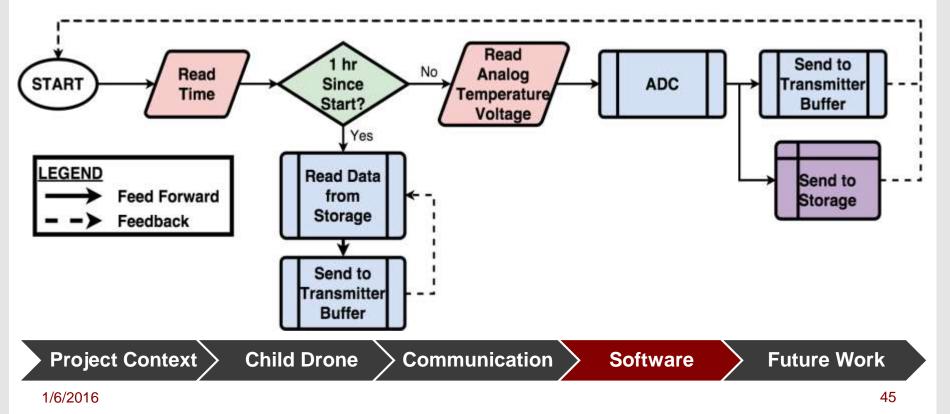
Requirement	Description
FR 1.0	The GSMRS shall transmit wireless commands to the CD
FR 2.0	The CD shall receive wireless commands from the GSMRS
FR 4.0	The CD shall fly to GPS coordinates
FR 5.0	The CD shall deploy the SP to a ground location of interest (LOI)
FR 8.0	The CD shall transmit wireless data to the GSMRS
FR 9.0	The GSMRS shall receive wireless data from the CD
FR 11.0	The SP shall acquire ground temperature data after deployment
FR 12.0	The SP shall transmit wireless data to the GSMRS
FR 13.0	The GSMRS shall receive wireless data from the SP

Communication

Software

Child Drone

1/6/2016


Project Context

Future Work

SOFTWARE FEASIBILITY: SENSOR PACKAGE FUNCTION

- 1 Hz sample, 8-bit digitize, and timestamp temperature (FR 11.0)
- Send data to transmitter (FR 12.0)
- Store data for retransmission

SOFTWARE FEASIBILITY: SENSOR PACKAGE

Communication

- Low data rate
- Minimal storage required
- Achievable with microcontrollers
 - PIC18F87K22
 - 10 MHz clock
 - 128 kbyte flash memory

Child Drone

- Team software experience
- Team/faculty microcontroller
 experience
- FEASIBLE

Project Context

Parameter	Required	
Temperature Resolution	8-bit	
Time Resolution	96-bit	
Bit Rate	104 bit/s	
Data Collection Time	3600 s	
Total Data	46.8 kbyte	

Software

Future Work

SOFTWARE FEASIBILITY: GSMRS OVERVIEW

Requirement	Description
FR 1.0	The GSMRS shall transmit wireless commands to the CD
FR 2.0	The CD shall receive wireless commands from the GSMRS
FR 4.0	The CD shall fly to GPS coordinates
FR 5.0	The CD shall deploy the SP to a ground location of interest (LOI)
FR 8.0	The CD shall transmit wireless data to the GSMRS
FR 9.0	The GSMRS shall receive wireless data from the CD
FR 11.0	The SP shall acquire ground temperature data after deployment
FR 12.0	The SP shall transmit wireless data to the GSMRS
FR 13.0	The GSMRS shall receive wireless data from the SP

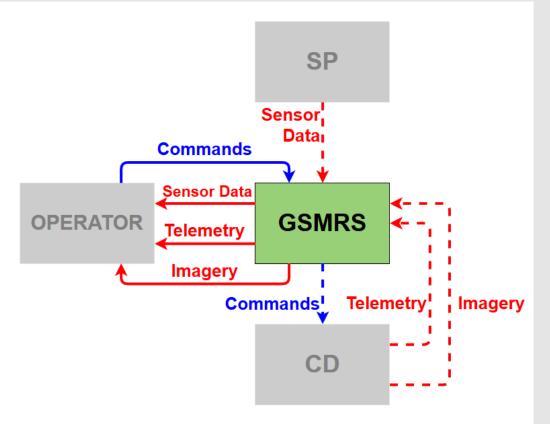
Project Context

Child Drone > Co

Communication

Software

Future Work



SOFTWARE FEASIBILITY: GSMRS FUNCTION

Communication

- Receive/interpret CD telemetry from transceiver (FR 9.0)
- Send commands to CD through transceiver (FR 1.0)
- Receive imagery from receiver (FR 9.0)
- Receive/store sensor data from receiver (FR 13.0)
- User interface for input/output with Operator

Child Drone

Software

Project Context

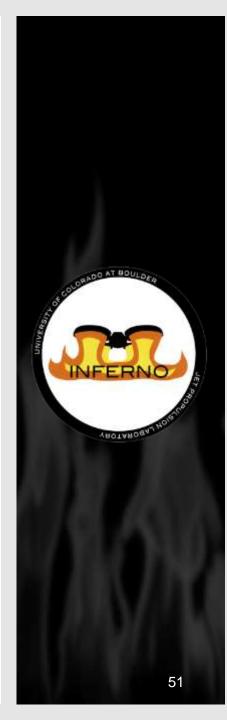
Future Work

SOFTWARE FEASIBILITY: GSMRS

- Open-source ground control programs for ArduPilot Flight Controllers
 - Mission Planner
 - MAVProxy
 - DroneKit-Python API
- Built-in functionality
 - Send/receive through transceiver (FR 1.0, FR 8.0)
 - Manual and GPS control (FR 1.0, FR 4.0)
 - Servo control (FR 1.0, FR 5.0)
 - Camera/gimbal control (FR 6.0, 7.0)
 - Rover support
 - Live video feed
- FEASIBLE

Project Context

Child Drone



SOFTWARE FEASIBILITY: SUMMARY

Subsystem	Requirement	Feasible?
	FR 2.0: Receive commands from GSMRS	YES
Child	FR 4.0: Fly to GPS waypoints	YES
Drone	FR 5.0: Deploy the SP	YES
	FR 8.0: Transmit data to GSMRS	YES
Sensor	FR 11.0: Acquire ground temperature data	YES
Package	FR 12.0: Transmit data to GSMRS	YES
	FR 1.0: Send commands to CD	YES
GSMRS	FR 9.0: Receive data from CD	YES
	FR 13.0: Receive data from SP	YES

Project Context

STATUS SUMMARY AND FUTURE WORK STRATEGY

STATUS SUMMARY: CHILD DRONE

Requirement	Project Element	Feasibility
<i>FRs 2.0 & 8.0</i> : Communicates with GSMRS	Communication	 Positive link margin COTS flight controller COTS transceiver
FRs 3.0 & 10.0: Takes off and lands on GSMRS	Airframe COTS airframe	
<i>FR 4.0</i> : Flies to GPS coordinates	PowerFlight Controller	LiPo batteries COTS flight controller
<i>FR 5.0</i> : Carries/deploys Sensor Package	AirframeSP Integration/Deployment	COTS airframe Burn wire/Pull pin
<i>FRs 6.0 & 7.0</i> : Performs photo/video reconnaissance	AirframeImaging System	COTS airframe GoPro or FPV camera

Communication

Software

Child Drone

Project Context

Future Work

FUTURE WORK: CHILD DRONE

- SP Deployment Mechanism
 - Burn wire or pull pin
 - Prototyping and final trade studies
- COTS Trade Studies
 - Airframe, flight controller, camera, transceiver
- Acquire COA
 - Submit for COA once airframe is selected
 - Consult with James Mack
- Modeling
 - Update power model for dynamic flight
 - Update CD-GSMRS link budget with accurate antenna models

STATUS SUMMARY: SENSOR PACKAGE

Requirement	Project Element	Feasibility
FR 11.0: Collect & timestamp sensor data	 Survivability Power Data Acquisition & Handling 	 Multi-density foam packaging ~2 Ah to run for 2 hours Options from Aerospace faculty
FR 12.0: Transmit and buffer sensor data	 Communication Data Storage 	 Positive link margin Xbee-PRO transmitter < 50 kb for 1 hour

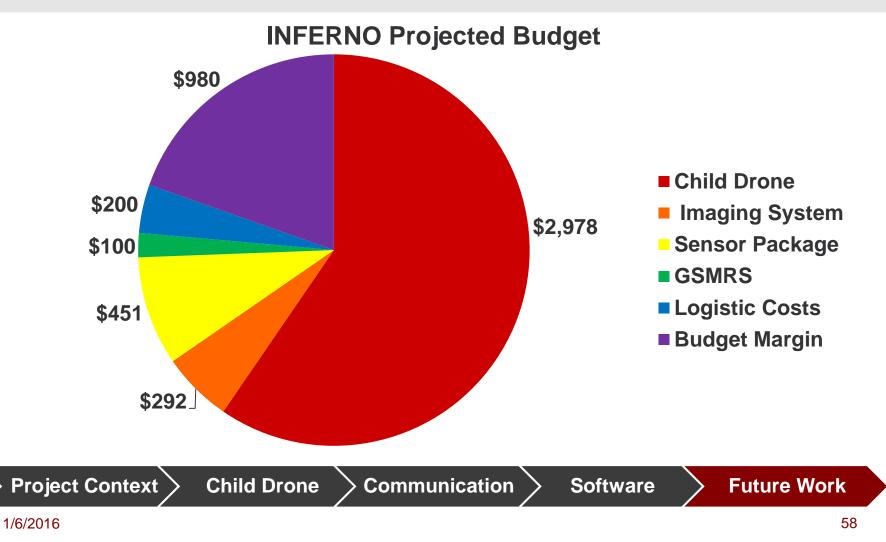
FUTURE WORK: SENSOR PACKAGE

- Testing
 - Xbee-PRO transmitter
 - No-Line-of-Site testing
 - Data acquisition & handling components
 - Structure
 - Prototype and drop to test g-force
- Modeling
 - Build electronic heat generation model
 - Update impact force model
 - Update SP-GSMRS link budget with accurate antenna models
- Trade Studies
 - Xbee-PRO model, microcontroller

Project Context
 Child Drone
 Communication
 Software
 Future Work

STATUS SUMMARY: GSMRS

Requirement	Project Element	Feasibility		
<i>FR 1.0 and 9.0:</i> Communicates with CD	 CD Communications CD Software 	 Positive link margin COTS ground control SW COTS transceiver 		
<i>FR 13.0:</i> Receive sensor data from SP	 SP Communications SP Software 	 Positive link margin Xbee-Pro receiver COTS Data handling SW 		



FUTURE WORK: GSMRS

- Testing
 - Xbee-PRO receiver
 - No-Line-of-Site Testing
- Modeling
 - Update CD-GSMRS link budget with accurate antenna models
 - Update SP-GSMRS link budget with accurate antenna models
- Trade Studies
 - Ground control SW, data handling SW, Xbee-PRO model

PROJECTED SCHEDULE THROUGH CDR

10/11-10/17	10/18-10/24	10/25-10/31	11/1-11/7	11/8-11/14	11/15-11/21	11/22-11/28
Team Position Choices						
CD Trade Study	y/Downselection	I				
SP Desig Study/Dov	n Trade wnselection					
	oyment /Downselection					
			Det	ailed Subsystem	Design	
		Detailed Component Design				
				Thermo/Structural Modeling		Aodeling
CDR Slide Creation						

REFERENCES

- ¹Liang, O., "CMOS CCD FPV Camera Multicopter," Oscar Liang, URL: http://blog.oscarliang.net/cmos-ccd-fpv-camera-multicopter/ [cited 4 October 2015].
- ²Liang, O., "How to Choose FPV Camera," *Oscar Liang*, URL: http://blog.oscarliang.net/best-fpv-camera-quadcopter/ [cited 4 October 2015].
- ³Liang, O., "PAL or NTSC for FPV," Oscar Liang, URL: http://blog.oscarliang.net/pal-ntsc-fpvquadcopter^{//} [cited 4 October 2015].
- ⁴Driscoll, E. B., Jr., "CMOS vs CCD," Videomaker, URL: http://www.videomaker.com/article/14183-cmos-vs-ccd [cited 4 October 2015].
- ⁵MIKOWSKI, E., "FPV Camera Review," FPVforMe, URL: http://www.fpvforme.com/fpv-camerareview/ [cited 4 October 2015].
- ⁶Atkins, B., "Field of View Rectilinear and Fisheye Lenses," Bob Atkins, URL: http://www.bobatkins.com/photography/technical/field_of_view.html / [cited 4 October 2015].
- ⁷"CBC debuts high resolution Pixim Seawolf cameras," UBM pic, URL: http://www.ifsecglobal.com/cbc-debuts-high-resolution-pixim-seawolf-cameras/ [cited 4 October 2015].
- ⁸"Choosing Your FPV Camera," *RCHelicopterFun.com*, URL: http://www.rchelicopterfun.com/fpv-camera.html [cited 4 October 2015].
- ⁹Gunn, T., "Vibrations and Jello effect causes and cures," *FliteTest*, URL: http://www.flitetest.com/articles/vibrations-and-jello-effect-causes-and-cures [cited 4 October 2015].
- ¹⁰Baldwin, D., "Vibration Damping Materials Comparison Revisited for Quadcopter FPV & Aerial Camera Setups," URL: https://www.youtube.com/watch?v=h3y4Clyf1cw [cited 4 October 2015].
- ¹¹"Vibration Damping," *APM Copter*, URL: http://copter.ardupilot.com/wiki/common-vibration-damping/ [cited 4 October 2015].
- ¹²"Vibration Isolation Mounts," *Stratus Productions LLC*, URL: http://www.stratusproductions.com/vibration-dampeners [cited 4 October 2015].
- ¹³ "Masterson, P., "The Basics of Vibration Isolation Using Elastomeric Materials," Aearo Technologies, URL: http://www.earsc.com/HOME/engineering/TechnicalWhitePapers/Vibration/index.asp?SID=61 [cited 7 October 2015].
- ¹⁴"XBee-PRO® 900HP." *XBee-PRO 900HP*. Web. URL: http://www.digi.com/products/xbee-rf-solutions/modules/xbee-pro-900hp [cited 11 October 2015].

REFERENCES

- ¹⁵"XBee® ZigBee." XBee ZigBee. Web. URL: http://www.digi.com/products/xbee-rf-solutions/modules/xbee-zigbee [cited 11 October 2015].
- ¹⁶"Wave Propagation of 900 MHz vs. 2.4 GHz." Knowlege.digi.com. Web. URL: http://knowledge.digi.com/articles/Knowledge_Base_Article/Wave-propagation-of-900-MHz-vs-2-4-GHz/?l=en_US&fs=Search&pn=1 [cited 11 October 2015]
- ¹⁷Blake, L. V. "Antenna And Receiving-System Noise-Temperature Calculation." URL: http://www.dtic.mil/dtic/tr/fulltext/u2/265414.pdf [cited 11 October 2015].
- ¹⁸"80/20 Ni Cr Nickel-Chrome Resistance Wire." *Nichrome 80 Electrical Resistance Wire*. Web. URL: http://www.alloywire.com/products_RW80_Nichrome_80.html [cited 11 October 2015].
- ¹⁹"Nylon Rope Strength." Nylon Rope Strength. Web. URL: http://www.engineeringtoolbox.com/nylon-rope-strength-d_1513.html [cited 11 October 2015].
- ²⁰"Servo Generic High Torque (Standard Size)." *ROB-11965*. Web. URL: https://www.sparkfun.com/products/11965 [cited 11 October 2015].
- ²¹"L12 6V 50mm 210:1 PLC/RC Miniature Linear Actuator." Robot Shop. Web. URL: http://www.robotshop.com/en/firgelli-technologies-l12-50-210-06-i.html [cited 11 October 2015].
- ²²"Wire: Nichrome 80 (tm) & Other Resistance Alloys Tech Data." Wire: Nichrome 80 (tm) & Other Resistance Alloys - Tech Data. Web. URL: http://www.wiretron.com/nicrdat.html [cited 11 October 2015].
- ²³"Nickel Chromium Data." *Hot Wire Foam Cutter*. Web. URL: http://hotwirefoamcutterinfo.com/_NiChromeData.html [cited 11 October 2015].
- ²⁴"Low Voltage Temperature Sensors," *Analog Devices*, URL: http://www.analog.com/media/en/technicaldocumentation/data-sheets/TMP35_36_37.pdf [cited 5 October 2015].
- ²⁵"u-blox 7 GNSS modules," u-blox, URL: https://www.u-blox.com/sites/default/files/products/documents/NEO-7_ProductSummary_%28UBX-13003342%29.pdf, [cited 10 October 2015].
- ²⁶ "Drones deliver medical supplies in groundbreaking research flights," Virginia Tech, URL: http://www.unirel.vt.edu/audio_video/2015/07/072015-ictas-letsflywiselyfolo.html, [cited 9 October 2015].

REFERENCES

- ²⁷"XBee® ZigBee." XBee ZigBee. Web. URL: http://www.digi.com/products/xbee-rf-solutions/modules/xbee-zigbee [cited 11 October 2015].
- ²⁸"Performance of Propellers." Massachusetts Institute of Technology. Web. URL: http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node86.html [cited 11 October 2015].
- ²⁹"X8+." 3D Robotics, Inc. Web. URL: https://store.3drobotics.com/products/x8-plus [cited 11 October 2015].
- ³⁰"Flame Wheel ARF Kit." *DJI*. Web. URL: http://www.dji.com/product/flame-wheel-arf/spec [cited 11 October 2015].
- ³¹"3DR Pixhawk." 3D Robotics, Inc. Web. URL: https://store.3drobotics.com/products/3drpixhawk [cited 11 October 2015].
- ³²"3DR uBlox GPS with Compass Kit." *3D Robotics, Inc.* Web. URL: https://store.3drobotics.com/products/3dr-gps-ublox-with-compass [cited 11 October 2015].
- ³³"3DR Radio Set." 3D Robotics, Inc. Web. URL: https://store.3drobotics.com/products/3dr-radioset [cited 11 October 2015].
- ³⁴"3D Robotics Video/OSD Kit." *3D Robotics, Inc.* Web. URL: https://3drobotics.com/wp-content/uploads/2014/07/FPVOSD-Kit-Manual-D.pdf [cited 11 October 2015].
- ³⁵"APM Copter Dronecode." *ArduPilot*. Web. URL: http://copter.ardupilot.com/ [cited 11 October 2015].
- ³⁶"PIC18F87K22 Family Data Sheet." *Microchip.* Web. URL: http://ww1.microchip.com/downloads/en/DeviceDoc/39960d.pdf [cited 11 October 2015].
- ³⁷"Choosing a Ground Station." *ArduPilot*. Web. URL: http://copter.ardupilot.com/wiki/common-choosing-a-ground-station/ [cited 11 October 2015].

Questions?

INFERNO BACKUP SLIDES

MISSION OVERVIEW BACKUP SLIDES

MISSION PROFILE

Event	Approximate Time
Take-off	30 s
Movement to Target	30 s
Sensor Deployment	1 min
Reconnaissance	10 min
Return to Mother Rover	30 s
Landing	1 min
Total Flight Time	13.5 min
Sensor Data Collection	1 hr

MISSION PROFILE CALCULATIONS

- Movement to Target: 200m / 10m/s = 20s
- Total Possible Area to Image: 1/4 * 3 * 200² = 160000m²
- Area Viewed by Camera: $3 * 10^2 = 300m^2$
- Total Time to Image Total Area: 160000 / 300 = 533s = 8.89min
- Assumptions: Height = 10m, Speed = 10m/s, 90° FOV on Camera, 45° Area of Interest

LEVELS OF SUCCESS

Levels	CD	Imaging	Sensor
1	•Wired communication with GSMRS	•Burst 8MP photos	•Temperature data taken at 1 Hz
	 Simulated deployment of SP 	•Time stamping	with 8-bit resolution
	 Flight testing with simulated 	•Wired communication with CD	•Time stamping
	payload		Wired data transmission
2	•Deploy SP on command	•Time stamped video wired to CD	•Flight capable mass and volume
	•Flight Testing with SP in	•720fps @ 30 fps transmitted to	(TBD)
	deployment mechanism	GSMRS	•Wireless transmission of 1 hour of
	 15 minute flight duration 		data
	 Wireless communications link 		
	Piloted landing		
3	•Flight with video-tracked piloting		•Store 1 hour of data on-board
	•200 m wireless data/imagery		•Transmit wirelessly 200 m
	transmission		•Be capable of collecting and
	•GPS signal transmission		transmitting data after deployment
4	•Semi-Autonomous flight via GPS	•Full 1080p, 30fps transmitted to	•Retransmission of data in case of
	waypoints, and landing within 5 m radius	GSMRS	signal loss
	•Full system integration		

CHILD DRONE BACKUP SLIDES

CHILD DRONE: MASS BUDGET COMPONENTS

Component	Mass (g)
Flight Controller	
3DR Pixhawk	38
Ground Station Comms	
3DR Radio Set	16
GPS	
3DR uBlox GPS/Compass	16.8
Imagery	
3DR Video/OSD System Kit	84
3DR 5.8GHz Cloverleaf Antenna Kit	6
GoPro Hero3	74
Fixed GoPro Mount (research estimate)	20
TOTAL	254.8

CHILD DRONE FLIGHT MODEL: DJI S900

1000 W

12,000 mAh

- Test case for flight model
- Hexacopter
 - Takeoff weight 6.8 kg

Parameter

Charge Required (18 min, 20% margin)

- 22.2 V battery
- Sea level

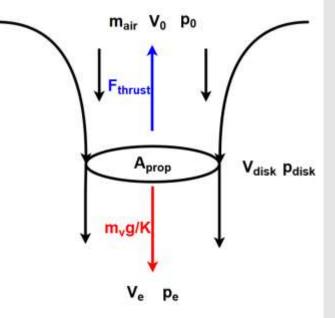
Total Current

Total Power

1050 W

17,200 mAh

CHILD DRONE FLIGHT MODEL


- Thrust equal to weight of vehicle divided by number of engines
 - $F_{thrust} = \frac{m_v g}{\kappa}$
- Pressure differential and momentum change

•
$$F_{thrust} = A_{disk}(p_2 - P_1)$$

- $F_{thrust} = \dot{m}_a(v_e v_0) = \dot{m}_a v_e$
- Prop power equal to thrust power AND change in air kinetic energy

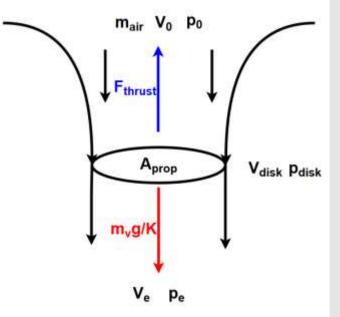
•
$$P_{prop} = F_{thrust} v_{disk} = A_{disk} (p_2 - p_1) v_{disk}$$

•
$$P_{prop} = \dot{m}_a v_e v_{disk} = \frac{\dot{m}_a v_e^2}{2} \rightarrow v_{disk} = \frac{v_e}{2}$$

CHILD DRONE FLIGHT MODEL

- Apply Bernoulli
 - $p_{disk} + \frac{1}{2}\rho v_{disk}^2 = p_0$

•
$$p_e + \frac{1}{2}\rho v_{disk}^2 = p_0 + \frac{1}{2}\rho v_e^2$$


•
$$p_e + \frac{1}{2}\rho(v_{disk}^2 - v_e^2) = p_{disk} + \frac{1}{2}\rho v_{disk}^2$$

•
$$p_e - p_{disk} = \frac{1}{2}\rho v_e^2$$

Substitute

•
$$\dot{m}_a = \rho A_{disk} v_{disk} = \frac{\rho A_{disk} v_e^2}{2}$$

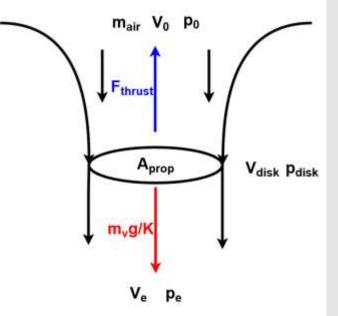
•
$$F_{thrust} = \frac{\rho A_{disk} v_e^2}{2} = 2\rho A_{disk} v_{disk}^2$$

CHILD DRONE FLIGHT MODEL

· Solve for power

•
$$v_{disk} = \sqrt{\frac{F_{thrust}}{2\rho A_{disk}}}$$

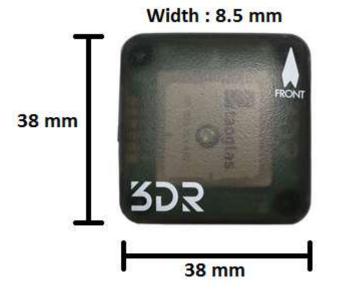
• $P_{thrust} = F_{thrust} \sqrt{\frac{F_{thrust}}{2\rho A_{disk}}}$


•
$$P_{motor} = \frac{P_{thrust}}{\eta_{prop}\eta_{motor}}$$

•
$$P_{total} = KP_{motor}$$

Solve for charge

•
$$I = \frac{P_{total}}{V_{batt}}$$


•
$$Q = It_{flight}$$

CHILD DRONE GPS ACCURACY

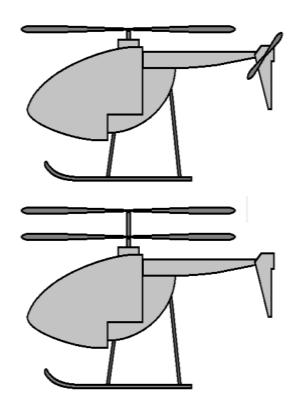
- FR 4.0 The CD shall fly to GPS coordinates
 - DR 4.1.1.1 The CD shall have a GPS receiver with a minimum accuracy of 5m
- 3DR uBlox GPS with Compass
 - u-blox NEO-7 GPS module
 - < 4.2 m error with 95% confidence
 - Built to interface directly with Pixhawk flight computer

CHILD DRONE: AIRFRAME TRADE STUDY

- Three primary types of rotary wing aircraft
 - Helicopter
 - Multicopter
 - Singlecopter/Coaxcopter
- Key Parameters:
 - Airframe availability
 - Software availability/maturity
 - Hardware expansion
 - Stability
 - Repairability

AIRFRAME TRADE STUDY: HELICOPTERS

- Most common VTOL utility platform
- Conventional vs. coaxial rotors
- Less common for small-scale utility


Advantages

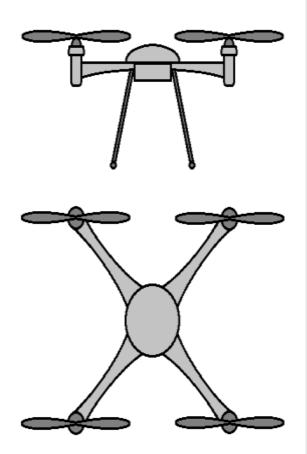
- Commonly used by hobbyists
- Open-source flight computers and ground stations
- High-efficiency rotors—potentially long endurance
- High speed
- Inexpensive

1/6/2016

Disadvantages

- Mechanically
 complex propulsion
- Difficult flight characteristics
- Small structure may make complicate hardware integration
- Rotors can cause severe injury
- Poor crash survivability

AIRFRAME TRADE STUDY: MULTICOPTERS

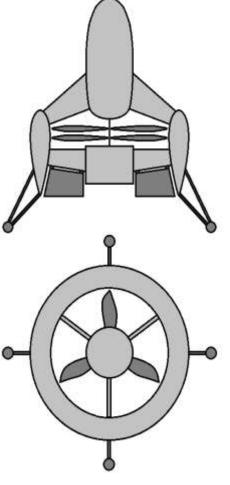

- Emerging field for small-scale utility
- Simple and stable control scheme
- Lower efficiency

Advantages

- Commonly used by hobbyists and professionals
- Open-source flight computers and ground stations
- Simple, stable, intuitive
- Structure typically designed for additional hardware
- Easily repaired

Disadvantages

- Low efficiency requires large batteries for high endurance
- Rotors have potential for injury
- More expensive than helicopters



AIRFRAME TRADE STUDY: SINGLE / COAXCOPTERS

- Highly experimental
- Combine control characteristics of coax helicopters, and planes

Advantages	Disadvantages
Shrouded fan is safer	No COTS airframes—
than open rotors	must be custom-built
 Well-suited to flight near 	Open source flight
vegetation	software is highly
 Small footprint 	experimental
High efficiency	Flight dynamics are not
propulsion	well-established
	• Structure is poorly suited
	to hardware expansion

AIRFRAME TRADE STUDY: CRITERIA AND WEIGHTING

	Ratings							
Criteria	1	2	3	4	5			
Availability	Aircraft must be custom-built	COTS build kits available, generally unsuited to mission requirements	COTS build kits available, but will require airframe and/or propulsion modification to suit mission requirements	COTS ready-to-fly options available	COTS ready-to-fly options available fulfilling all mission requirements			
SW Integration	All software must be written from scratch. All software is available, but highly experimental.		Reliable COTS/OS flight software available. Ground station software and other functionality must be written.	Reliable COTS/OS flight and ground station software. Additional SW design required for full INFERNO functionality.	Plug-n-play integration of all required INFERNO functionality.			
HW Integration	Airframe unsuited to addition of mission hardware		Airframe has limited volume and/or attachment points for additional hardware		Airframe may be readily modified with new hardware			
Ease of Flight/Stability	Stability and flight characteristics are poorly established and unpredictable		Aircraft is generally stable, but has highly sensitive flight controls. Extensive training required for pilots.		Aircraft is highly stable, intuitive, and requires minimal training for pilots.			
Safety	Exposed moving parts with potential to cause severe injury.		Exposed moving parts with minimal potential to cause severe injury		Moving parts are contained within a protective casing			

AIRFRAME TRADE STUDY: CRITERIA AND WEIGHTING

Criteria	Weight	Justification
Availability	0.33	If the CD airframe requires extensive custom work, it may drain significant time and financial resources required for other project elements.
SW Integration	0.33	Software—especially flight control—is a critical aspect of the CD and INFERNO integration as a whole.
HW Integration	0.2	The CD must have the lift and airframe space to carry expanded hardware, such as imagery and the SP, but all three airframes should be workable.
Ease of Flight/Stability	0.1	If the CD is particularly difficult to fly, it will require significant modeling and/or training for the operators, and presents a higher risk of crash, hardware damage, or injury
Safety	0.04	Exposed rotors provide a measurable safety risk depending on their size and speed, but safety issues can be addressed with proper procedures and PPE.
Total	1	

AIRFRAME TRADE STUDY: RESULTS

- DECISION: MULTICOPTER
 - Commercial airframe availability
 - Sufficient endurance
 - Airframe versatility
 - COTS/open-source hardware and software availability
 - Stability and ease of operation
- Going Forward:
 - Selection of specific multicopter model
 - Selection of compatible components/software

VEHICLE TYPE TRADE STUDY: CRITERIA AND WEIGHTING

			Ratings		
Criteria	1	2	3	4	5
Position Hold Capability	Cannot hold position within a 5m radius		Can hold position within a 5m radius inconsistently		Can hold position within 5m consistently
Flight-Ready Cost	>\$4000	\$3000-\$4000	\$2000-\$3000	\$1000-\$2000	<\$1000
Procurement	ProcurementThe system must be entirely custom designedCustom software, combination COTS/custom componentsEase of Takeoff and LandingCan take off and land, but requires additional child drone or mother rover capabilitiesCan take off and land but requires manual assistanceSizeCannot fit within the mother rover		COTS software, combination COTS/custom components	Individual components can be obtained COTS, then integrated	System can be obtained COTS with no modifications
				Can take off or land, but not both without additional capabilities	Can take off and land with no additional required systems or capabilities
Size			Parts of the drone stick out of the mother rover. Or the drone requires modifications to fit.		Can fit in the mother rover completely without any modifications
Payload Capacity	Cannot carry the required payload		Payload requires significant design considerations		Can carry the required payload with no difficulty.

VEHICLE TYPE TRADE STUDY: CRITERIA AND WEIGHTING

Criterion	Weight	Rationale
Position-Hold	10%	Position-hold is weighted at 10% because it is an important mission element, but doesn't affect the design of other systems. The position hold is important for the accurate delivery of the sensor package, as well as visual reconnaissance. However, the limitations of the child drone can be operationally mitigated.
Cost	5%	Cost is weighted low at 5% because although it is a critical element in the project, it does little to drive the design on the system. So long as the system can be created within the budget, it doesn't matter how much it costs. It is only once the project is over budget that it becomes an issue.
Procurement	40%	Procurement is weighted the highest at 40% because it vastly affects all other aspects of the project. If the system must be entirely custom designed, it places far more work on the team than buying COTS components. Designing some of components from scratch, such as a flight computer, could be senior projects by themselves. This category does the most to drive whether the project can be accomplished.
Take-off and Landing	30%	Take-off and Landing is weighted the second most because it is a mission critical aspect that also affects multiple systems. If the child drone requires extensive modifications to the mother rover, or requires the mother rover to have additional capabilities, it complicates the FireTracker system as a whole. This defeats the goal of having future teams be able to easily interface with the INFERNO system.
Size	5%	Size is tied for the lowest weighting because the size of the child drone directly affects the required size of the mother rover. This requires the mother rover to be larger to accommodate the child drone, or parts of the child drone to be exposed during transit. However, this physical size requirement for the mother rover is easier to design than adding capabilities. Therefore it is weighted low.
Payload Capacity	10%	Payload capacity is weighted at 10% because it is drives the required design on the sensor package. If the child drone can carry a relatively high amount of mass, then the sensor package has more freedom in its design. However, if the child drone has a relatively limited payload capacity, mass becomes a much more important aspect of the sensor package design

AIRFRAME TRADE STUDY: RATINGS

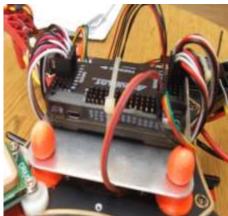
		Fixed Wing		Rotor Wing		LTA	
Criteria	Weight	Rating	Score	Rating	Score	Rating	Score
Position-Hold	10%	1	0.2	5	0.4	5	0.4
Cost	5%	5	0.25	4	0.2	4	0.2
Procurement	40%	4	1.6	4	1.6	1	0.8
Take-off and Landing	30%	1	0.6	5	1.5	2	0.6
Size	5%	3	0.15	5	0.25	3	0.15
Payload Capacity	10%	5	0.5	3	0.3	3	0.3
Total	100%	2.	2.9		35	2.	15

CHILD DRONE IMAGING SYSTEM: CAMERA OPTIONS

- Camera (FR 6.0 and FR 7.0)
 - Possible Options
 - GoPro Hero3-\$300, 74 g
 - FPV Camera & Video Recorder-\$60, 19 g

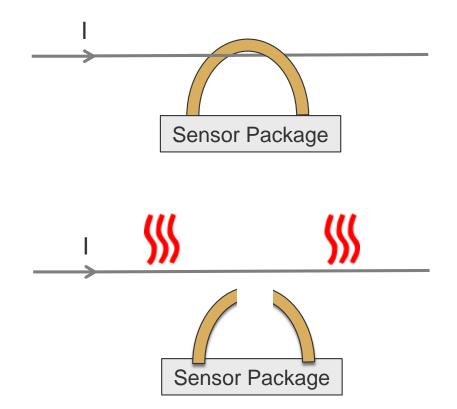
59 mm

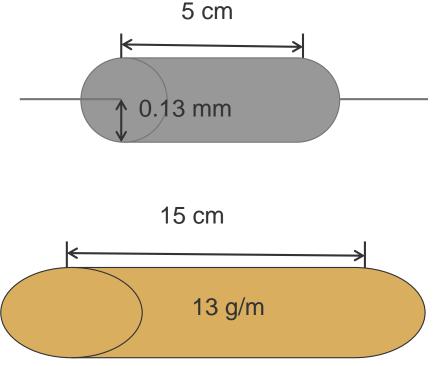
• Hummingbird HD Tube FPV Camera-\$75, 100 g


CHILD DRONE IMAGING SYSTEM: CAMERA OPTIONS

- Camera Selection
 - CCD vs CMOS
 - CCD less susceptible to vibrations but is typically heavier, more expensive, and requires more power
 - Fisheye vs Rectilinear Lens
 - Fisheye lens can have a greater FOV, but causes more distortion
 - Video System Standard (FR 6.0)
 - PAL (Phase Alternating Line)
 - 720 x 576 @ 25fps
 - NTSC (National Television System Committee)
 - 720 x 480 @ 30fps
 - DJI Lightbridge
 - Can transmit at 1080p at 30 fps

CHILD DRONE IMAGING SYSTEM: VIBRATION DAMPING


- Damping Camera Vibrations:
 - Passive Solutions
 - Lighter, cheaper, and simpler than COTS gimbal devices
 - Isolation platform
 - Damping material
 - Earplugs, Elastomeric material,
 - Planned vibrational tests after PDR


- Burn Wire
 - Nylon Rope
 - Melting point: 220°C
 - Safe load: 3.19 kg
 - Nichrome Wire
 - Melting point: 1400°C
 - Power draw: 2.3 W for .9 seconds

- Burn Wire
 - Mass < 2 g
 - Nichrome:
 - Density: 8.31g/cm³
 - Volume = 0.003 cm³
 - Mass = 0.02 g
 - Nylon 3/16"
 - Density: 13 g/m
 - Length: 15 cm
 - Mass = 1.95 g

- Nichrome Wire
 - 3% increase in resistance at 220°C
 - V=IR

• E=Pt

• P=IV • t = $\frac{p_d c_p DT \rho^2 r^4}{p_r I^2}$

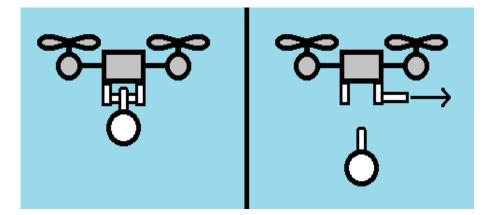
Less time, power, energy for smaller wire

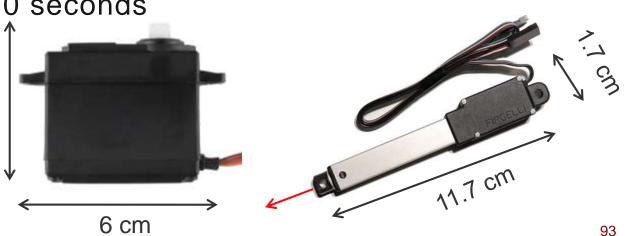
Smaller wire cannot support as much mass

5 cm

←

Wire Grade	Resistance in 5 cm (Ω)	Current (A)	Voltage (V)	Power (W)	Time (s)	Energy (J)
24	0.3	3.4	0.91	3.1	2.7	8.3
26	0.4	2.6	1.13	2.9	1.8	5.2
28	0.7	1.95	1.33	2.6	1.2	3.2
30	1.1	1.47	1.59	2.3	0.9	2.1
32	1.7	1.13	1.92	2.2	0.6	1.3




	Servo Motor	Linear Actuator
Stall Current	1.1 A	450 mA
Voltage	6V	6V
Power = VI	6.6W	2.7W
No load speed	.17 sec/60°	5 mm/sec
Angular/Linear Distance	90°	5 cm
Time	.24 sec	10 sec
Total Energy = Pt	1.58 J	27 J

- Pull Pin
 - Servo motor
 - 40g
 - 6.6W for 0.24 seconds
 - Linear Actuator
 - 39g
 - 2.7W for 10 seconds

4.5 cm

h = 1.7 in/44.1 mm

- Testing confirms that magnetic field will affect accuracy of onboard compass
- Additional concern regarding uncertain affects of magnet on electronic SP components

SENSOR PACKAGE BACKUP SLIDES

SENSOR PACKAGE: DATA STORAGE

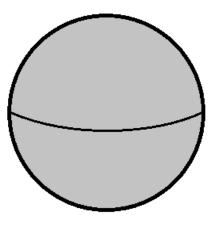
Storage on Microcontroller: 2 Mbits

Data capture rate:8 bits/sTimestamp rate:20 bits/sTotal:28 bits/s

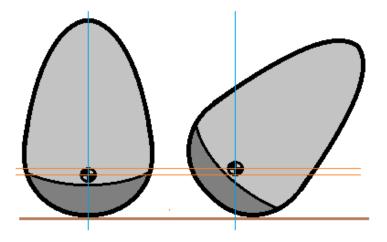
Taken for 1 hour: 100,800 bits = 0.1008 Mbits

Could take data for 20.81 hours

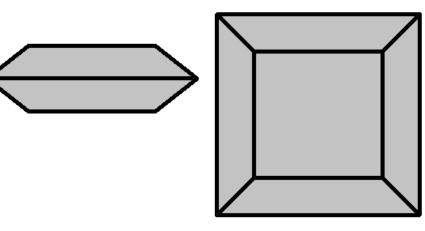
SENSOR PACKAGE: POWER BUDGET


Design Element	Time Used	Voltage	Current	Power Consumption
Microcontroller	2 hr	5 V	50 mA	0.25 Wh
Transmitter	2 hr	3.3 V	215 mA	0.7095 Wh
Temperature Sensor (2x)	1 hr	5 V	50 μA	0.0005 Wh
			TOTAL:	0.96 Wh
		With 20% De	sign Margin:	1.2 Ah

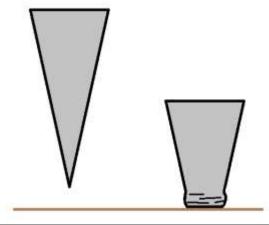
- Primary purpose is to protect electronics from impact with ground
 - Engineering Principals
 - A slower moving object will have a slower impact force
 - Increasing area perpendicular to velocity direction while decreasing weight lowers an objects terminal velocity
 - Upon impact, increasing the time an object takes to come to rest decreases impact force


SENSOR PACKAGE: STRUCTURE – SPHERE

	Advantages	Disadvantages
•	Simple Design	Aerodynamic (High Terminal
•	Naturally strong against impacts and	Velocity)
	stresses	Difficult to integrate with mostly
		square internal components
		May roll away from landing position
		Difficult to predict final orientation


SENSOR PACKAGE: STRUCTURE – SELF RIGHTING

	Advantages		Disadvantages
•	Final orientation of sensors and	•	Low tolerances for machining and
	transmitters can be accurately		component placement
	predicted	•	Requires a large, empty volume
•	Can correct orientation after		
	bouncing during deployment		


SENSOR PACKAGE: STRUCTURE – OBLATE OBJECT

Advantages	Disadvantages
Large surface area results in a	Does not efficiently use vertical
slower terminal velocity	space underneath child drone
Shape naturally stabilizes the	Bulky
structure on descent	
Final orientation is limited to 2	
possibilities	

SENSOR PACKAGE: STRUCTURE – CRUMPLE ZONE

Advantages

- Crumple zone absorbs energy, shielding the electronics on impact
- Does not easily bounce or roll

Disadvantages

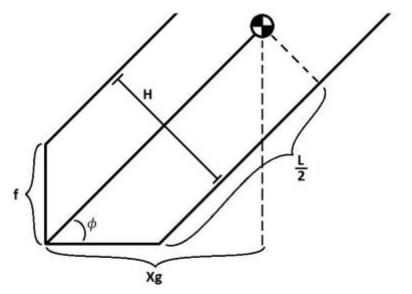
- Non-reusable
- Final orientation is difficult to predict
- Performance depends heavily on precise weight distribution
- Restricts

SENSOR PACKAGE: CALCULATING SIZE

To ensure that the Sensor Package does not land and stay on its side:

 $X_g > f$

Through geometry:


$$X_g = f + \frac{1}{2}L\cos(\phi) - \frac{1}{2}H\sin(\phi) > f$$
$$\frac{L}{H} > \tan(\phi)$$

Also, the width of the package, d, is equal to:

$$d = L + 2f\cos(\phi)$$

$$H$$

$$d = L + \frac{H}{\tan(\phi)}$$

1/6/2016

SENSOR PACKAGE: MASS BUDGET

Component	Mass [g]
Microcontroller	17
Transmitter	5
Antenna	10
Temperature Sensor (x2)	1
Wiring	4
Structure	120
LiPo Batteries (x2)	20
Total	177

- Protect electronics during ground impact
 - Testing
 - Paper cone with crumple zone

- Protect electronics during ground impact
 - Testing
 - Oblate Object

- Protect electronics during ground impact
 - Testing
 - Oblate Object with tapered sides

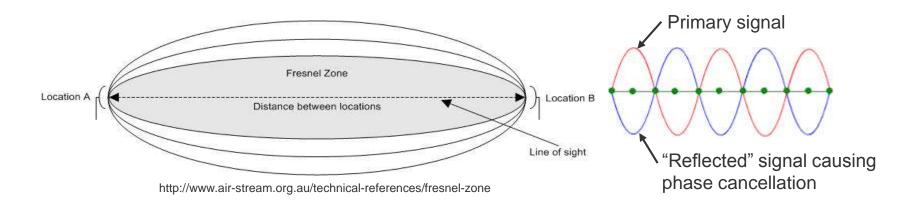
- Protect electronics during ground impact
 - Testing
 - Dropped an egg wrapped in foam from ~40 ft
 - If the egg can withstand the fall, the electronics should be more than capable

SENSOR PACKAGE: MASS COMPONENTS

Component	Component Description
Microcontroller	
Transmitter	XBee-PRO XSC
Antenna	Dipole
Temperature Sensor (x2)	TMP37
Wiring	24 gauge
Structure	Foam Structure with Inner Plastic Casing

GSMRS BACKUP SLIDES

GSMRS MISSION PLANNER TESTING


1/6/2016

COMMUNICATIONS BACKUP SLIDES

FRESNEL ZONE INTERFERENCE

- What is the Fresnel Zone?
 - Set of concentric ellipsoids encompassing line of site transmission path
 - An object within the Fresnel Zone will result in undesirable multipath signals that are out of phase of primary signal
 - This results in either phase cancelling or in phase enhancement of base signal

COMMUNICATIONS: LINK BUDGET CALCULATIONS

Nomenclature

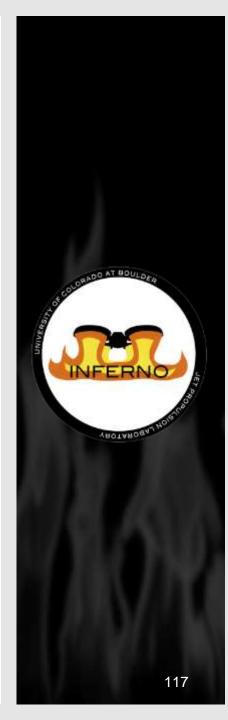
- P_t = Power Transmitted
- G_t = Receiving Antenna Gain
- G_r = Transmitting Antenna Gain
- L_s = Free Space Loss
- P_r = Power Received
- k = Boltzmann's Constant
- $L_r = \text{Line Loss}$
- d_r = Receive Antenna Diameter
- *NF* = Noise Figure
- $T_0 = \text{Reference Temperature}$
- N_0 = Noise Power
- T_s = System Noise Temperature
- $\frac{E_b}{N_0}$ = Bit Energy to Noise Ratio

System Noise Temp. [k]: $T_s = \frac{T_a}{L_r} + T_0 \left(1 - \frac{1}{L_r}\right) + T_0(NF - 1)$ Receive Antenna Gain [dB]: $10\log(\frac{d_r^2 \pi^2 \eta}{\lambda^2})$ Signal to Noise Ratio [dB-Hz]: $\left(\frac{P_r}{N_0}\right)$ System Noise Power [dB]: $N_0 = 10\log(k * T_s)$ Power Received [dB]: $P_r = P_t + G_t + G_r - L_s - Fade Margin$ Minimum Signal to Noise Ratio [dB-Hz]: $\left(\frac{P_r}{N_0}\right)_{min} = Bit Rate + Design Margin + \frac{E_b}{N_0}$ Link Margin [dB]: $\left(\frac{P_r}{N_0}\right) - \left(\frac{P_r}{N_0}\right)_{min}$

Values for above calculations obtained from data sheets and literature

COMMUNICATIONS: CHILD DRONE ERROR CORRECTION

- 3DR Radio uses 12/24 Golay error correction code
 - Send 24 bits for every 12 bits of data
 - Correct 3 bit errors per 12 data bits
 - Reduce usable data from 64 kb/s to 32 kb/s


COMMUNICATIONS: CHILD DRONE COMBINED LINK

DJI Lightbridge 2

- Allows GSMRS to send commands and receive telemetry and video (FR 1.0, FR 2.0, FR 9.0)
- Allows CD to transmit telemetry, receive commands, and transmit video (FR 6.0, FR 7.0, FR 8.0)
- Allows CD to transmit video
- DJI Lightbridge 2
 - Uplink Data Rate: 64 kbps
 - Downlink Data Rate: 12 Mbps

	DJI Lightbridge 2
P_t	-8 dBW
G _t	2 <i>dB</i>
G_r	3 <i>dB</i>
L_s	86 <i>dB</i>
Fade Margin	10 <i>dB</i>
$P_{r_{Actual}}$	-98 <i>dBW</i>
$P_{r_{Min}}$	-131 <i>dBW</i>
Link Margin	32 <i>dB</i>

FUTURE WORK/ REQUIREMENTS BACKUP SLIDES

BUDGET: CHILD DRONE AND IMAGING SYSTEM

Child Drone Manufacturing					
Part Name	art Name Description Unit Cost Quantity Discounts				Total Cost
	Child Drone Frame, Props,				
DJI S900	Motor	\$1,400.00	1	0.00%	\$1,400.00
3DR Pixhawk	Flight Controller	\$200.00	1	15.00%	\$170.00
APM Power Module	Power Module	\$25.00	1	15.00%	\$21.25
Lumenier 16000 mAh 6s LiPo	Battery	\$270.00	3	0.00%	\$810.00
3DR uBlox GPS/Compass	GPS	\$90.00	1	15.00%	\$76.50
Misc. Electrical Parts		\$500.00	1	0.00%	\$500.00
			Chil	d Drone Total	\$2,977.75

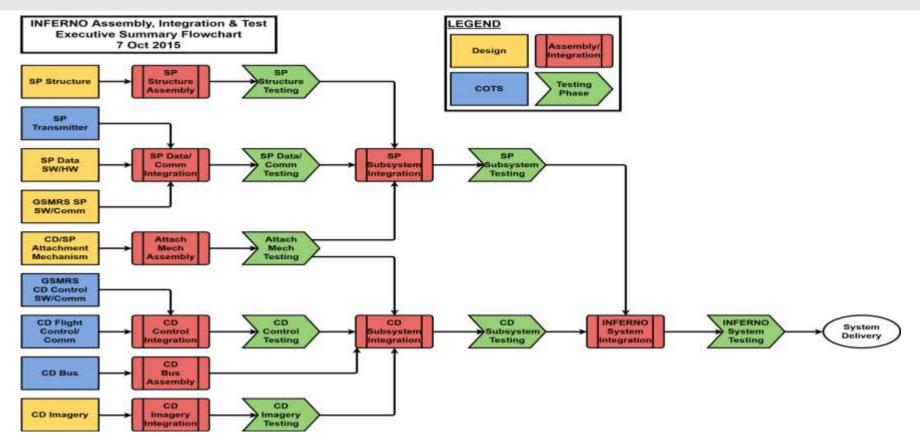
	Imaging System Manufacturing				
Part Name	Description	Unit Cost	Quantity	Discounts	Total Cost
GoPro Hero 3	Camera	\$300.00	1	100.00%	\$0.00
3DR Video/OSD System Kit	Video Transmission System	\$190.00	1	15.00%	\$161.50
3DR MinimOSD Cable for Pixhawk	Cables to connect video to flight controller	\$4.00	1	15.00%	\$3.40
3DR 5.8 GHz Cloverleaf Antenna Kit	High gain antenna	\$17.00	6	15.00%	\$86.70
AV to USB Adapter		\$30.00	1	0.00%	\$30.00
Tarot Gimbal FPV/OSD Video Cable		\$10.00	1	0.00%	\$10.00
Misc. Electrical Parts		\$300.00	1	0.00%	\$300.00
			Imaging	System Total	\$291.60

BUDGET: GSMRS, SENSOR PACKAGE, AND ADDITIONAL COSTS

	Sensor Package Manufacturing				
Part Name	Description	Unit Cost	Quantity	Discounts	Total Cost
Xbee Pro	900 MHz (Comm to GSMRS)	\$43.00	2	0.00%	\$86.00
Microcontroller		\$200.00	1	0.00%	\$200.00
Temperature Sensor		\$3.00	5	0.00%	\$15.00
Structural Materials		\$100.00	1	0.00%	\$100.00
Machining Costs		\$50.00	1	0.00%	\$50.00
			Sensor F	Package Total	\$451.00

GSMRS Manufacturing					
Part Name	Description	Unit Cost	Quantity	Discounts	Total Cost
3DR Radio Set	Telemetry Comms System	\$100.00	1	0.00%	\$100.00
				GSMRS Total	\$100.00

OTHER COSTS				
Description	Unit Cost	Quantity	Discounts	Total Cost
Printing	\$200.00	1	0.00%	\$200.00
		Othe	er Costs Total	\$200.00



BUDGET: GSMRS, SENSOR PACKAGE, AND ADDITIONAL COSTS

SUMMARY			
Category	Category Total		
Manufacturing	\$3,820.35		
Testing	\$0.00		
Shipping	\$0.00		
Other Costs	\$200.00		
Budget	\$5,000.00		
Total Funding Spent	\$4,020.35		
Total Funding Remaining	\$979.65		

TEST PLAN: AI&T FLOW

TEST PLAN: GSMRS

- Closed-loop CD simulator testing
 - Procedures
 - Manual flight controller integration
- Command/Telemetry w/ CD
 - Workbench wired/wireless
 - Outdoor/Long-range
 - Control
- SP Data Reception
 - Workbench
 - Wireless
 - Long-range

TEST PLAN: CHILD DRONE

- Workbench testing
 - Wired CD communication
 - Wireless CD communication
- Outdoor non-flight testing
 - GPS
 - Long-range communication
- Indoor flight testing
 - Takeoff/landing
 - Manual control
- Outdoor flight testing
 - Takeoff/landing
 - Manual/GPS control
 - Deployment

TEST PLAN: SENSOR PACKAGE

- Workbench testing
 - Temperature collection/digitization
 - Wired data to GSMRS
 - Wireless data to GSMRS
 - Battery life
 - Deployment mechanism
- Outdoor testing
 - Long-range data transmission
 - Drop testing
- Integrated testing
 - Flight deployment

Requirement	Description
FR 1.0	The GSMRS shall transmit wireless commands to the CD
DR 1.1	The GSMRS shall be able to command the CD to take off
DR 1.2	The GSMRS shall be able to transmit GPS coordinate commands to the CD
DR 1.3	The GSMRS shall be able to command the CD to deploy the SP
DR 1.4	The GSMRS shall be able to command the CD to record video
DR 1.5	The GSMRS shall be able to command the CD to record photos

Requirement	Description
FR 2.0	The CD shall receive wireless commands from the GSMRS
DR 2.1	The CD shall receive takeoff command(s) from the GSMRS
DR 2.2	The CD shall receive GPS coordinate commands from the GSMRS
DR 2.3	The CD shall receive SP deployment command(s) from the GSMRS
DR 2.4	The CD shall receive commands to record video from the GSMRS
DR 2.5	The CD shall receive commands to record photos from the GSMRS

Requirement	Description
FR 3.0	The CD shall take off from the GSMRS
DR 3.1	The CD shall fit in the GSMRS landing bay
DR 3.1.1	The CD shall have a footprint no greater than TBD
DR 3.1.2	The CD shall have overall dimensions no greater than TBD

		Requirement	Description
			The CD shall fly to GPS coordinates
			The CD shall have an autopilot
		DR 4.1.1	The CD shall be capable of holding position at GPS coordinates with an accuracy no less than 5m
		DR 4.1.1.1	The CD shall have a GPS receiver with a minimum accuracy of 5m
	DR 4.2		The CD shall have a flight endurance of a minimum of 20 minutes under ambient conditions similar to those of Colorado during peak wildfire season.
		DR 4.2.1	The CD shall have a flight service ceiling of a minimum of 5400 ft / 1646 m ASL
		DR 4.2.2	The CD shall operate with ground temperatures between 50°F / 10°C and 118°F / 47.8°C
•		DR 4.2.3	The CD shall operate in wind speeds a maximum of 10 mph / 4.5 m/s
		DR 4.2.3.1	The CD shall be capable of flight at a minimum of airspeeds of 22.4 mph / 10 m/s
1/6/201	6	DR 4.2.4	The CD shall operate in a maximum humidity of 80%

Requirement	Description
FR 4.0	The CD shall fly to GPS coordinates
DR 4.3	The CD shall have a minimum operational radius of 200 m away from the MR
DR 4.3.1	The GSMRS shall be capable of sending all required commands a minimum of 200 m
DR 4.3.2	The CD shall be capable of sending all required data a minimum of 200 m
DR 4.3.3	The SP shall be capable of sending all required data a minimum of 200 m

Requirement	Description
FR 5.0	The CD shall deploy the SP to a ground location of interest (LOI)
DR 5.1	The CD shall be capable of housing the SP
DR 5.1.1	The SP shall have a maximum mass of TBD
DR 5.1.2	The SP shall have maximum dimensions of TBD
DR 5.2	The CD shall be capable of releasing the SP during flight
DR 5.3	The SP shall remain within 5 m of the LOI after deployment

Requirement	Description
FR 6.0	The CD shall be capable of recording video footage
DR 6.1	The CD shall have a video camera
DR 6.1.1	The video camera shall record video at a minimum of 1080p resolution.
DR 6.1.2	The video camera shall record video at a minimum of 30 frames per second
DR 6.1.3	The video camera shall record video with a minimum of 100° field of view
DR 6.1.4	The video camera shall have a maximum mass of TBD
DR 6.1.5	The video camera shall have maximum dimensions TBD
DR 6.2	Captured video data shall be timestamped

Requirement	Description
FR 7.0	The CD shall be capable of recording photos
DR 7.1	The CD shall have a photo camera
DR 7.1.1	The photo camera shall record photos at a minimum of 8 MP resolution
DR 7.1.2	The photo camera shall have a maximum mass of TBD
DR 7.1.3	The photo camera shall have maximum dimensions of TBD
DR 7.2	Captured photo data shall be timestamped

Requirement	Description
FR 8.0	The CD shall transmit wireless data to the GSMRS
DR 8.1	The CD shall transmit GPS position data to the GSMRS
DR 8.2	The CD shall transmit video imagery to the GSMRS
DR 8.3	The CD shall transmit photo imagery to the GSMRS
DR 8.4	The CD shall be capable of transmitting all data from its maximum operational radius

Requirement	Description
FR 9.0	The GSMRS shall receive wireless data from the CD
DR 9.1	The GSMRS shall receive GPS position data from the CD
DR 9.2	The GSMRS shall receive video imagery from the CD
DR 9.3	The GSMRS shall receive photo imagery from the CD

Requirement	Description
FR 10.0	The CD shall land in the GSMRS docking bay
DR 10.1	The CD shall land under operator control

Requirement	Description
FR 11.0	The SP shall acquire ground temperature data after deployment
DR 11.1	The SP shall acquire data for 1 hour
DR 11.2	The SP shall acquire data at 1 Hz frequency
DR 11.3	The SP shall acquire data at 8-bit resolution
DR 11.4	The SP shall timestamp data

Requirement	Description
FR 12.0	The SP shall transmit wireless data to the GSMRS
DR 12.1	The SP shall transmit timestamped temperature data to the GSMRS
DR 12.2	The SP shall be capable of retransmitting temperature data
DR.12.2.1	The SP shall be capable of buffering up to 1 hour of timestamped temperature data

Requirement	Description
FR 13.0	The GSMRS shall receive wireless data from the SP
DR 13.1	The GSMRS shall receive temperature data from the SP