

Research at high Altitude on Distributed Irradiance Aboard an iNexpensive Cubesat Experiment

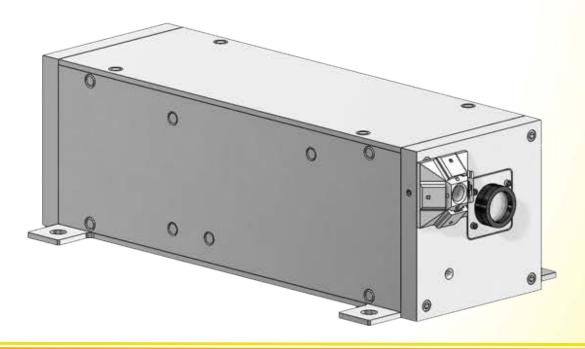
Manufacturing Status Review

Presenters: Lance Walton, Jenny Kampmeier, David Varley, James Pavek, Alec Fiala

Team Members: Brandon Antoniak, Jeremy Muesing, Katie Dudley, Russell Bjella

Outline

Project Overview	Jenny	10%
Schedule	Jenny & Alec	20%
Mechanical	Lance	20%
Electrical	Alec & David	20%
Software	James	20%
Budget	David	10%


Project Statement

RADIANCE will design, build, test, and deliver a 3U CubeSat-style payload to collect solar irradiance data, images, attitude information, and ambient atmospheric data on a high-altitude balloon flight.

Project-Level ConOps

Power Up

Using external power source equivalent to 15 W of expected HiWind power

Project Overview

Schedule

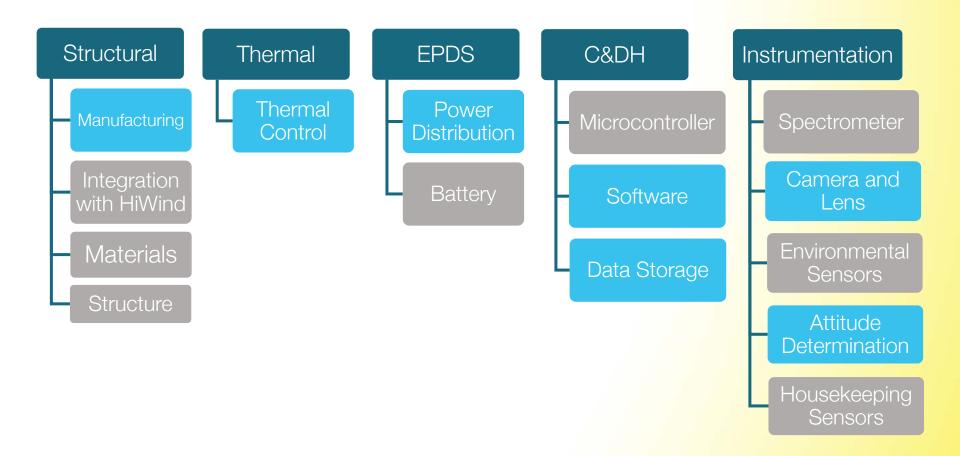
Mechanical

Functional Requirements

RADIANCE shall...

- FR1: Take solar irradiance measurements.
- FR2: Survive the environmental conditions of a high-altitude balloon flight up to 40 km.
- FR3: Return data.
- FR4: Determine its attitude.
- FR5: Interface with the HiWind Gondola.
- FR6: Capture images of the Sun in the visible spectrum.

The project deliverables shall include a Path-to-Space report.


Levels of Success

System	Achieved
Instrumentation	3
Thermal	3
C&DH	3
EPDS	1
ADS	2
Structure	1

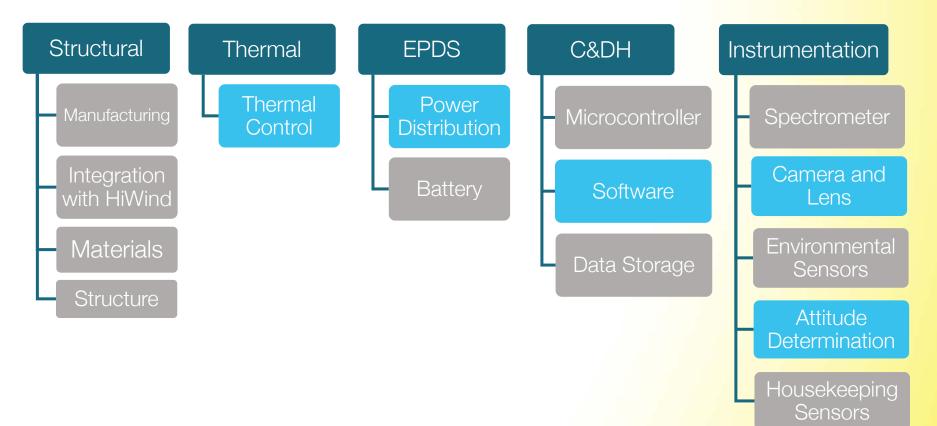
- Minimum or no risk of not meeting Level 1 for EPDS and Structure
 - Structure is completed and meets requirements
 - EPDS relies on HiWind for power

CDR Critical Project Elements

Project Overview

Schedule

Mechanical

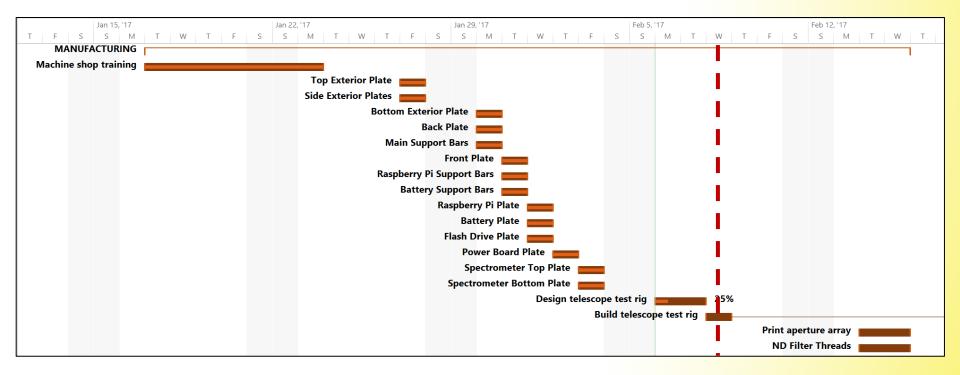

Electrical

Software

Budget

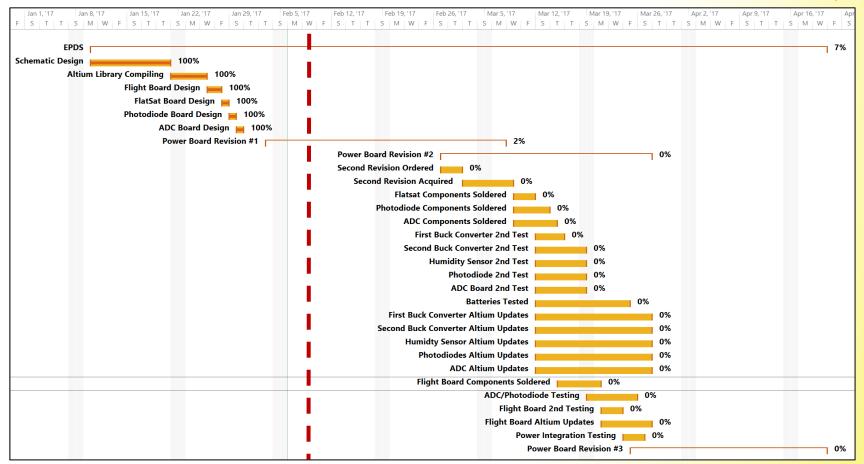
Remaining CPEs

Executive Summary


System	Percent Completed
EPDS	12%
Procurement	65%
Manufacturing	90%
Thermal	90%
Software	79%
Attitude Determination	60%
Course Milestones	15%
Path-to-Space Report	0%

Project Overview

Mechanical Schedule

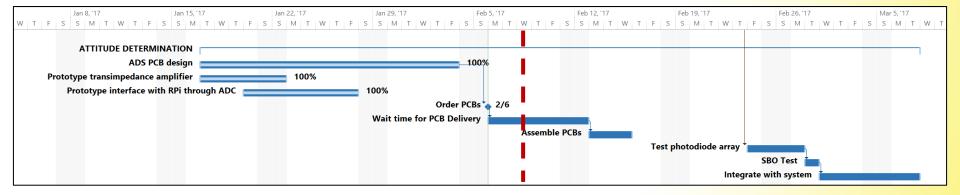


Electrical Schedule

Project Overview

Schedule

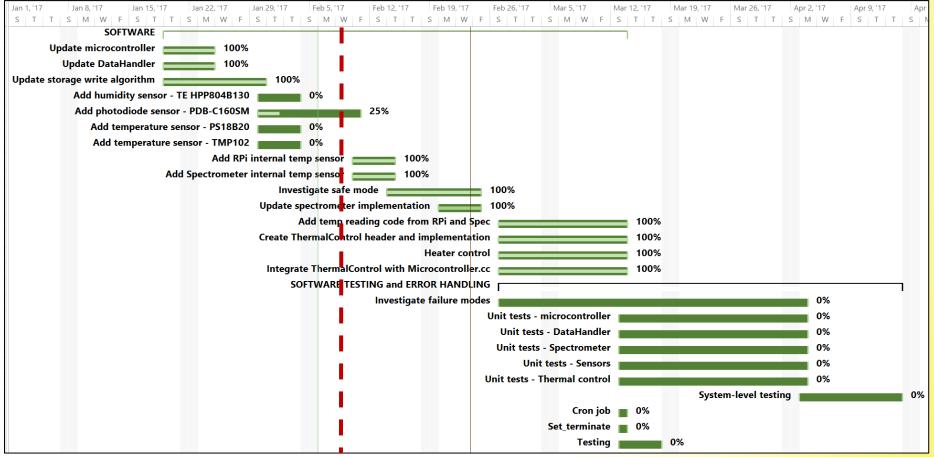
Mechanical


Electrical

Software

Budget

ADS Schedule



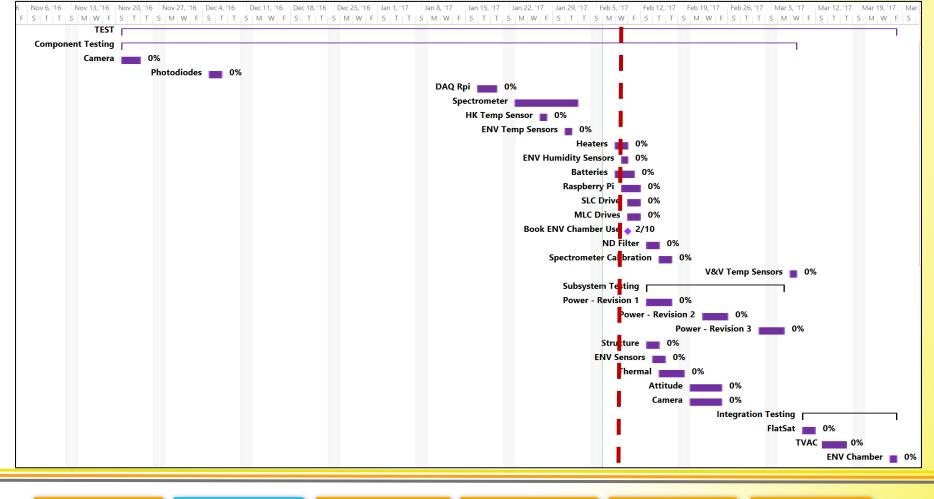
Software Schedule

Project Overview

Schedule

Mechanical

Electrical


Software

Budget

13

Testing Schedule

Project Overvie<u>w</u>

Mechanical Status

Mechanical Preparation

- SolidWorks drawings finished
- Ordered aluminum stock and other components
- Machine shop training
- Photodiode array prototype
- >Manufacturing procedures (safety, handling, etc.)

Safety Procedures

Date Created: 12 Jan. 2017	
Created By: Katelyn Dudley	those outlined in this
Date Revised: 30 Jan. 2017	vn good judgement, the
Revised By: Katelyn Dudley	becific safety protocols, and mmediately report the
	e published safety procedures for reactions are impaired in any prisor has given approval
These protocols were developed to be in agreement w University of Colorado machine shops and laboratorie:	e published safety procedures for
ITLL Manufacturing Center	more information, see these sites.
https://itil.colorado.edu/manufacturing_center/safety_n	e machine shop.
Aerospace Machine Shop	pertified. I understand that
http://www.colorado.edu/aerospace/facultystaff/aes-ma	e-shop evious experience may not exits, fire extinguishers,
Laboratory Safety Guidelines- EH&S	cation or approval from first aid supplies before using
https://ehs.colorado.edu/resources/laboratory-safety-g	ines/
Emergency Action Plan- EH&S	other individual using the as a charged cell phone or
https://ehs.colorado.edu/resources/emergency-action-	template/ of the RADIANCE team, I will contact emergency
Personal Protective Equipment- All PPE must be w	at all times when in a machine ided by machine shop EH&S in the event of an
shop	al gas leak, hazardous
 OSHA-approved safety glasses 	cular equipment each time I hs. The steps in order are as
 Must offer side and impact protection 	
 Prescription eyeglasses do not fulfill this 	uirement. Safety glasses must still be ception is that water in a
worn over prescription eyeglasses	cturing facility personnel.
 Closed-toed shoes 	with my ability to
 Shoe must cover the whole foot 	unon loss hofors hosioning
 Steel-toed is recommended, but not recommended. 	
Long pants	and project manager to inform
 No loose clothing Shirt tucked in 	hission and approval before ther individual become injured
	aining laws.
 Long sleeves rolled up No jewelry 	materials, I will obtain
 rings, necklaces, bracelets, watches, ea 	DIANCE safety engineers to
 Removal of wedding rings is not require 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Long hair tied back	chinery that is powered. If tigue, Slip-Trip-Fall hazards, ff the machine before
Convert Safety Bertranda	verify that the power is off. I configurations, and/or setting
General Safety Protocols	line of the second s
 I will wear the appropriate Personal Protective document at all times when in the manufacturing 	Hit is neward off hull have hit with the
 Where safety procedures outlined by machine 	any.
procedures, I will abide by those safety proced	
procession of the abide of these salely proces	ipervisor, regardless of how

Manufacturing Safety Protocols document created with information from all shops

Includes emergency procedures from EH&S

> Hardware Safety Protocols document to reduce wear and tear on parts

Project Overview

Schedule

Mechanical

Electrical

Software

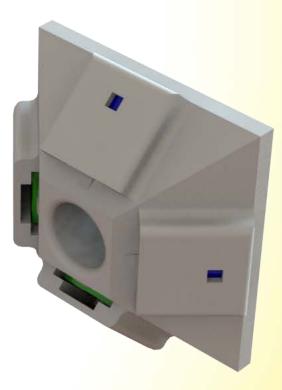
Budget

Mechanical Changes

Item Changed	Justification
4-40 screws used on ND filter threads	Incorrect size hole was machined.
Longer screws for spectrometer mounting	Only a ¼ turn engagement with current screws. Purchased screws were shorter than expected.
Raspberry Pi holed slightly enlarged	The provided CAD drawing was different from the purchased product.
3D Print camera lens mount	Part holes do not line up with camera holes.

Project Overview

Mechanical Progress



Item	Status	Notes
Structure	Complete	—
Foam	Cut to size	Must be finished for integration, holes for components and spacers must be cut.
Testing Hardware	Roughly designed	Includes telescope mount and thermal spectrometer analog
3D Printed Parts	Designed	To be printed
Assembly	Incomplete	Fully integrate remaining hardware

3D Printing – Photodiode Array

Waiting on PCB for photodiode test fit

Project Overview

Mechanical

3D Printing - Neutral Density Filter Threads

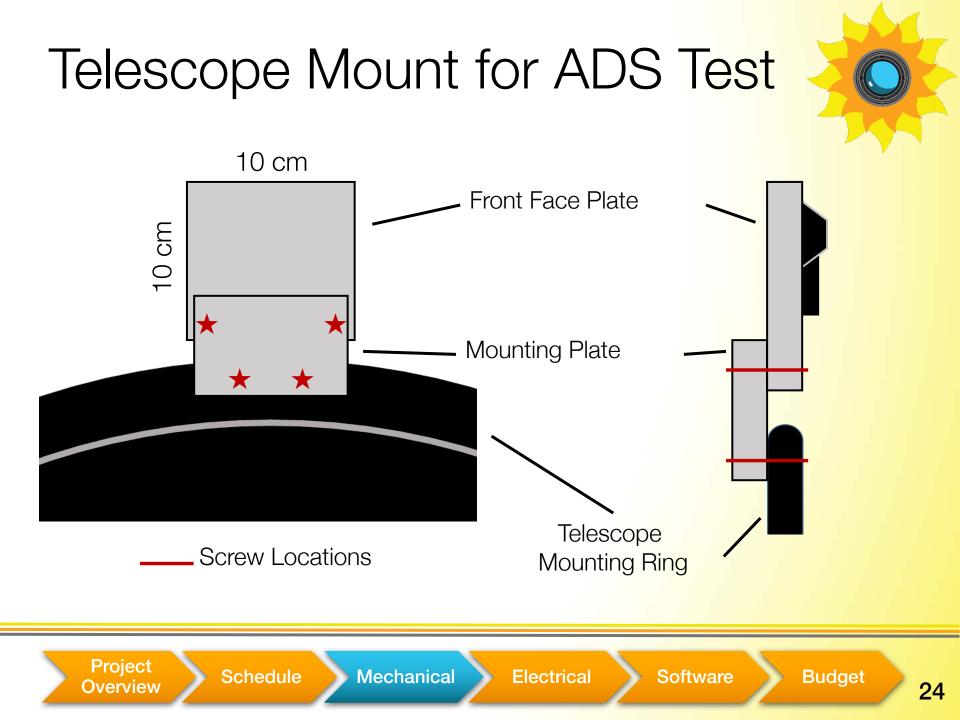
Waiting on neutral density filter to verify thread size

Project Overview

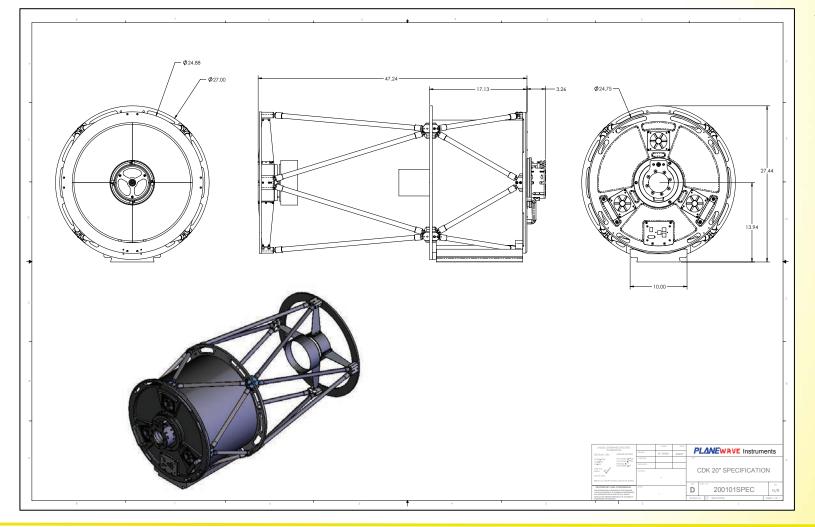
Mechanical

3D Printing - Camera Lens Mount

3D printing due to misaligned holes



Project Overview


Mechanical

Spectrometer Analog for TVAC

- Part machined from leftover aluminum to mimic spectrometer mass and size
- Resistive heater circuit to mimic heat output of operational spectrometer

Telescope Mount for ADS Test

Project Overview

Schedule

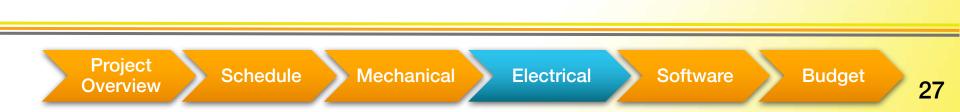
Mechanical Summary

Completed Work

- > All aluminum parts complete
- >3D printed parts designed
- > Structure assembly complete

Future Wo<mark>rk</mark>

- Print 3D printed parts
- Finish insulation holes
- Machine parts for testing
- Continue integrating components
- Design of parts needed for test



Project Overview

Mechanical

Power & Attitude Status

Electrical Preparation

Designed power board in Altium

- Selected appropriate footprints and libraries
- Design board layout
- Prepared board to Advanced Circuit's specifications
- Assembled lists of part numbers on DigiKey

Ordered components

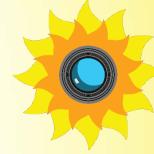
Electrical Safety Procedures

Electronics Labs Safety Protocol			
Date Created: 19 Jan. 2017			
Created By: Brandon Antoniak		-	
Date Revised: 30 Jan. 2017	adict these		
Revised By: Katelyn Dudley	ics shop		
	hose outlined in		
These protocols were developed to be in agreement with the published safety procedures for			7
University of Colorado electronics shops and laboratories. For more information, see these sites:	igement, the	ator light,	
ITLL Electronics Center:	y protocols, and	any other way	
https://itil.colorado.edu/electronics_center/safety_rules/	re impaired in any	eport the	
Laboratory Safety Guidelines- EH&S:	on, alcohol, drugs,	uals within the has given	become injure
https://ehs.colorado.edu/resources/laboratory-safety-guidelines/	of 8 hours after	nas given	soconic injuic
Emergency Action Plan- EH&S:	s shop.	allel as	
https://ehs.colorado.edu/resources/emergency-action-plan-template/	nderstand that		5155 20
	perience may not	mponents and	n the facility.
Personal Protective Equipment- All PPE must be worn at all times when in an Electronics	pproval from	mponent and	-Trip-Fall
OSHA-annoved safety glasses	vidual using the		1 100
OSHA-approved safety glasses Must offer side and impact protection	CE team, I will	accessible while	, and/or setting
 Prescription eyeglasses do not fulfill this requirement. Safety glasses must still be 			t the next user
worn over prescription eveglasses	ctronics shop	s. ork station using	avings, clipped
Closed-toed shoes		nent involved in	wings, cipped
 Shoe must cover the whole foot 	of equipment		
Long pants		e hand to do any	
No loose clothing	water in a closed	grounding band	
 Shirt tucked in 	el.	•	
 Long sleeves rolled up 	ity to	OUCH THEM. I	
No jewelry	efore beginning	all for help.	
 rings, necklaces, bracelets, watches, earrings, etc 	croic beginning		
 Removal of wedding rings is not required, but is recommended Rings and jewelry that are not removed should be covered with electrically 	o use and what I	another certified	
insulating tape	approval before	another certified	
 No metal should be exposed 		quishers.	
Long hair tied back	l obtain	and AED before	
Anti-Static grounding bracelets	fety engineers to		
 Anti-Static grounded work mats 	t is powered. If	cell phone or	
	ment before	rgency	
General Safety Protocols	the power is off. I		
 I will wear the appropriate Personal Protective Equipment (PPE) as defined in this 	personnel.	ivent of an azardous	
document at all times when in the electronics facility.	wered off. I will	azaroous in order are as	
have another certified individual verify that the equipment is power	ed off before making	in order are as	
adjustments.			
 I will immediately report any injuries to the electronics shop supervision 	isor, regardless of		
how minor the injury is or seems.			
 Call 911 from a Sale Location 		-	
 Remain Available for Emergency Person 			
 RADIANCE-specific step: Contact safety 	engineer and project i	manager to inform	
them of the incident.			
			1

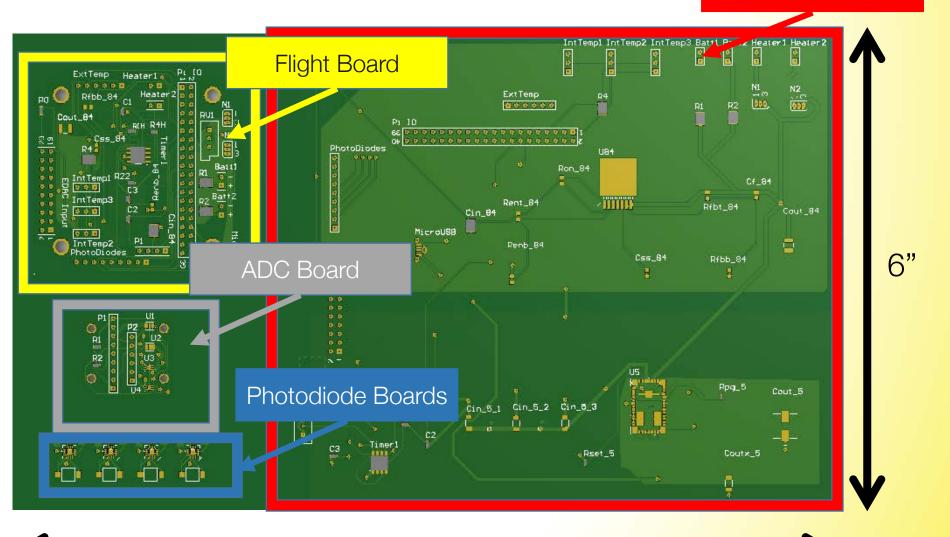
Electrical safety procedures document created by Safety Lead

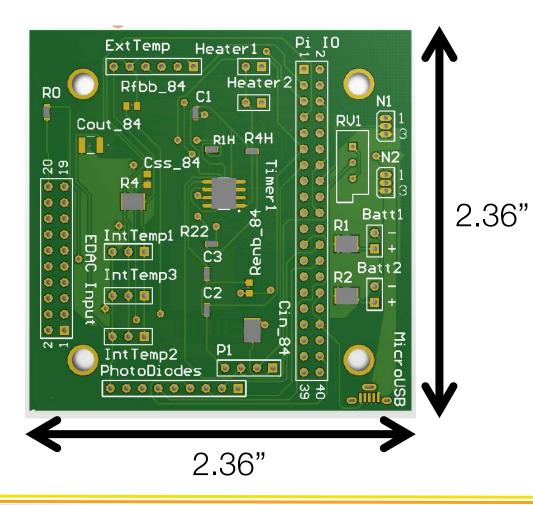
Includes emergency procedures from EH&S

Project Overview


Electrical Changes

Item Changed	Justification
Longer mini USB cable	Does not reach the spectrometer as expected.
Buck converter design changed	Original components out of stock.
New ADCs	Lower cost and better resolution.
Added flatsat board	Easier board to test on.

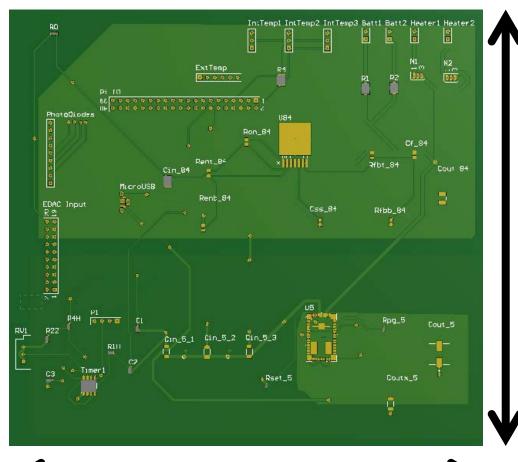

Electronics Status


Item	Status	Notes
Design	Complete	Some tweaks may be needed.
Revision 1	Ordered	To be picked up within a week
Revision 2	Testing Dependent	Time and money budgeted
Revision 3	Testing Dependent	Time and money budgeted
Integration	Phased Start	Must be fully tested and integrated with all subsystems. Completed in phases.

Board Design

FlatSat

Flight Board

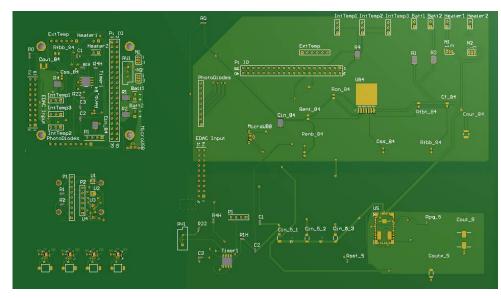


Updated design and components since CDR

- 2 layer board with polygon pours for testing
 - Possibility of 4 layer board with internal ground and power planes for flight

FlatSat

 Made for testing utilizing available space

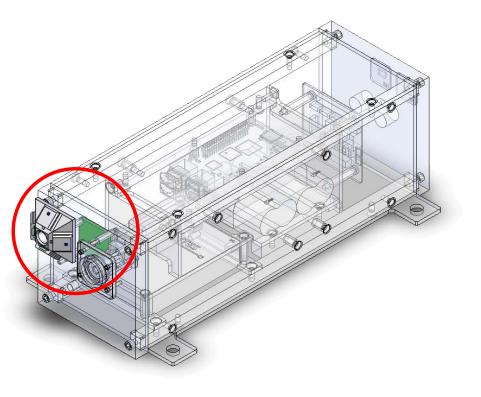

- ⁶ Additional vias added
 - Space allows for easer assembly and testing

7"

Electrical Summary

Completed Work

- Revision 1 board designs
- > Altium files created
- Components ordered



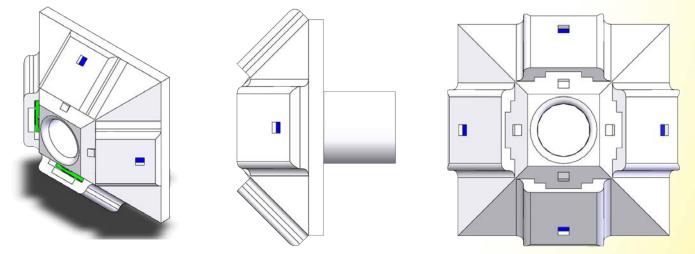
Future Wo<mark>rk</mark>

- Revision 1 soldering
 - Work with flatsat's larger space to become comfortable with in house surface mount soldering equipment
- Component testing
- Integration testing
- Make required changes, order next revision

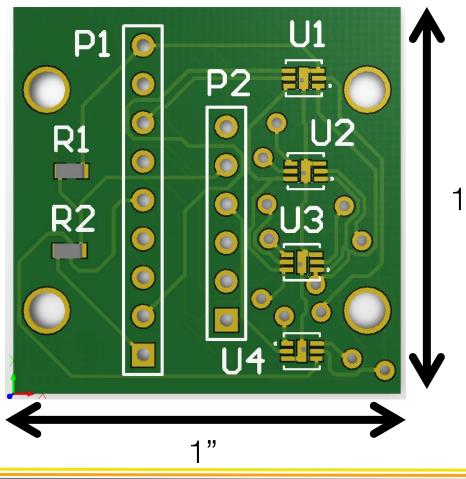
ADS Design Overview

- 4 photodiodes offset at 45° from each other
- Relative currents define sun position
- Location of the sun provides context for spectrometer data

Project Overview


Mechanical

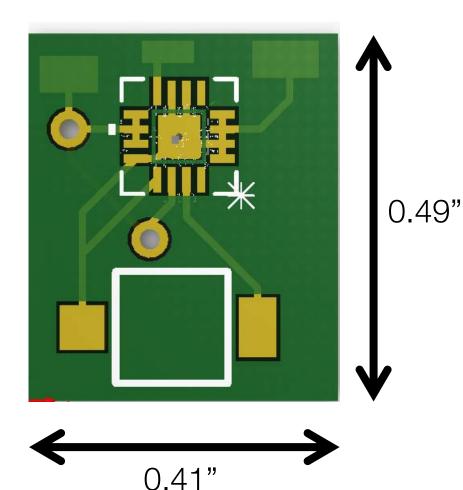
ADS Design Overview


>3D printed aperture casts shadow on photodiodes based on incidence angle

Increased response to changing sun angles vs bare photodiode

ADC Board

 Accommodates 4 ADCs
 New ADCs since CDR

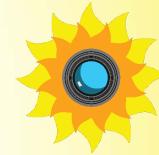

1" Power input changed from 3.3V to 5V for greater resolution

> Voltage divider used to get 3.3V to photodiodes

Photodiode Board

- Boards printed as part of first power board revision
- Will be cut and sanded to correct size

Project Overview


Schedule

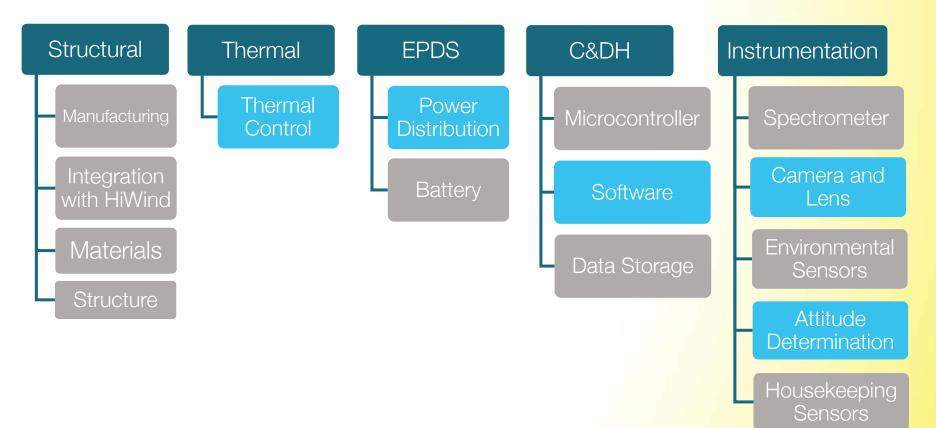
Mechanical

ADS Summary

Completed Work

- ADC board design
- Photodiode board design
- > Altium files complete
- > Photodiode array designed
- > Components ordered

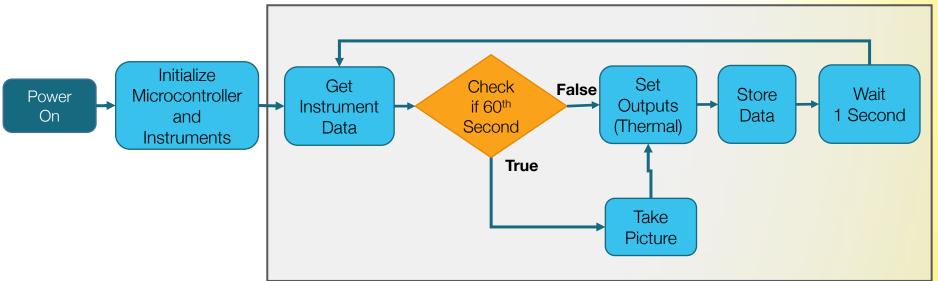
Future Wo<mark>rk</mark>


- Assembling board
 - Measure precisely for aperture
 - Verify functionality
- Print Aperture
- Testing and Calibration
 - Sommer-Bausch Observatory

Remaining CPEs

Software Executive Summary

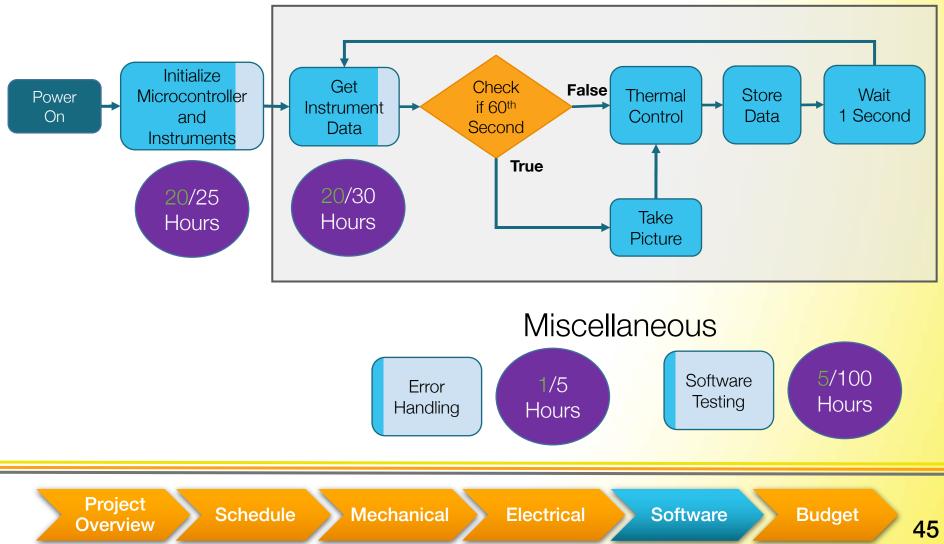
Item	Status	Notes
Microcontroller integration	Complete	—
DataHandler	Complete	—
Thermal control algorithm	Complete	—
Spectrometer integration	Complete	—
Sensor integration	In Python	Needs to be converted to C++
Unit and System Testing	Not started	Will begin once development is finished
Error handling	Investigated	Will be added to the code

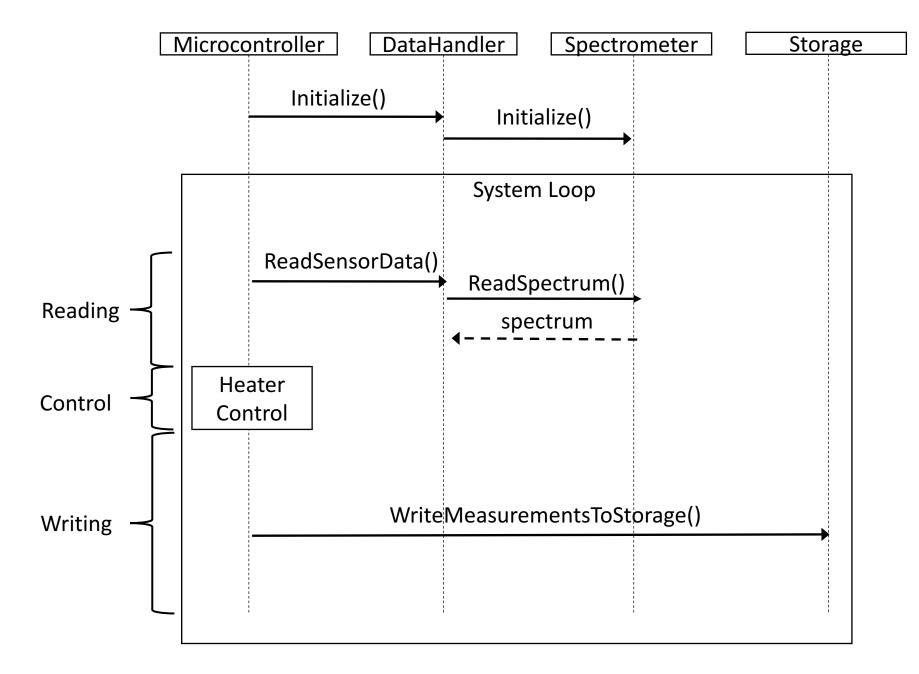

Project Overvie<u>w</u>

Mechanical

Software Flow

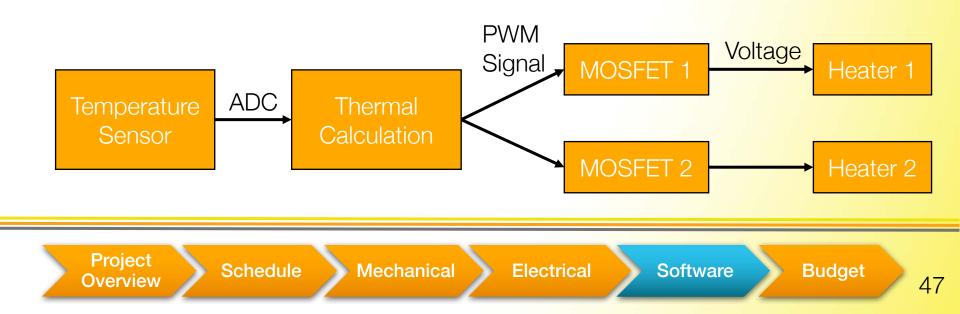
System Loop





Software Flow

System Loop



Heating Algorithm


Pseudocode:

- One calculation for each heater
- Approximate execution time: < 1 ms</p>

Software Path Forward

Finish code development

- Continue documentation
- Finish small sensor interfacing (15 hours)
- Investigate failure modes and errors (5 hours)
- >Start software testing (100 hours)
 - >Static tests
 - Unit tests
 - >System tests

Procured Budget Status

Subsystem	Projected Cost	Procured	To be Procured	Effect on Budget
C&DH	\$166.73	\$148.79	\$0.00	+\$17.94
Sensors	\$203.15	\$67.41	\$91.00	+\$44.74
Instrumentation	\$2988.13	\$2992.34	\$0.00	-\$4.21
Power	\$662.45	\$185.74	\$476.71	\$0.00
Structure	\$418.40	\$222.66	\$0.00	+\$195.74
Testing	\$250.00	\$0.00	\$250	\$0.00
Thermal	\$66.31	\$35.83	\$0.00	+\$30.48
TOTAL	\$4634.02	\$3652.77	\$981.25	+\$284.69

Total (with margin and excess): \$4,918.71

Project Overview

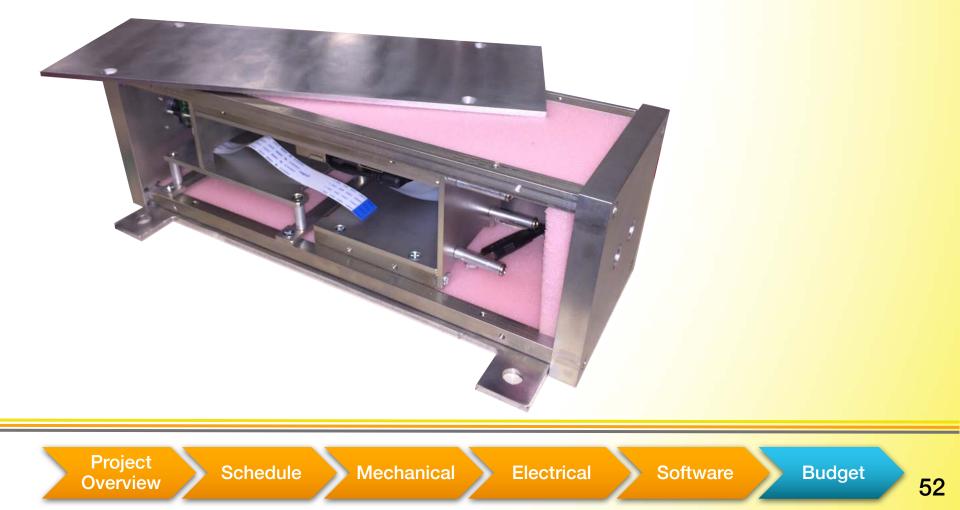
Mechanical

Electrical

50

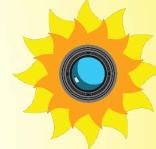
Potential Purchases

Hire Advanced Circuits to assemble power boards


- Purchase specific calibration equipment from Avantes
- >AIAA Conference Registration
- Expedited shipping if necessary

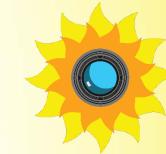
Thank you!

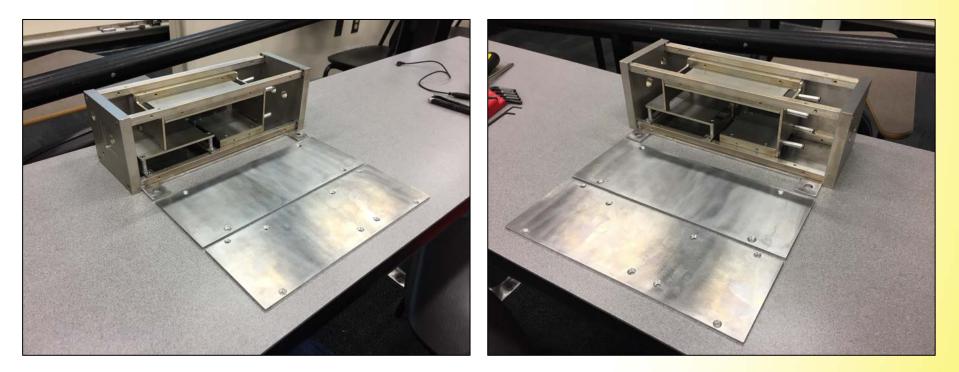
We welcome your feedback!



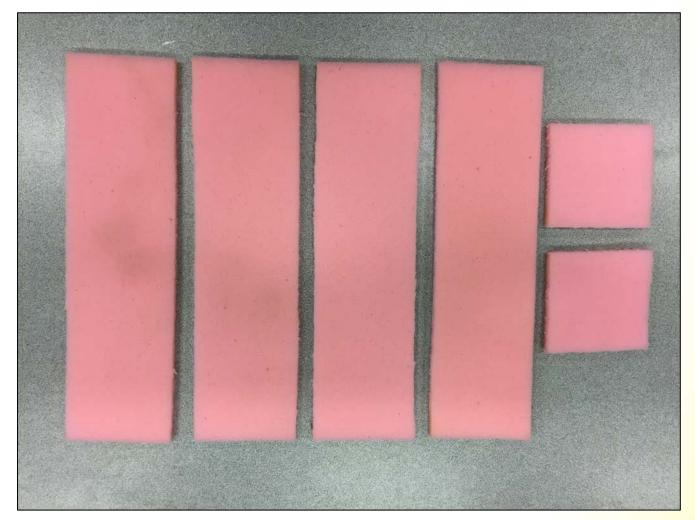
Hardware Safety

Document created for team awareness of hardware safety -> meant to reduce wear and tear

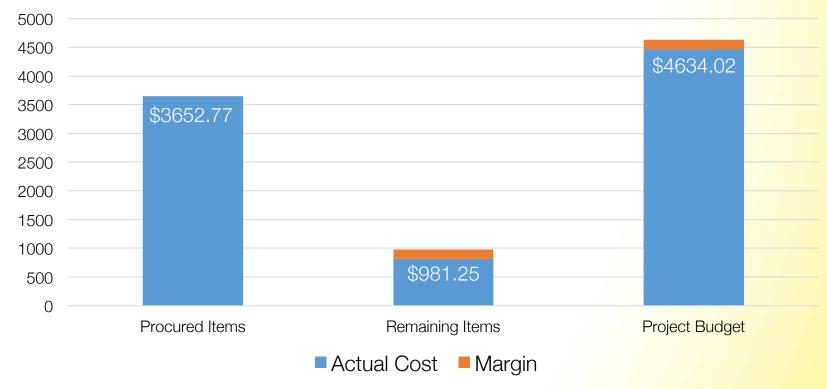

Rules for Handling Manufactured Hardware


- 1. Do NOT over torque screws or other hardware. Hand tighten when possible.
- 2. Do not drop parts.
- 3. Do not whack, rub, bang, or otherwise mishandle manufactured parts. Handle all parts with care.
- 4. Always make sure screws are new and undamaged. Do not use screws if dropped on the floor.
- 5. If you are unsure how to handle or use a part, ASK.
- 6. Get permission before integrating components to structure.
- 7. Make sure all components have been wiped clean with dry rag. No dust or small metal fragments on parts.
- 8. Put components back in their proper encased location.
- 9. Do not touch if you do not need to.
- 10. If electronic components are attached, make sure that you aware of static discharge.
- 11. Always lay components on a large, flat, level surface to prevent warping.
- 12. Get permission before accessing completed parts.

Aluminum Structure



Foam Insulation



Budget Status

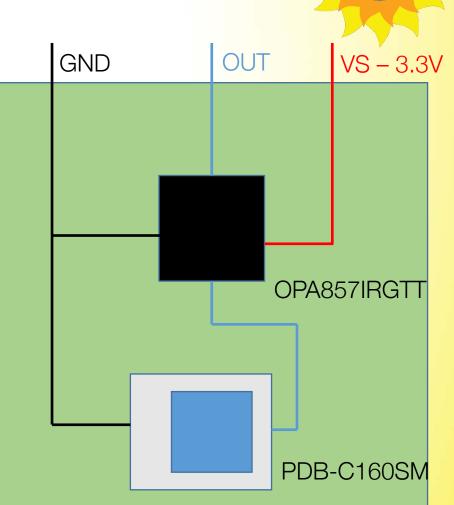
RADIANCE Budget

Levels of Success

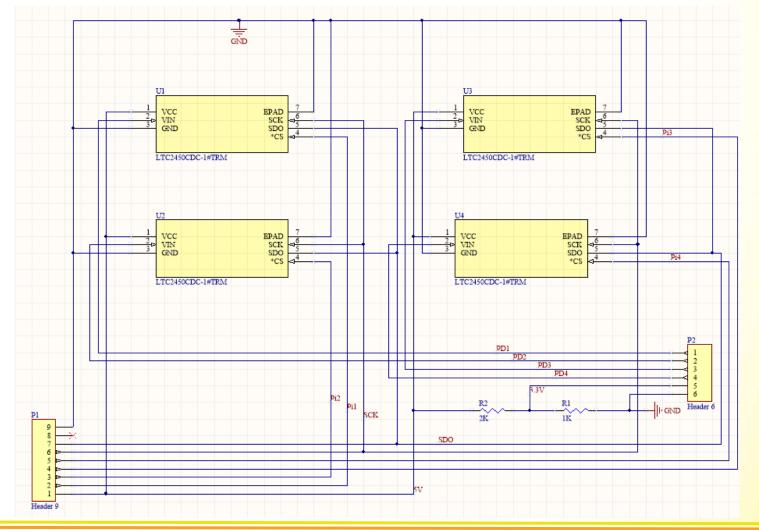
	Achieved	Description				
Instr. C	3	Take solar spectra at better than 1.5nm resolution and 250-1000nm during the full flight				
		Capture 1 photo/min of the Sun for full flight				
		Provide absolute calibration data of the instrument				
Thermal	3	All systems survive and operate during the full flight				
C&DH	3	 Record solar irradiance, attitude, environmental, and housekeeping data to meet relevant Level 3 requirements 				
EPDS	1	 Package operates on HiWind power supply 				
ADS	2	Determine and record attitude to 1 arcminute of accuracy relative to the sun vector				
Structure	1	Structure must be 10cm x 10cm x 32cm				
		Data is recoverable after experiencing up to 5 Gs on landing				
		Structure can be affixed to HiWind				

58

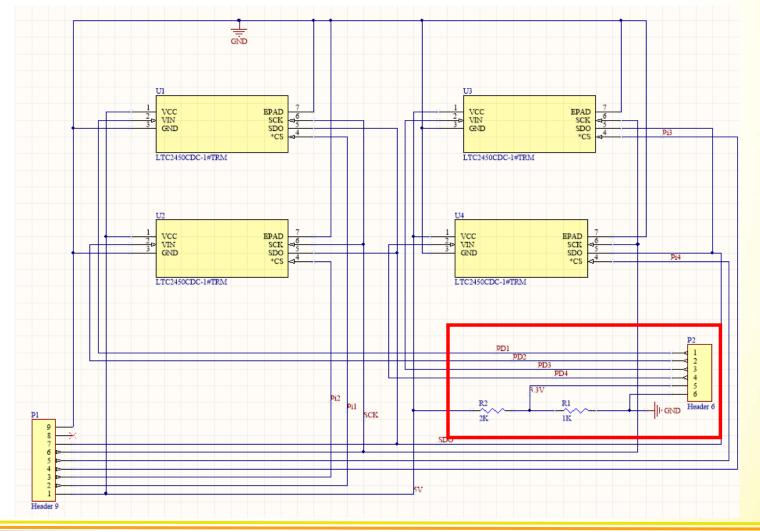
ADS Board from Altium

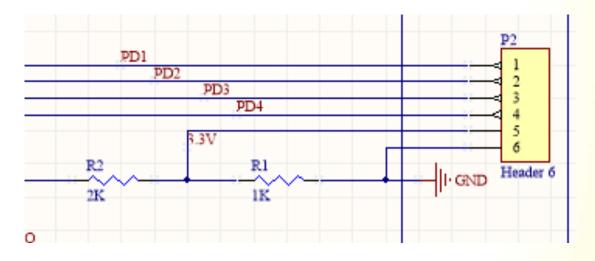


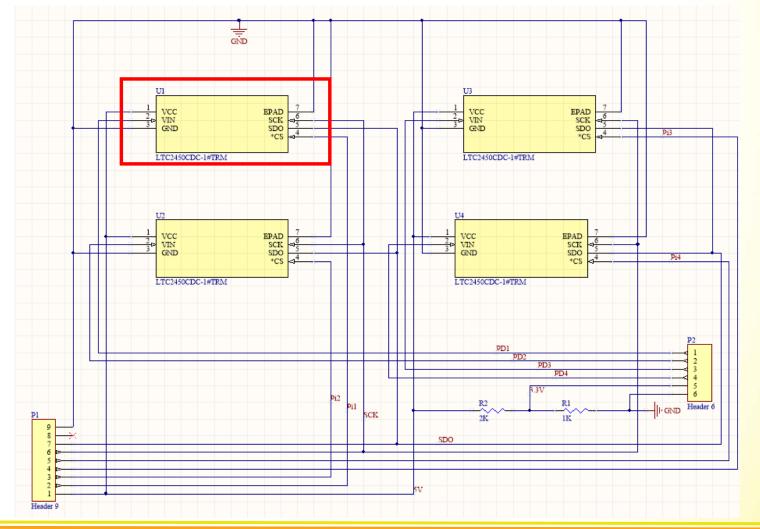
- Design has been done (details in backups)
- What has been purchased already (photodiodes)
- Board has been ordered



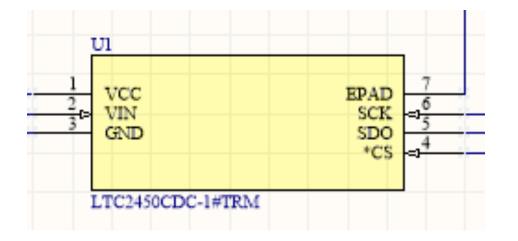
ADS Photodiode Board (x4)

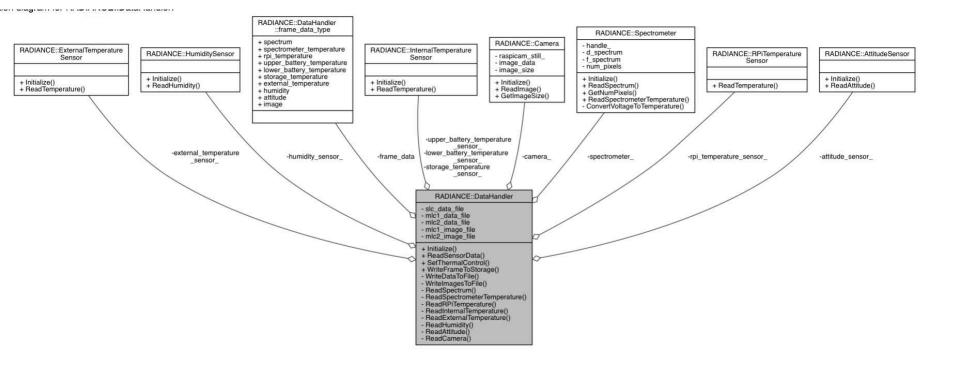

- PDB-C160SM photodiode
 - Purchased
 - Produces ~250 μA in full sunlight
- OPA857IRGTT
 transimpedance
 amplifier
 - 5K feedback resistance

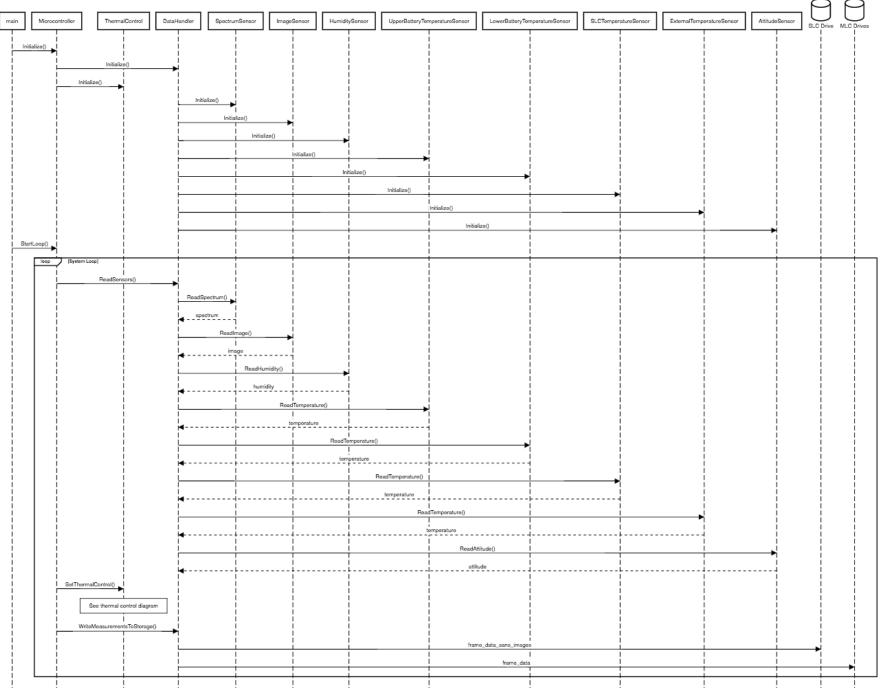





- Voltage divider to provide 3.3V and GND to all photodiode boards
- Transimpedance amplifiers on photodiode boards output to ADCs (PD1-4)







- 16 bit SPI ADC (x4)
- Shared SCK, SDO
- CS selects photodiode being measured
- Supply voltage 5V, VIN from photodiodes

RADIANCE Software Sequence

37

Data file example

Measurement file:

0008030: 74b0 a844 bfc1 a844 0cd3 a844 59e4 a844 t..D...DY..D 0008040: a4f5 a844 f006 a944 3b18 a944 8629 a944 ...D...D;..D.).D 0008050: d03a a944 1b4c a944 5335 0742 b81e 2342 ...D.L.DS5.B..#B 0008060: cdcc cc3d cdcc cc3d cdcc cc3d cdcc cc3d ...=...= 0008070: cdcc cc3d cdcc cc3d ...=...= ...= >> import struct >>> import struct >>> struct.unpack('f', '\x53\x35\x07\x42')

(33.80207443237305,)

Error Handling

- Pi configuration safety checks:
 - Start the RADIANCE executable on every startup
 - Restart the Pi if the RADIANCE software is not running
 - Enable the internal (hardware) watchdog timer
- RADIANCE software safety checks:
 - On exception(null pointer) restart the Pi

Thermal Updates Since CDR

> Mesh independence study has been run

- > Study shows mesh is independent
- > Temperature spikes may exist
- > Average temperatures are accurate

Videos of different ascent profiles are complete!

- > Heaters are important for operational temperatures
- Not needed for survival temperatures
- https://www.youtube.com/watch?v=dXv1SI_j354
- https://www.youtube.com/watch?v=S_LX7o7dVY4

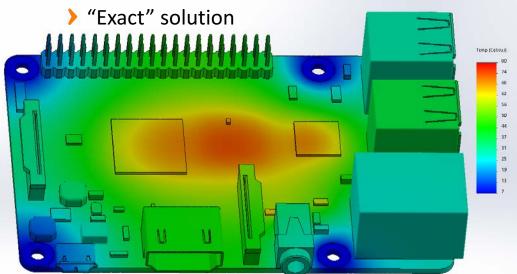
Thermal To Do

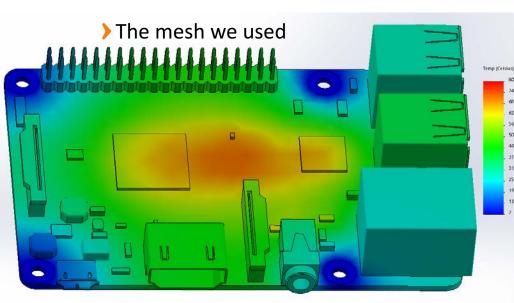
Run full length simulations in Thermal Desktop

- > SolidWorks can't handle full length assembly simulations
- > Too many elements
- > Thermal Desktop uses finite difference rather than finite element

Get access to Janus

> May be able to run SolidWorks simulations on Janus

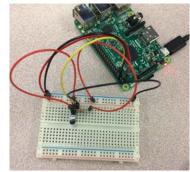

Mesh Independence Study


> Finer mesh shows higher temps

- Average temperatures similar
- Adds margin in our favor

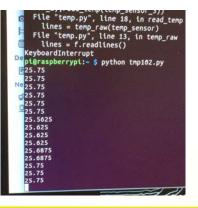
Larger study showed same results

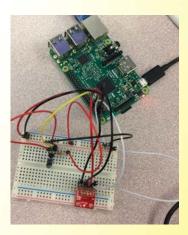
Data lost due to unforeseen circumstances



Temperature Sensor Status

DS18B20 One Wire Temperature Sensors

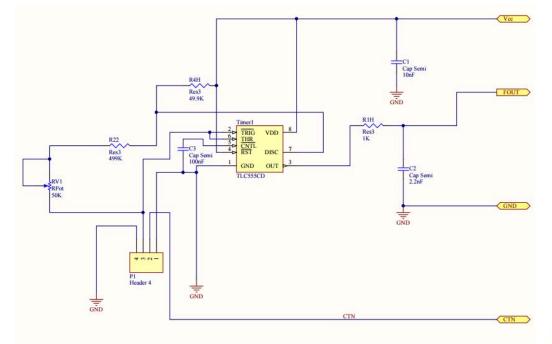

Receiving readings from all sensors on single pin



File "	temp.p s = te	у", 1 Пр. га	line 18 aw(temp	, 1	n rea	d_t	emp	
			line 13			D Fa	aw al	
° lin	s = f.	read	lines()					
Keyboar	Intern	upt						
pi@rasp	errypi	:- 5	sudo n	ano	tmp16	12.p	y	
e pi@rasp	perrypt	\$	python	te	mp.py			
Sensor	1: 25.3	25 C,	Sensor	2:	25.31		Sensor 3: 25	
							Sensor 3: 25	
Sensor	1: 25.	25 C,	Sensor	2:	25.31	с,	Sensor 3: 25	.44 C
Sensor	1: 25.	31 C,	Sensor	2:	25.38	с,	Sensor 3: 25.	50 C
Sensor	1: 25.	31 C,	Sensor	2:	25.38	с,	Sensor 3: 25.	50 C
Sensor	1: 25.	38 C,	Sensor	2:	25.38	с,	Sensor 3: 25.	50 C
Sensor	1: 25.	38 C,	Sensor	2:	25.44	5.	Sensor 3: 25.	
Sensor	1: 25.	56 C,	Sensor	21	25.09	2	Sensor 3: 25.	
Sensor	1: 25.	69 C,	Sensor	-	25.04	2	Sensor 3: 26.0 Sensor 3: 26.1	2 C
Sensor	1: 25.	88 L,	Sensor	5.	26.86	č.	Sensor 3: 26.1	2 C
Sensor	1: 25.	00 C,	Sensor	2:	26.12	c, 1	Sensor 3: 26.1	9 C

>TMP102 I2C Temperature Sensor

Receiving readings



Humidity Sensor Status

- Circuit designed
- > Part received
- Awaiting PCB to begin testing

Spectrometer Status

- Received from manufacturer
- > Fits inside enclosure
- Fiber cable provided is different than test unit
 - Does not fit in current structural design
 - Getting replacement from manufacturer
- Not yet calibrated

Visible Range Camera Status

>All parts received

Tests on

Ability to receive images from cameraAccuracy of new lens

Lens fits inside structure

