

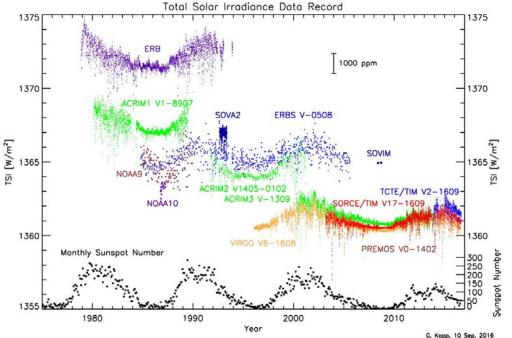
A 3U CubeSat Prototype to Measure Solar Irradiance

Spring Final Review, May 4, 2017

Team: Brandon Antoniak, Russell Bjella, Katelyn Dudley, Alec Fiala, Jennifer Kampmeier, Jeremy Muesing, David Varley, Lance Walton, James Pavek

Advisor: Dr. Robert A. Marshall

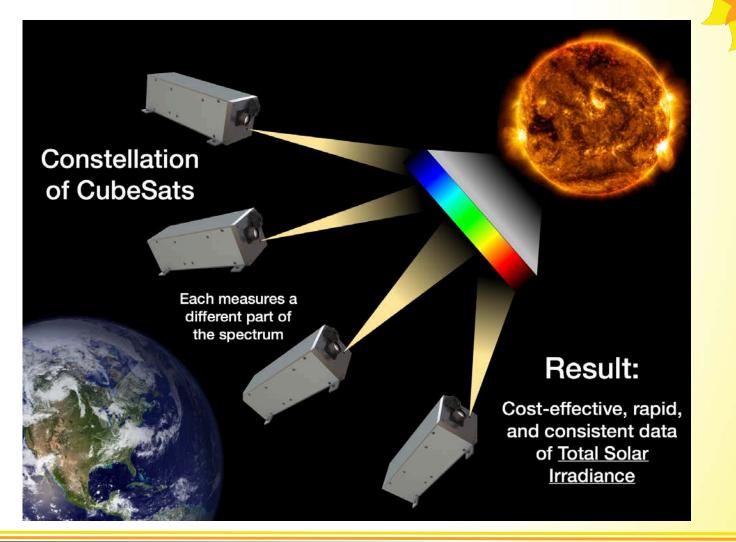
Customer: Dr. Scott Sewell, HAO


Ann and H.J. Smead Aerospace Engineering Sciences

Outline

Purpose and Objectives	Jenny	5%
Design Description	Lance	15%
Test Overview	Katie	15%
Test Results	Brandon, Katie	45%
Systems Engineering	Alec	10%
Project Management	Jenny	10%

Project Motivation


Solar irradiance data is plentiful, but...

- The record has gaps
- Datasets vary between different instruments
- Full-scale space missions are costly and time-consuming

Are these variations real? How does it inform climate science?

Project Future

Purpose & Objectives

Design Overview

Test Overvie<u>w</u>

lest Results Systems Engineering Project Management

4

Project Description

Mission Statement

RADIANCE is a 3U CubeSat-style payload that will collect solar irradiance data, images, attitude information, and ambient atmospheric data during a 2-week circumpolar high-altitude balloon flight.

The mission will launch from Antarctica between November 2017 and February 2018.

Project Statement

RADIANCE will design, build, test, and deliver a 3U CubeSat-style payload to collect solar irradiance data, images, attitude information, and ambient atmospheric data on a high-altitude balloon flight.

HiWind Gondola & Flight

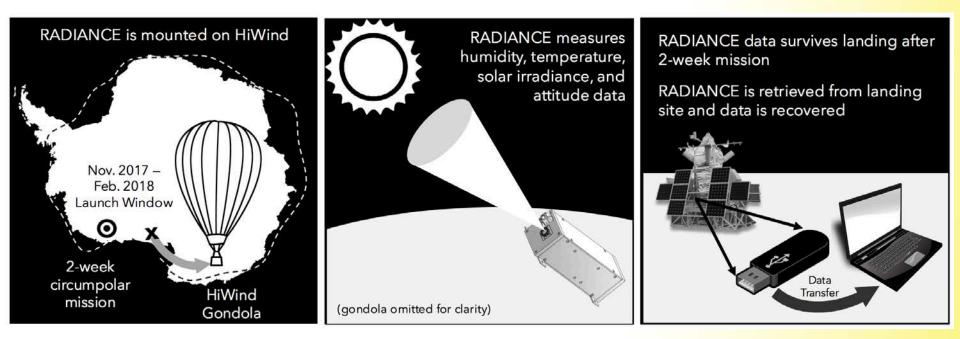
Mission:

- Ground: 8 hours
- Ascent: 2 hours
- Flight: 2 weeks
- Descent: 1 hour

Gondola:
4.5 m wide
5.0 m tall
2000 kg

Purpose & Objectives

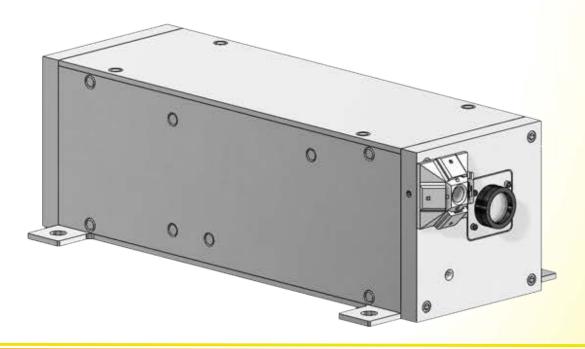
Design Overview


lest Overview

Results

Systems Engineering Project Management

Concept of Operations



Project-Level ConOps

Power Up

Using external power source equivalent to 15 W of expected HiWind power

Purpose & Objectives

Design Overview

lest Overview lest Results Systems Engineering Project Management

Levels of Success

System	Level Met	Details
		Take solar irradiance measurements at better than 1.5nm resolution covering 250-1000nm
Instr.	3	Capture 1 photo/min of the Sun for full flight
		Provide calibration of the instrument
C&DH	3	Record solar irradiance, attitude, environmental, and housekeeping data on a durable data storage device with sufficient capacity
Thermal	1	All systems survive ascent and descent, all systems operate during the cruise

Purpose & Objectives

Design Overview

Test Overview

Systems Engineering Project Management

9

Levels of Success

System	Level Met	Details	
ADS	2	Determine and record attitude to 1 arcminute of accuracy relative to the sun vector	
AD3	1	Determine and record attitude to 1° of accuracy relative to the sun vector	
EPDS	1	Package operates on HiWind power supply	
Structure	1	Structure must be within 10cm x 10cm x 32cm Data is recoverable after up to 5 Gs on landing	
		Structure can be affixed to HiWind	

Functional Requirements

RADIANCE shall...

- FR1: Take solar irradiance measurements.
- FR2: Survive the environmental conditions of a high-altitude balloon flight up to 40 km.
- FR3: Return data.
- FR4: Determine its attitude.
- FR5: Interface with the HiWind Gondola.
- FR6: Capture images of the Sun in the visible spectrum.

The project deliverables shall include a Path-to-Space report.

Executive Summary

Parameter	Overall Values	Req.
Dimensions	31.81 cm x 15.1 cm x 10 cm	DR5.1
Mass	$3.0 \pm 0.05 \text{ kg}$	—
Power	3.2 to 19.6 W usage, ~3.2 W average at cruise	DR5.4
Thermal	-3 to 60°C internally, spot-heated in critical places	FR2

Purpose &DesignTestSystemsProjectObjectivesOverviewOverviewResultsEngineeringManagement

Complete Assembly

Purpose & Objectives

Design Overview

Test Overview

lest esults Systems Engineering

Project Management

14

> Internal structure attached to external struts with screws

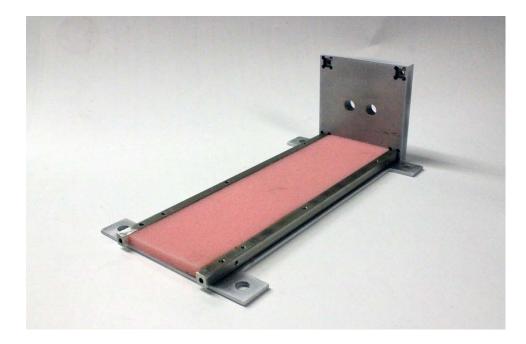
Attachment points to HiWind

Purpose & Objectives

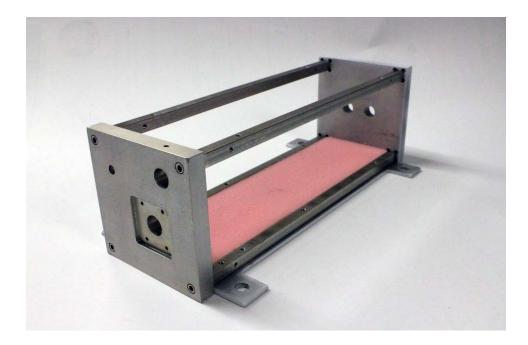
Design Overview

Overview

Results


Systems Engineering

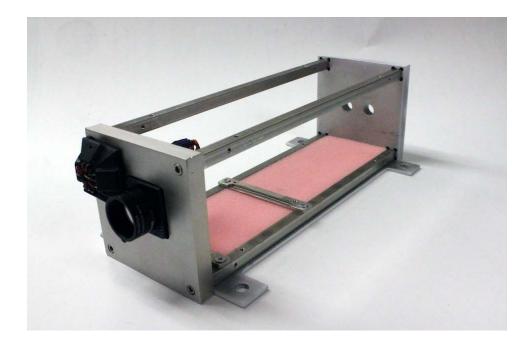
Project Management

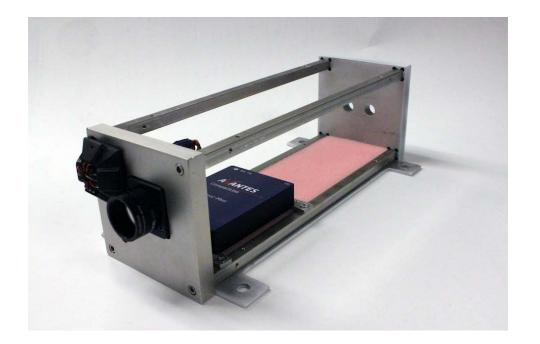

16



Photodiode array and circuit board for attitude determination

> 4 photodiodes offset at 45° to determine off-sun angle to ≤ 1°

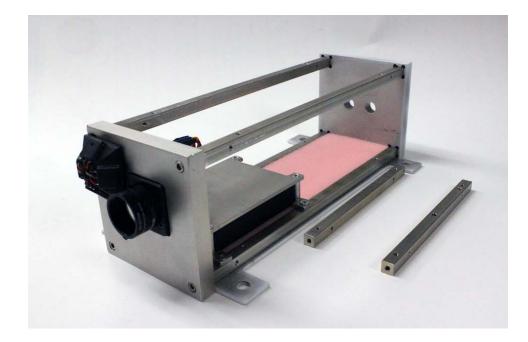


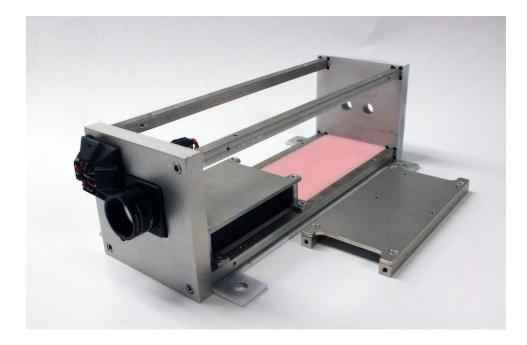


 Camera assembly, including:

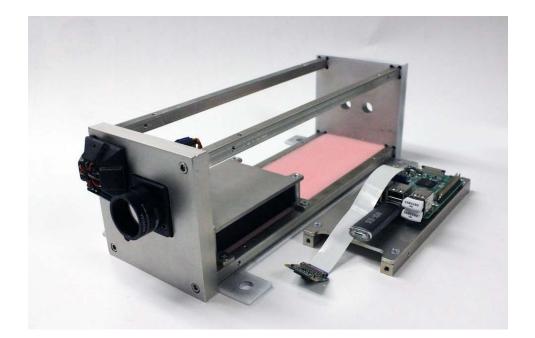
 Raspberry Pi Camera
 Adjustable focus lens and mounting
 Double-layer neutral density filter






Spectrometer and fiber optic cable from Avantes

	Req.	Solution
Resolution	≤ 1.5 nm	1.4 nm
Wavelength	250-1000 nm	200-1100 nm
Cost	~\$3000	\$2946
Size	Must fit	90x68x20 mm
Power	< 3W	1.25 W
Interface	RPi required	RPi capable



Raspberry Pi microcontroller

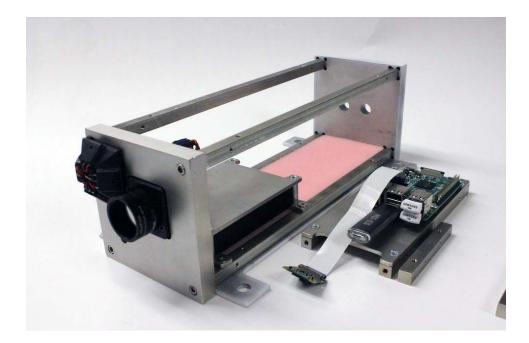
	Req.	Solution
Size	Must fit	85x56x17 mm
Cost	< \$100	\$36
Versatility	High	COTS
Interface	RPi needed	RPi capable

Purpose &DesignTestTestSystemsObjectivesOverviewOverviewResultsEngineering

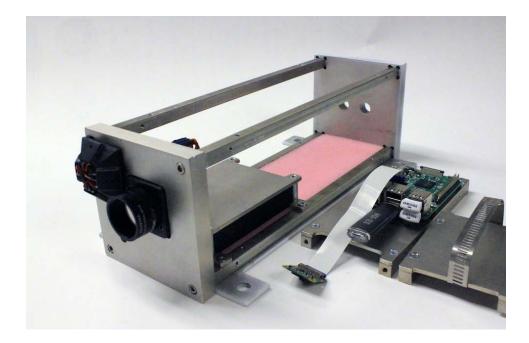
Three USB storage devices:

- 1 single-level cell (SLC) drive
- 2 multi-level cell (MLC) drives

Purpose & Objectives


Design Overview

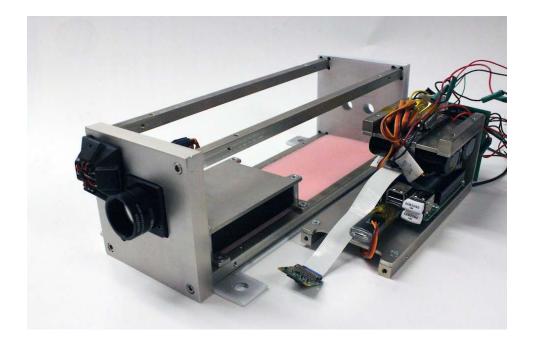

Test Overview


lest Results Systems Engineering

Project Management

31


Two Lithium Ion batteries Needed to power active thermal system


Objectives

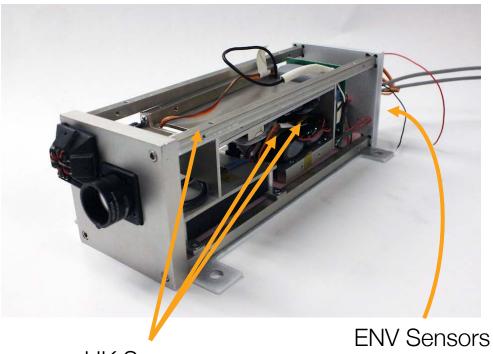
Design Overview

Test Overview

Iest Results Systems Engineering Project Management

Custom power board for control and distribution

Purpose & Objectives


Design Overview

Test Overview

Test Results Systems Engineering Project Management

36

> External sensors (temperature, relative humidity) for atmospheric measurements

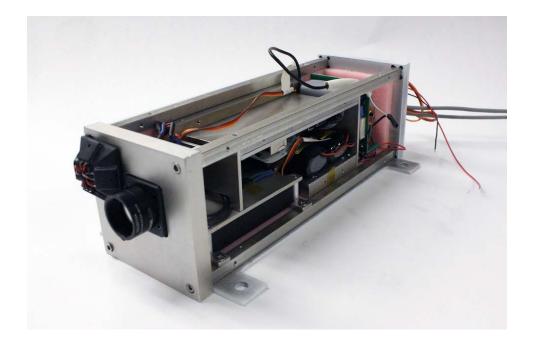
Internal temperature sensors for active thermal monitoring

HK Sensors

(On Back)

Purpose & Objectives

Design Overview


Overview

Results

Systems Engineering

Project Management

Polyurethane foam insulation

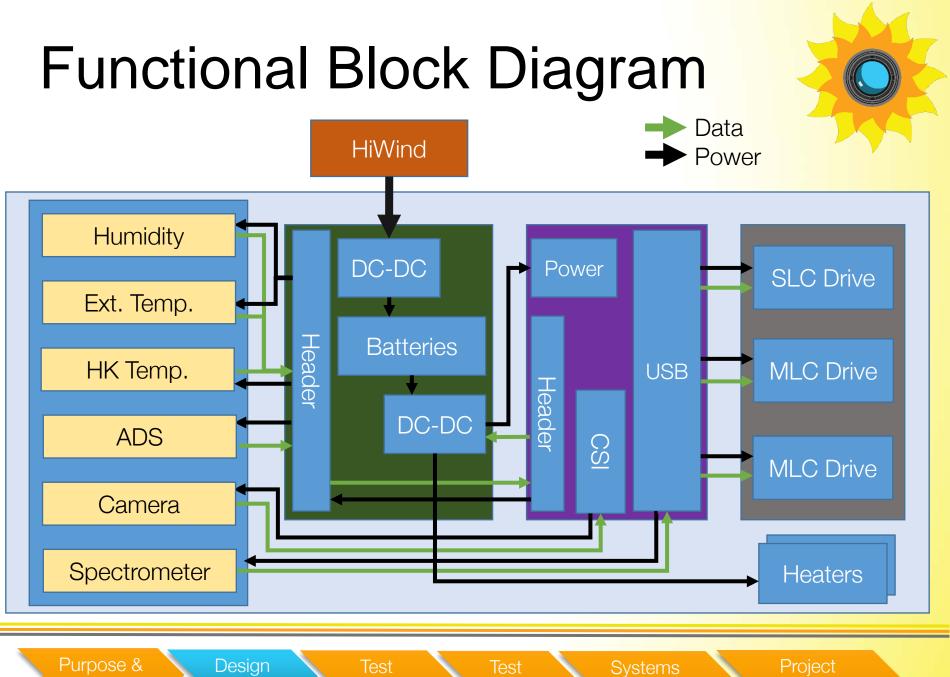

Thin film resistive heaters for active thermal control

Purpose & Objectives

Design Overview

Test Overview Test Results Systems Engineering

Project Management



Results

Engineering

Objectives

Overview

Overview

42

Management

Changes Since TRR

Power board

Purpose &

Objectives

- > Updated wiring during integration
- Changed some resistor values to handle more current
- Camera FOV reduced to ~1.57° from original 6.32°
- Timing loop has changed

Design

Overview

Overview

Neutral density filter values adjusted from qualitative assessment of camera images

Results

Project

Management

43

Systems

Engineering

Critical Project Elements

CPE	Justification	FR
Thermal Control	All components must meet thermal requirements	2
Power	Power board design is complex	5
Software	Efficient software design is critical to mission success	3
Camera, Lens	Challenging assembly to ensure in-focus images	6
Attitude Determination	Complex design, small parts, challenging hardware/software interface	4

No changes since MSR or TRR.

Purpose & Objectives

Design Overview

Overview

Results

Systems Engineering

Test Overview

Component Testing

Component Testing Subsystem Testing Integration Testing

Purpose:

Verify components turn on
Verify measurements are reasonable
Compare with expected performance from data sheet
Investigate need for calibration (and

perform calibration)

Component Testing

Component Testing

Subsystem Testing

Integration Testing

Purpose:

Purpose &

Objectives

Verify and integrate operation of subsystems

Verify interaction between software and hardware

Validate CAD model and attitude determination model

> Design Test Test Overview Overview Results

Component Testing

Component Testing

Subsystem Testing

Integration Testing

Purpose:

Verify and demonstrate integrated operation of full system

Validate SolidWorks thermal, C&DH storage capacity, and timing models

Attitude Test Overview

Test:	Verify resolution of attitude determination measurements	
Why?	FR4 requires $\leq 1^{\circ}$ accuracy	
How?	 Mount system to telescope Track the sun Turn off tracking software Allow ADS to measure drift angle 	
Resource	Sommers Bausch Observatory	

Purpose & Objectives

Design Overview

Overview

IESI Roculte Systems Engineering

TVAC Test Overview

Test:	Validate thermal model during cruise conditions	
Why?	System must survive the environmental conditions of flight.	
How?	 Allow chamber to reach desired temperature Power on system Pump down to ~200 Pa Allow system to reach thermal equilibrium 	
Resource	TVAC Chamber at HAO	

Purpose & Objectives

Design Overview Test Overview

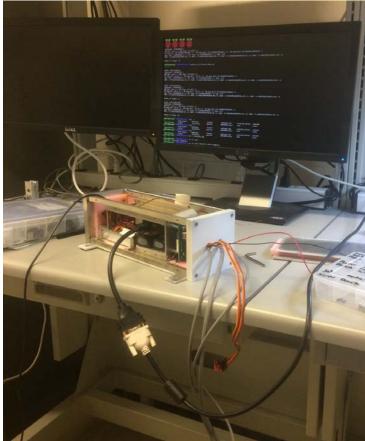
lest Results Systems Engineering

Environmental Chamber

Test:	Validate thermal model during ascent conditions
Why?	Want the system to operate during the environmental conditions of ascent.
How?	 System rests for one hour at pre-launch ground temperature (-10°C) Expose system thermal ascent profile Record voltage and temperature data
Resource	Environmental chamber in Bioastronautics Lab (CU)

Purpose & Objectives

Test Overview


Doculto

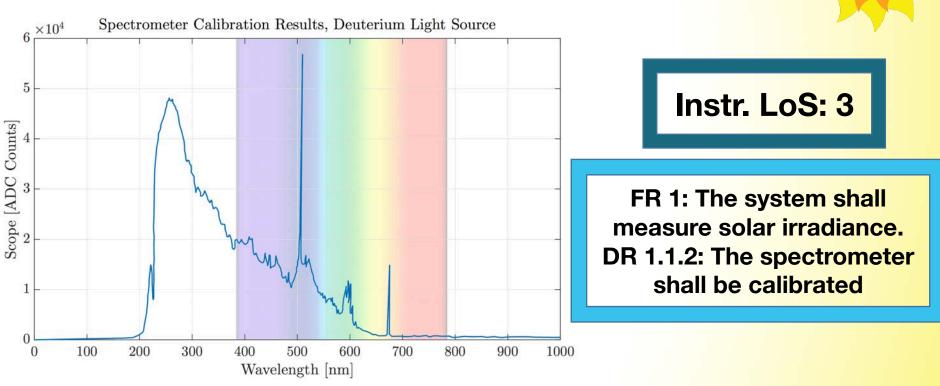
Systems Engineering

Benchtop Test Overview

Test:	Validate benchtop thermal model	
Why?	Gives confidence to other thermal models not tested due to TVAC issues.	
How?	 Assemble system with side panels Power on system Allow to run for 2 hours Record temperature and voltage data 	
Resource	Trudy Schwartz's Lab	

Purpose & Objectives

Design Overview Test Overview


lest Results Systems Engineering Project Management

Test Results: Component Tests

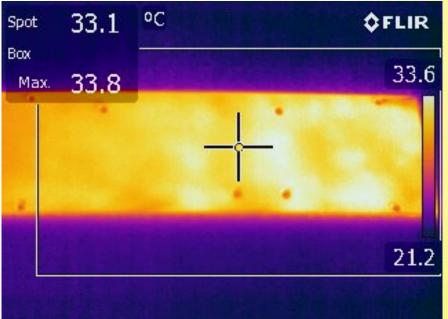
Spectrometer Calibration

>Avantes Deuterium light source

Calibration stored on spectrometer

Purpose & Objectives

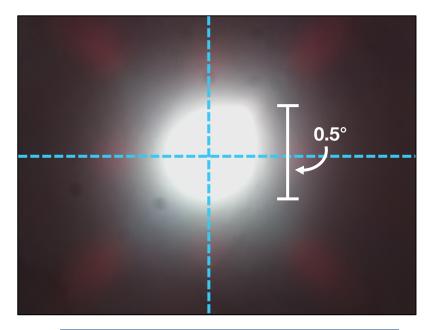
Design Overview

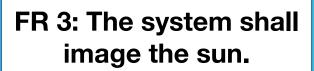

Overview

Test Results Systems Engineering

Emissive Coating Verification

Thermal camera used Goal is $\epsilon = 0.85$ $P = \epsilon \sigma A T^4$ $\epsilon_{cam} (T_{cam})^4 = \epsilon_{actual} (T_{actual})^4$ $\frac{\epsilon_{hot}}{\epsilon_{cold}} = \frac{(T_{cold})^4}{(T_{hot})^4}$


Actual Emissivity $\epsilon = 0.80 \pm 0.07$

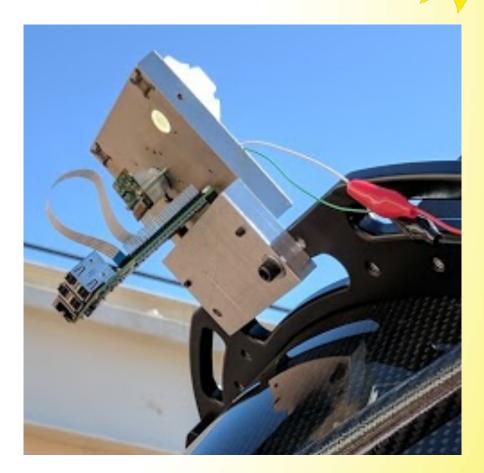


Iest Overview Test Results Systems Engineering

Camera Images

Instr. LoS: 3

Camera FOV			
Expected	Actual	Req.	
1.21°	~1.57°	< 10°	

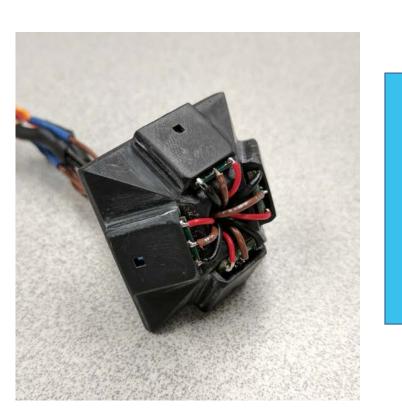

Purpose & Objectives

Design Overview

Iest Overview Test Results Systems Engineering Project Management

Preliminary Photodiode Array

- First photodiode tests in sun gave photocurrents on order of 2.5 mA
- Changed transimpedance amp to 1 kΩ instead of 5 kΩ feedback resistance
 - Prevent saturating the ADCs



Purpose & Objectives

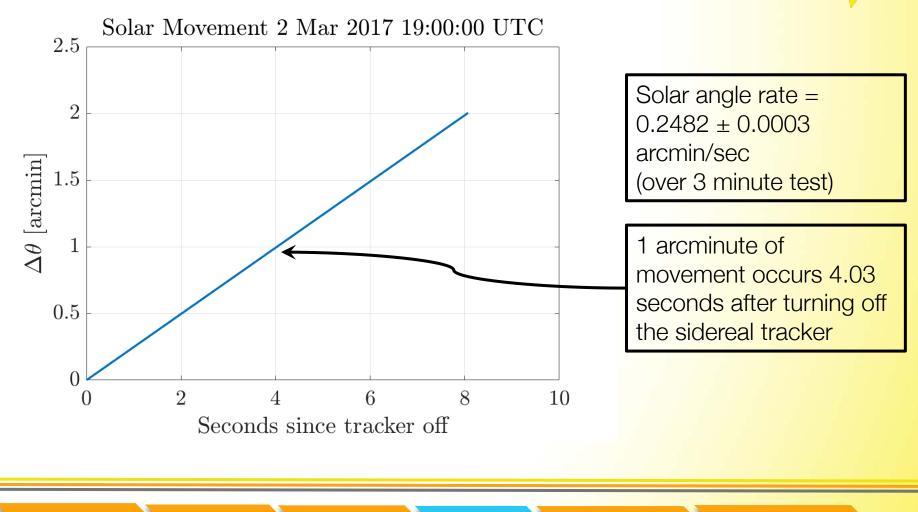
Design Overvi<u>ew</u>

lest Overview Test Results Systems Engineering Project Management

Attitude Determination Test

Design

Overview


FR 4: The system shall determine its attitude. DR 4.1: The off-sun angle shall be determined to better than one degree of accuracy.

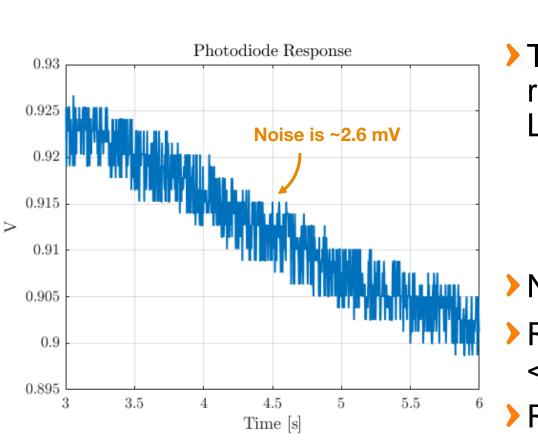
Attitude LoS: TBD

Purpose & Objectives

Test Overview Test Results Systems Engineering Project Management

Attitude Determination: Model

Purpose & Objectives


Design Overview

Iest Overview

Results

Systems Engineering

ADS Noise Requirement

- Tested photodiode response with handheld LED light source
 - Shaky hands
 - LED not as powerful at red wavelengths as the sun
- Noise is ~2.6 mV
- Required for 1° accuracy: < 32.6 mV</p>
- Required for 1' accuracy: < 0.5 mV</p>

Purpose & Objectives

Design Overview

Overview

Test Results

Attitude Determination: Expected Results

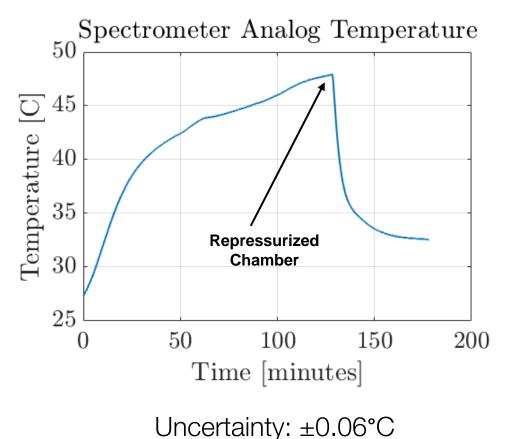
Full test occurred week of April 24th
 Results discussed during presentation

Test Results: Integration

TVAC: Model

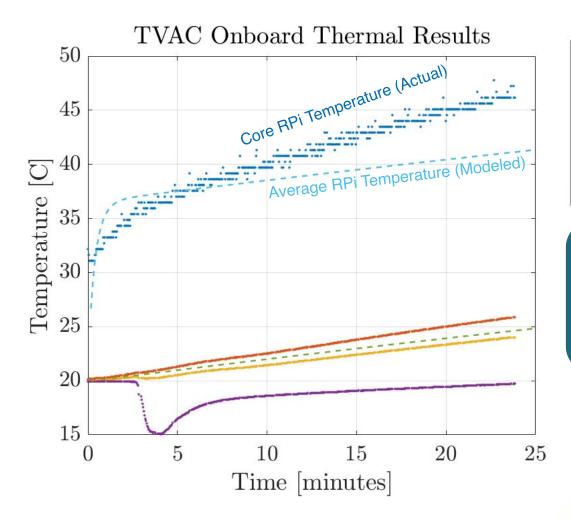
SolidWorks transient simulation

Assume convection coefficient = 0 for vacuum


Actual radiative coating emissivity from IR analysis

Property	Value
Convection Coefficient	0
Radiation Temperature	18°C
Conduction Temperature	18°C
Radiative Coating Emissivity	0.80

TVAC: Spectrometer Analog



- Started simultaneously with RADIANCE onboard systems
- Captured data through entire test
- Data questionable due to proximity to heater

TVAC: Results

- Raspberry Pi
- Battery 1
- Battery 2
- Environment
- --Modeled Batteries
- ---Modeled Pi

Due to software bug, error handling failed → 25 minutes of data

Uncertainties: Raspberry Pi: ± 2°C Batteries: ± 0.06°C

Purpose & Objectives

Design Overview

Iest Overview Test Results Systems Engineering Project Management

TVAC: Conclusions

- Transient solutions for components actively producing heat are questionable
- Models for components not actively producing heat are supported by current test data

Test

Results

Overview

- Longer tests are needed to validate transient models.
- Current test data encourages confidence in transient models

Design

Overview

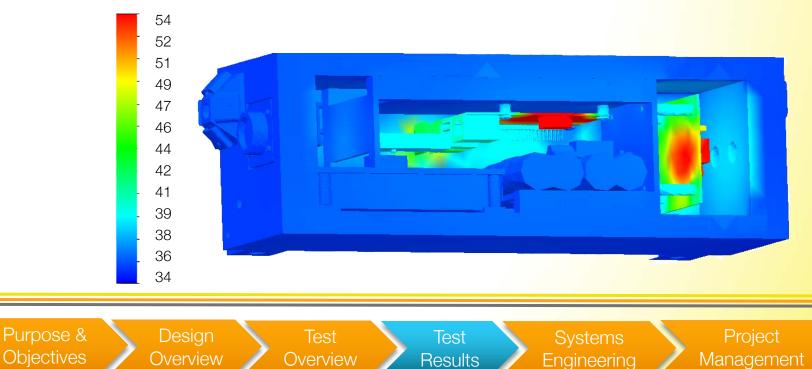
FR2: The system shall survive the environmental conditions of flight DR 2.4 The system shall survive the pressure range from 200 Pa to 100 kPa

Systems

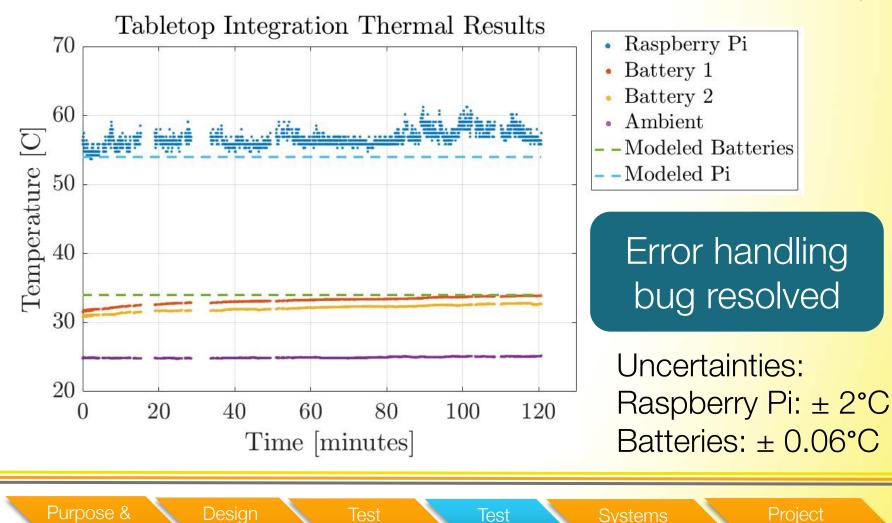
Engineering

Purpose & Objectives

66


Project

Management


Benchtop Thermal: Model

- SolidWorks steady state simulation
- > Convection coefficient = 4.4
 - From basic principles MATLAB model Temp (°C)
- Radiation and convection temperatures = 25°C
- > Actual radiative coating emissivity from IR analysis $\epsilon = .80$

Benchtop Thermal: Results

Results

Engineering

Overview

Objectives

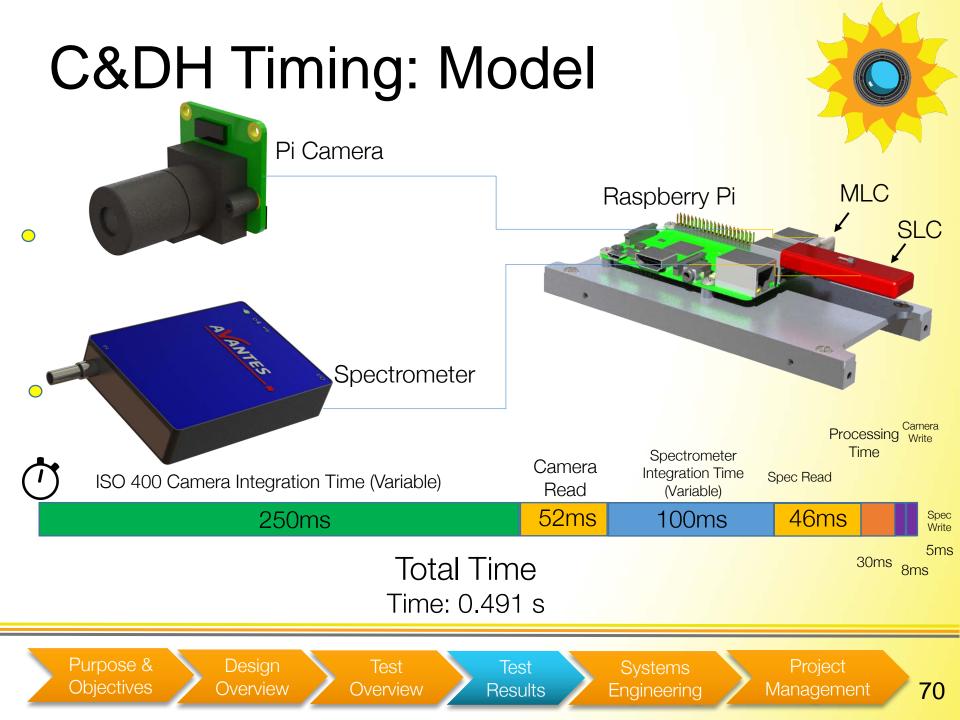
Overview

Management

Benchtop Thermal: Results

- Models for atmospheric steady state are supported by current test results
- Raspberry Pi likely will always run hotter than model due to CPU proximity to temperature sensor
- Testing at vacuum is needed to validate vacuum steady state models.
- Current test data encourages confidence in transient models

FR2: The system shall survive the environmental conditions of flight.


Purpose & Objectives

Design Overview

Iest Overview

Systems Engineering

C&DH Timing: Results

Item	Time
Spectrometer Integration Time	1.05 ms
Spectrometer Read Time	5 ms
Camera Integration Time	250 ms
Camera Read Time	950 ms
1Wire Internal Temperature Sensors	2.5 s
Remaining Sensors	<1 ms
Write to Storage	1 ms
	me (without Camera) me: 2.6 s ± 30 ms

Test

Results

Engineering

Overview

Objectives

Design

Overview

Management

Project

C&DH Timing: Conclusions Actual Item Model Req. Science Data 1 s $2.6 \, s$ 60 s Cadence Science Data 2s13 ms 1 ms Lag Camera Image Data LoS: 3 60 s 60 s 60 s Cadence

FR 3: The system shall return data. DR 3.1.1 Science data shall be recorded once per minute. DR 3.1.2 Science instrument measurements shall be recorded within 2 seconds.

Test

Results

DR 3.1.3 Camera images shall be recorded once per minute.

Overview

Purpose & Objectives

Design

Overview

 \angle

Systems

Engineering

Project

Management

C&DH Capacity

Measurement	Model Total	Actual Total
Spectrometer	9.25 GB	3.63 GB
External temperature	4.6 MB	1.8 MB
Internal temperature	27.7 MB	5.3 MB
Humidity	4.6 MB	1.8 MB
Photodiode (x4)	36.9 MB	7.1 MB
Sun angle	4.6 MB	0 B
Total	9.4 GB	3.65 GB

Measurement	Model Total	Actual Total
Camera images	17.7 GB	3.63 GB
Other Data	9.4 GB	3.65 GB
Total	27.1 GB	7.28 GB

SLC Flash Drive

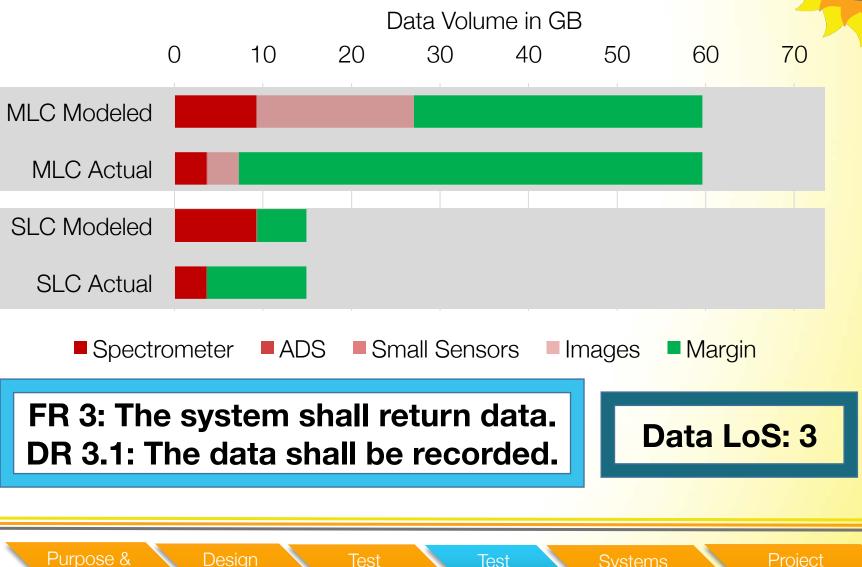
14.9 GB Capacity Modeled Margin: 37% Actual Margin: 76%

MLC Flash Drive (2)

59.6 GB Capacity Modeled Margin: 55% Actual Margin: 88%

Overall mission capacity uncertainty: ±10.7%

Purpose & Objectives


Design Overview

Overview

Results

Systems Engineering

C&DH Capacity: Conclusions

Overview

Objectives

Overview

Test

Results

Systems

Engineering

74

Project

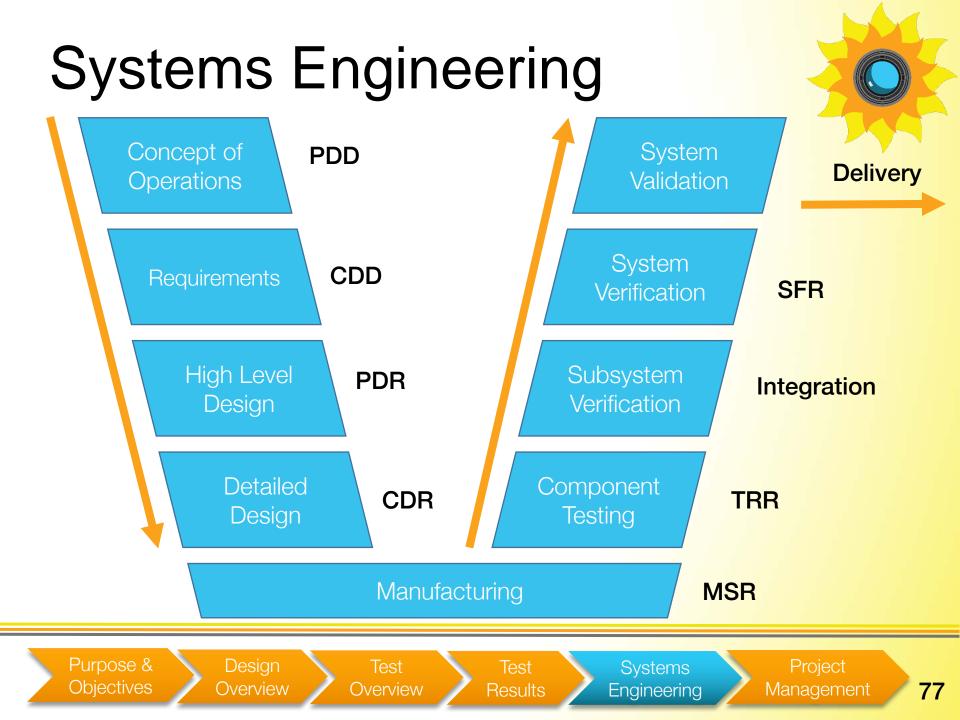
Management

Power Budget: Model & Results				
Component	Modeled Power Draw	Power LoS: 1		
Raspberry Pi	4.25 W			
Spectrometer	1.25 W	Measured Total		
Camera	0.7 W	Power Draw:		
Small Sensors	0.1 W	3.2 ± 0.5 W		
Flash Drives	1.4 W			
Total (Cruise)	7.7 W			
HiWind Power	15 W			

Purpose & Objectives

Design Overview

Overview


Results

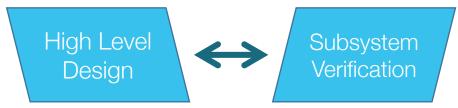
Systems Engineering

Systems Engineering

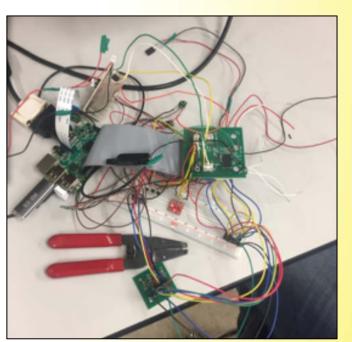
Component Test Mapping Component Detailed Testing Design Relate individual components to CDR level design and sub requirements > Verify functionality of aspects such as ENV and HK sensors Lessons Learned: Components still require integration > Easy for issues to push schedule

Purpose & Objectives

Overview


Design

Overview


Results

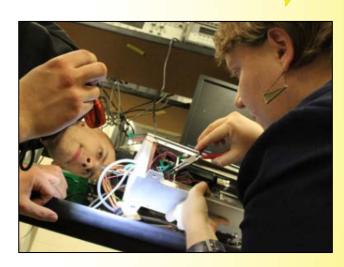
Systems Engineering

Subsystem Integration

- Test functionality of system subsets
- Verify PDR level design aspects

Lessons Learned:

> Wire design and harnessing is crucial


System Integration

Requirements

System Verification

Requirement	Completion
Solar irradiance	4/4 Verified
Environmental conditions	3/6 Verified
Data	2/2 Verified
Attitude	0/2 Verified
Interface	6/6 Verified
Imaging	3/3 Verified

Lessons Learned:
Most issues occurred during this phase
Budget time and money to fix issues that come up

Purpose & Objectives

Design Overview

Overview

Results

Systems Engineering

Requirements: Solar Irradiance

Verified

1.1: Spectrometer derived requirements
250 to 1000 nm, < 1.5 nm resolution, calibrated
1.2: Environmental sensor derived requirements
Measure temperature and humidity once per minute

To be verified:

>None!

Requirements: Environment

Verified

2.4: Humidity of 5% to 90%
2.5: Pressure of 0.20 kPa to 100 kPa
2.6: Resist radiation effects

Overview

Results

To be verified:

2.1: Ground temperatures
2.2: Ascent temperatures
2.3: Cruise temperatures

Design

Overview

Purpose &

Objectives

To be verified in environmental testing by HAO

Project

Management

Systems

Engineering

82

Requirements: Data

Verified

- 3.1: Data storage rate of once per minute and derived requirements
- >3.2: Data storage survives landing

To be verified:

Overview

Results

Systems.

Engineering

Project

Management

83

>None!

Purpose &

Objectives

Design

Overview

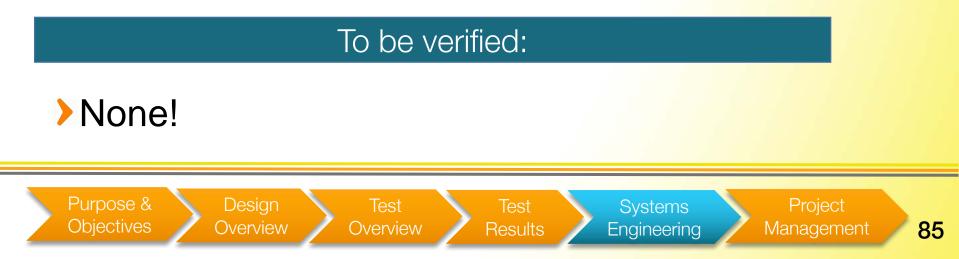
Requirements: Attitude

TBD

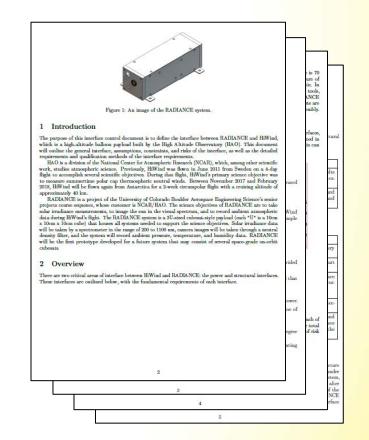
Verified

To be verified in SBO testing

To be verified:


4.1: Accuracy within one arcminute 4.2: Data storage rate of once per minute

Requirements: Interface


Verified

5.1: Dimensions of 32 cm x 10 cm x 10 cm
5.2: Sun facing plate is the 10 cm x 10 cm
5.3: Power interface and derived requirements > 15 W at 28-33 V
5.4: ICD compliance

ICD

- Created ICD for HiWind/RADIANCE Integration
- Defines structural, electrical interfaces
- Defines interface associated risks

Purpose & Objectives

Design Overview

Test Overview

Results

Systems Engineering

Requirements: Imaging

Verified

- 6.1: Image storage on drives
- >5.2: Field of view of $5^{\circ} \pm 3^{\circ}$
- >5.3: Image cadence of once per minute

To be verified:

>None!

Projects Risk Matrix – Post CDR

Likeli	Consequences					
Likelihood	Risks easily mitigated	1 FR Failed	2-3 FRs Failed	3-4 FRs Failed	5-6 FRs Failed	
Certain	1					5
Likely						4
Moderate	1					3
Unlikely		4				2
Rare	1	4	1		1	1
	1	2	3	4	5	

Purpose & Objectives

Design Overview

Overview

Results

Systems Engineering

Risk Status

Element	Value	Test	Current Status
Overheating	5	TVAC	Thermal Model Validated
Frost on optics	5	Acceptable Risk	
Heater failure	3	TVAC	No recorded failure
Drive hardware failure	4	Acceptable Risk	
Temporary power failure	3	Flatsat	Mitigated with batteries in
Software data write failure	2	Flatsat	Flatsat testing
Bit flip	2	Acceptable risk	
Drive connection failure	2	Acceptable risk	
Camera Oversaturation	2	SBO	Image taken
Pi Software failure	1	Flatsat	Pi restarts as expected

Purpose & Objectives

Design Overview

Iest Overview

Systems Engineering

Risk Summary

Changes to risks

Increased risk of heater failure in vacuum

QB50 team encountered issues, including recommended heater in path to space

Additional Risks

- Improper power cycling may cause SD card corruption
- Few software risks identified by CDR (mitigated during testing)
- Scheduling risks

Management Approach

Project

Managem<u>ent</u>

92

Systems

Engineering

Proactive efforts to build a positive, supportive team environment

- Encouraged discussion from the start to work towards solutions
- Every team member's contribution is valuable and their perspective is valid

Results

"Leadership Through Service"

Overview

Purpose &

Objectives

Design

Overview

Success and Challenges

Project

Management

93

Systems

Engineering

- Success: We all still like each other
- Success: Peer Reviews
- Challenge: Time management with other obligations (work, courses, etc.)
 - Needs of the project vs. needs of the team

Results

Sometimes it felt like...

Overview

Design

Overview

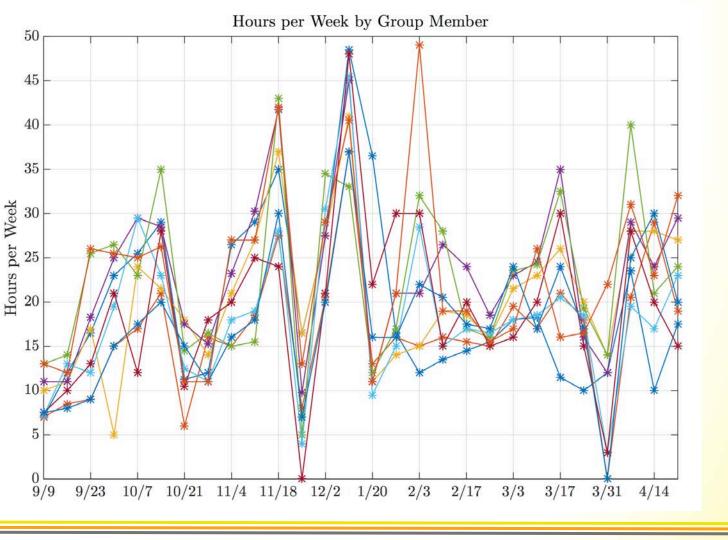
Purpose &

Objectives

Success and Challenges

Purpose &
ObjectivesDesign
OverviewTest
OverviewSystems
ResultsProject
Management94

Lessons Learned


 Diverse project led to scattered focus at times -> important to be aware of this
 80/20 rule

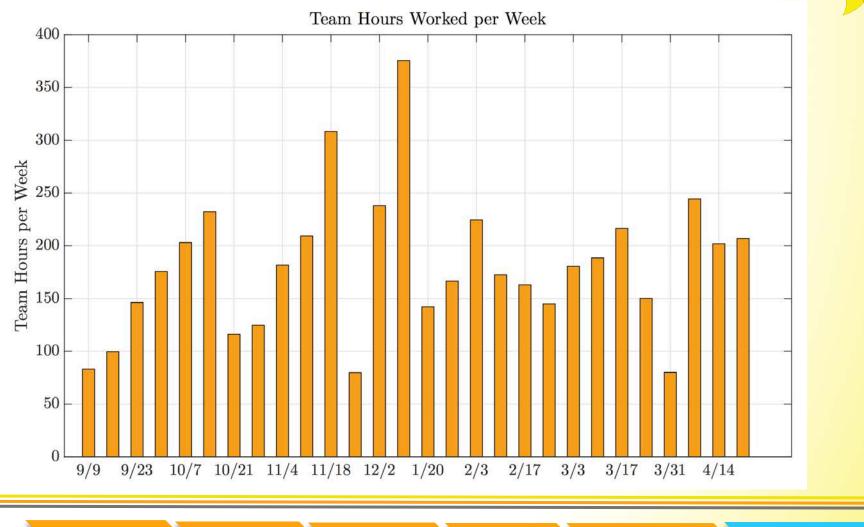
Balance between when to go for the extra 20% and when to let it go

Need to balance burn-out with productivity

Individual Hours Worked

Purpose & Objectives

Design Overview


Overview

Results

Systems Engineering Project Management

96

Team Hours Worked

Purpose & Objectives

Design Overview

Overview

Results

Systems Engineering

Hours per Person per Week

Hours per Person per Week

Purpose & Objectives

Design Overview

Overview

Results

Systems Engineering

Budget

Subsystem	Projected Cost	Procured	To be Procured	Margin (%)	Effect on Budget
C&DH	\$ 167	\$ 149	_	—	+\$ 18
Sensors	\$ 203	\$ 127	_	—	+\$ 76
Instrumentation	\$2988	\$3052	_	—	-\$ 64
Power	\$ 662	\$ 615	\$ 39	\$ 8	-\$ 50
PM	\$ 84	\$ 49	_	—	+\$ 35
Structure	\$ 418	\$ 223	\$ 4	\$ 6	+\$185
Testing	\$ 250	\$ 77	\$ 16	\$ 157	—
Thermal	\$ 66	\$ 36	_	—	+\$ 30
TOTAL	\$4613	\$4327	\$ 59	\$ 171 (290%)	+\$230

Purpose & Objectives

Design Overview

Overview

Iest

Systems Engineering Project Management

99

Equivalent Industry Cost

Cost

\$

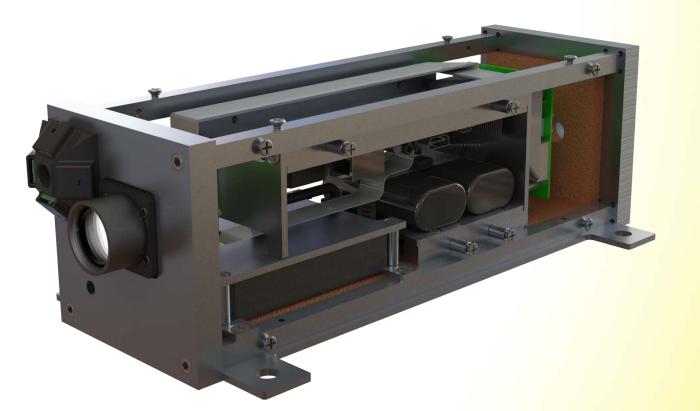
\$157,997

\$478,991

5,000

200%

Estimate	Cost	Billable Item
CDR Estimate	\$4920	5056 Hours
MSR Estimate	\$4634	Materials
TRR Estimate	\$4613	Overhead
SFR Estimate	\$4613	"Industry Cost"


Acknowledgements

- Scott Sewell and Phil Oakley, HAO/NCAR
- Trudy Schwartz, CU Boulder
- Bobby Hodgkinson, CU Boulder
- Fabio Mezzalira, Sommers Bausch Observatory
- >Andrew Dahir and Nicholas Rainville, QB50
- >James Mason, MinXSS
- > Steve McGuire, CU Boulder

Thank you!

We welcome your questions!

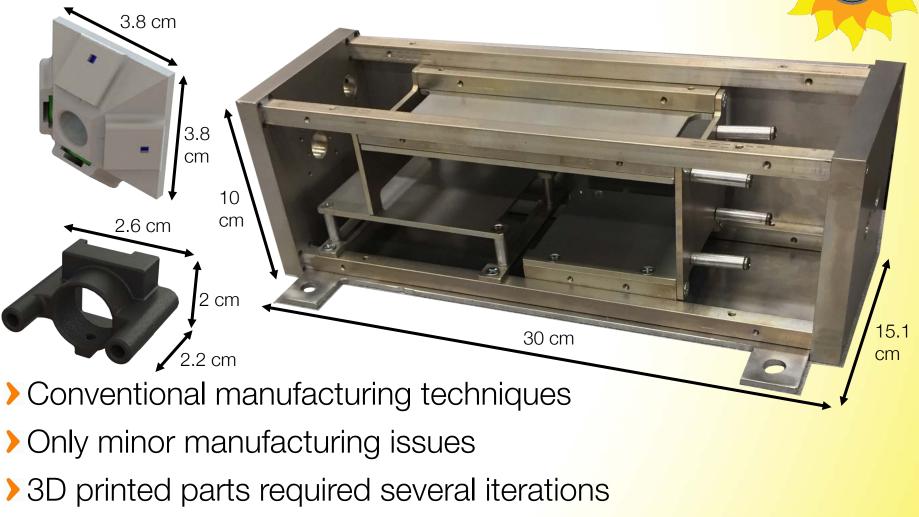
Purpose & Objectives

Design Overview

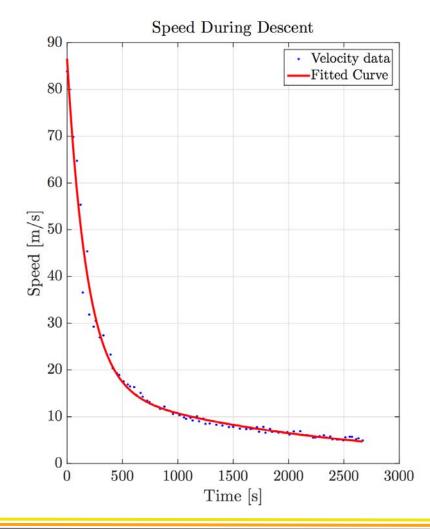
Test Overview

Tes Resi Systems Engineering

Project Management


102

BACKUP SLIDES



Manufacturing Process

Structural Design Motivations

R3.2: Data storage shall survive landing

Previous flight data: speed is 5.44 m/s at landing

Equipped with parachute and crush pads

Data only taken every ~30 seconds → must infer landing force using ∆ in momentum

Structural Design $\Delta v = 5.44 \, \frac{\mathrm{m}}{\mathrm{s}}$ From previous data: m = 2092 kgDuration determined based on height of Estimated crash duration: $t_{\rm impact} = 0.17 \ {\rm s}$ crush pads and speed Fundamental equations: $F = \frac{m\Delta v}{t} = \frac{(2092 \text{ kg})(5.44 \frac{\text{m}}{\text{s}})}{0.17 \text{ s}} = 67.75 \text{ kN}$ $G = \frac{F}{mq} = \boxed{3.30 \text{ Gs}}$ Landing Impact Flash Drive Rating 3.30 Gs 1500 Gs

Camera

Field of View Calculation

Known parameters:

Default FOV = 53.5° h = 2.76 mm $Sun = 0.5^{\circ}$ f = 25 mm

$$FOV = 2\tan^{-1}\left(\frac{h}{2f}\right) = \boxed{6.32^{\circ}}$$

Mount Lens

Camera board

Neutral Density Filter Calculation

Flux on Ground = $1050 \frac{W}{m^2}$ Flux at 40 km = $1200 \frac{W}{m^2}$

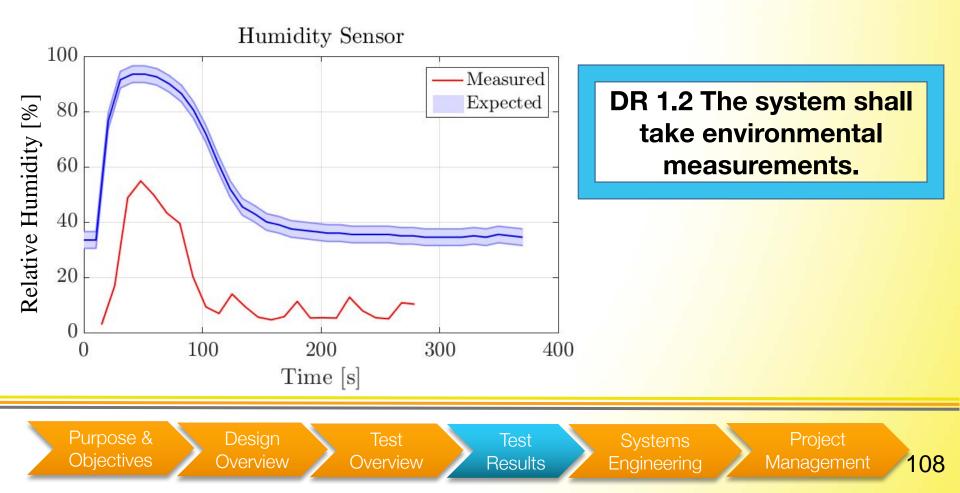
Using flux and size of the sun on the image sensor, find total power:

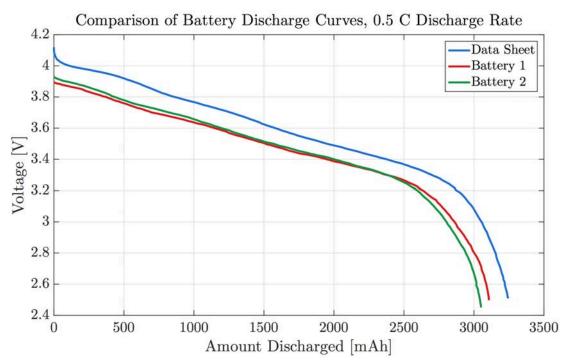
Power on Ground: 6.986×10^{-7} W Power at Cruise: 5.721×10^{-5} W

 $\frac{6.986 \times 10^{-7} \text{ W}}{5.721 \times 10^{-5} \text{ W}} = \boxed{1.22\%}$

Result:

Choose filter with 96.875% attenuation (OD of 1.5)




Humidity Sensor Calibration

>Systematic bias of ~36%

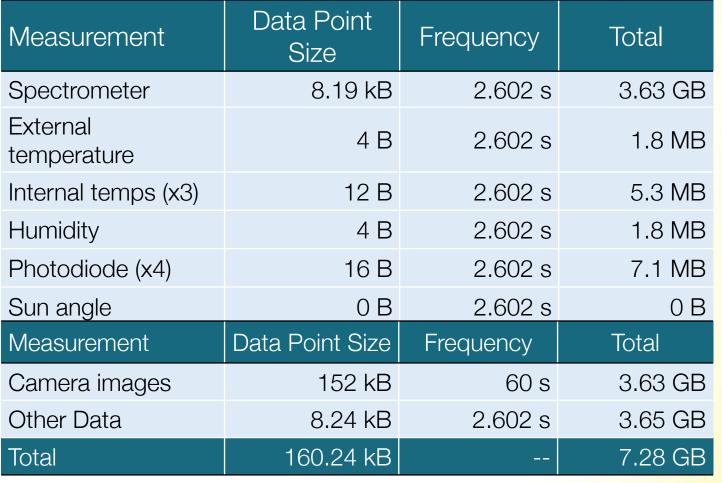
Straightforward adjustment in software

Battery Capacity

>Battery trending between the two cells is in family

Lower than published data, but within starting tolerance of 3.6 to 4.2 V; system noise is approximately 17 mV

C&DH Capacity: Model


Measurement	Data Point Size	Frequency	Total
Spectrometer	8.2 kB	1 s	9.25 GB
External temperature	4 B	1 s	4.6 MB
Internal temps (x6)	24 B	1 s	27.7 MB
Humidity	4 B	1 s	4.6 MB
Photodiode (x4)	32 B	1 s	36.9 MB
Sun angle	4 B	1 s	4.6 MB
Total	8.3 kB		9.4 GB
Measurement	Data Point Size	Frequency	Total
Camera images	920 kB	60 s	17.7 GB
Other Data	8.3 kB	1 s	9.4 GB
Total	936.5 kB		27.1 GB

C&DH Capacity: Results

Light Attenuation

Test	mA
Current without ND Filter	10.07
Current with ND Filter (Expected)	1.007
Current with ND Filter (Actual)	0.97

$$OD = \log_{10} \frac{I_0}{I}$$

Error = 3.6%

