

<u>Supersonic Air-Breathing Redesigned Engine Nozzle</u>

Spring Final Review

Customer Air Force Research Lab		Advisor Brian Argrow
Corrina Briggs	Alexander Muller	Andrew Sanchez
Jared Cuteri	Jack Oblack	Grant Vincent
Tucker Emmett	Andrew Quinn	Nate Voth

Presentation Outline

- Project Overview
 - Description/Background/Requirements
- SABRE Nozzle
 - Design and Testing
- Cold Flow Test Bed
 - Design and Testing
- Systems Engineering
- Project Management

SABRE Nozzle

Project Overview

Field of Application

- Additive manufacturing provides a more efficient means of producing components of intricate designs
- Jets are expensive to completely redesign needed for multiple applications

Project Description

Model, manufacture, and verify an additive manufactured nozzle capable of accelerating flow to supersonic exhaust produced by a P90-RXi JetCat engine while maintaining the T/W ratio from its stock

configuration.

Supersonic Nozzle

Vs.

Stock

CONOPS

Levels of Success

ZHORCE RESEARCH LABOR STOR

	Model/Simulation	Design/Manufacturing	Testing
Level 1	 •Model stock engine exhaust with given parameters (T, V, P, m) •Model air in nozzle (SABRE and plastic) changing from subsonic flow to supersonic flow •No decrease of T/W (SABRE Nozzle) 	 •Manufacture convergent-divergent nozzle that attaches to JetCat engine •Material survives the exhaust environment for at least 30 seconds 	•Replicate an engine analog that simulates exhaust velocity and pressure (adjusted for temperature), within 15% of the needed conditions for a M=1.3 test.
Level 2	•Increase T/W by 20% (SABRE Nozzle) •Verification that modeled nozzle and plastic manufactured nozzles output performance within 5% of one another	•Nozzle built using additive manufacturing, where material survives testing environment for at least 150 seconds	•Replicate an engine analog that simulates exhaust velocity and pressure (adjusted for temperature) within 15% of the needed conditions for a M=1.06 test.
Level 3	•Verification that modeled nozzle and SABRE nozzle have output performance within 20% of one another	•Nozzle built using additive manufacturing that can be reused 3 times and not fail in the testing environment	•Nozzle integrated and tested with the JetCat engine •Replicate an engine analog that simulates exhaust velocity and pressure (adjusted for temperature), within 5% of needed conditions for M=1.3 and M=1.06 tests.

Legend
Total Success
Partial Success
No Success

Functional Requirements

- FR 1: The Nozzle accelerates flow from subsonic to supersonic conditions.
- FR 2: The Nozzle shall maintain/increase the Thrust-to-Weight Ratio.
- FR 3: The Nozzle shall be designed and manufactured such that it will integrate with the JetCat Engine.
- FR 4: The Nozzle shall be able to withstand engine operation for at least 30 seconds.
- FR 5: The Nozzle's performance shall be verified and validated through the use of an alternate cold-flow test bed.

SABRE Nozzle

SABRE Nozzle

- Pressure ratio required: 1.89 (total/static at the exit)
- Exit Mach: 1.06
- Entrance Mach: 1
- Prandtl-Meyer Expansion

Fan Angle: **0.65 degrees**

MLN contours too small for manufacturing

SABRE Nozzle Design

- DMLS Cobalt Chrome
- Length: 2.969"
- Inlet Diameter: 2.620"
- Throat Diameter: 1.611"

- Exit Diameter: 1.613"
- Divergent Length: 0.212"

Functional Block Diagram

Fuel: Air/gas: Electrical/Data: Flow Sampling: Feedback:

UNCHANGED FROM TRR

Engine CPE's

CPE 1: Engine Operation

Stock Test & Modified Test

Modified Nozzle Verification

Additive Manufacturing Validation & Survivability

FR 1 & FR 2

Engine Testing Overview

Load Cell

Computer setup to read off TSFC

bu!	,			
	Test 1 (Nov 1st)	 Stock Engine Characteristics Baseline & FR 1 	•	Boulder Airport (Matt Rhode) Stock Engine Pitot Probes Load Cell
	Test 2 (Nov 8th)	 Stock Engine Characteristics Chocked Nozzle Test Baseline & FR 1 	•	Boulder Airport (Bobby Hodgkinson) Welded Nozzle w/ Chocked Insert Pitot Probes Load Cell
	Test 3 (Feb 21st)	 Supersonic Nozzle Test Survivability FR 1-4 	•	Boulder Airport Additive Manufactured Nozzle Pitot Probe Load Cell
	Test 4 (Apr 17th)	Supersonic Nozzle TestTSFC	•	Boulder Airport Additive Manufactured Nozzle Pitot Probes

Engine Testing Setup

SABRE Nozzle

Engine Testing Setup

- Stock Thermocouple
 - Temperature
- Exhaust Pitot Probe
 - Total Pressure
 - Static Pressure
- Force Load Cell
 - Thrust
- Engine Software
 - RPM
 - Fuel Flow Rate

Engine Testing Results (Stock)

- Stagnation pressure
 needed at exit = 167 kPa
- Max stagnation pressure achieved ~ 112 kPa
- We predict the P90-RXi
 engine will NOT be
 capable of producing
 supersonic exhaust using
 the SABRE Nozzle

Engine Testing Results (Thrust)

Load Cell Error: ~0.5 N

Predicted Max Stock Thrust: 102.9 N

Predicted Max Supersonic Thrust: 140.9 N

Actual Max Stock Thrust: 80.8 N

Actual Max Supersonic Thrust: 47.7 N

At 93 kRPM:

Stock Nozzle Thrust: 37.7 N

SABRE Nozzle Thrust: 45.8 N

• Thrust Increase of 8.12 N, or 21%

Engine Testing Results (Thrust)

- Maximum of 35.3% Increase at 42% Throttle
- 21 % Increase at Max Test
 RPM (68% Throttle)

Engine Testing Results (Fuel Consumption)

Minimum SABRE Error: 0.3782 N

Maximum SABRE Error: 34.6108 N

Minimum Stock Error: 8.7354 N

Maximum Stock Error: 7.3581 N

Engine Testing Results (TSFC)

Minimum SABRE Error: 0.3539 mL/(min*N)

Maximum SABRE Error: 0.0295 mL/(min*N)

Functional Requirements Met

- FR 1: The Nozzle accelerates flow from subsonic to supersonic conditions.
- •FR 2: The Nozzle shall maintain/increase the Thrust-to-Weight Ratio.
- •FR 3: The Nozzle shall be designed and manufactured such that it will integrate with the JetCat Engine.
- •FR 4: The Nozzle shall be able to withstand engine operation for at least 30 seconds.

Engine Testing Success

Zaronce Research LABOR Hotel

	Model/Simulation	Design/Manufacturing	Testing
Level 1	•Model stock engine exhaust with given parameters (T, V, P, m) •Model air in nozzle (SABRE and plastic) changing from subsonic flow to supersonic flow •No decrease of T/W (SABRE Nozzle)	•Manufacture convergent-divergent nozzle that attaches to JetCat engine •Material survives the exhaust environment for at least 30 seconds	•Replicate an engine analog that simulates exhaust velocity and pressure (adjusted for temperature), within 15% of the needed conditions for a M=1.3 test.
Level 2	•Increase T/W by 20% (SABRE Nozzle) 100% •Verification that modeled nozzle and plastic manufactured nozzles output performance within 5% of one another	•Nozzle built using additive manufacturing, where material survives testing environment for at least 150 seconds	•Replicate an engine analog that simulates exhaust velocity and pressure (adjusted for temperature) within 15% of the needed conditions for a M=1.06 test.
Level 3	•Verification that modeled nozzle and SABRE nozzle have output performance within 20% of one another	•Nozzle built using additive manufacturing that can be reused 3 times and not fail in the testing environment	•Nozzle integrated and tested with the JetCat engine 100% •Replicate an engine analog that simulates exhaust velocity and pressure (adjusted for temperature), within 5% of needed conditions for M=1.3
	0%	100%	

Legend
Total Success
Partial Success
No Success

Cold Flow Test Bed

Cold Flow Test Bed Design

- Objectives:
 - Engine Conditions:
 - Mass flow rate = 0.260 kg/s -> 573.8 CFM
 - Total pressure = 167 kPa -> **24.2 psi**

Flow Conditions to Match

- Scaled down SABRE nozzle test:
 - Mass flow rate = 0.202 kg/s -> 456.8 CFM
 - Total pressure = 167 kPa -> **24.2 psi**
- M = 1.3 test:
 - Mass flow rate = 0.281 kg/s -> **620.2 CFM**
 - Total pressure =233 kPa -> 33.8 psi

SABRE Nozzle

Conditions for the Design

Functional Block Diagram

Cold Flow Test Bed Design

- 2D MLN Code
- For Mach numbers ~1,
 2D is a good
 approximation
- Better performance with a true axisymmetric or 3D code
- MLN for Mach 1.3,
 Prandtl-Meyer Angle
 for Mach 1.06

SABRE Nozzle Mach 1.3 (Mach Contours)

1.00

0.40

Exit Plane Mach Number: 1.30

0.13

ZHIFORCE RESEARCH LABORATOR

SABRE Nozzle Mach 1.3 (Static Pressure Contours)

- Pressure Contours suggest
 Overexpanded Nozzle
- Likely due to 2D MLN code, versus 3D MLN code
- Test results suggest expansion was nearly ideal
- Differences in model versus test results are likely due to slight overpressurization in settling chamber

Cold Flow Test Bed Design

Mach 1.06 Nozzle

Length: 1.067"

Inlet Diameter: 1.071"

Throat Diameter: 1.005"

Exit Diameter: 1.006"

Divergent Length: 0.067"

Form Labs 2 printer Clear FLGPCL02

Mach 1.30 Nozzle

Length: 1.614"

Inlet Diameter: 1.071"

Throat Diameter: 1.005"

Exit Diameter: 1.037"

Divergent Length: 0.614"

Test Bed CPE's

CPE 2: Test Bed Operation

Nozzle Design Verification

Testing Safety & Protocol

Supersonic Validation

Systems

Engineering

Test Bed Testing Overview

Test 1 (Apr 11th)	 System Integration Leaks Ball Valve Checks M = 1.3 Tests FR 1
Test 2	 M = 1.3 Test Schiloron Visualization

- Platteville (Matt Rhode)
- Complete System
- 2 Compressed Air Tanks
- Scaled Nozzles
- Pitot Probe

- Platteville (Matt Rhode)
- Complete System
- 8 Compressed Air Tanks
- Scaled Nozzles
- Pitot Probe

Test 3 (Apr 16th)

Project Overview

(Apr 14th)

- M = 1.3 Test
- M = 1.06 Test
- Schileren Visualization
- FR 1 & FR 5

- Platteville
- Complete System
- 6 Compressed Air Tanks
- Scaled Nozzles
- Pitot Probe

Cold Flow Test Bed Setup

Cold Flow Test Bed Setup

Pitot Probe: Total & Static Pressure

Kulite:
Temperature &
Static Pressure

HoneyWell: Total Pressure Parker 53R High Flow Pressure Regulator

Test Bed Testing Calculations

Rayleigh Pitot Tube Formula:

SABRE Nozzle

- Holds for supersonic flow, M>1
- Accounts for normal shock formed in front of the pitot tube

$$\frac{p_{o_2}}{p_1} = \frac{p_{o_2}}{p_2} \frac{p_2}{p_1} = \left(\frac{(\gamma+1)^2 M_1^2}{4\gamma M_1^2 - 2(\gamma-1)} \right)^{\gamma/(\gamma-1)} \frac{1 - \gamma + 2\gamma M_1^2}{\gamma+1}$$

- Assuming the static pressure is equal to ambient Boulder pressure
 = 84 kPa
- We are able to calculate the Mach number of the flow exiting the nozzle

Test Bed Testing Results (Mach 1.3)

- Model predicts Mach number of 1.3 (blue line) during test
- From 24.5-26s, M = 1.3 was
 achieved and maintained
- From 24-36s, supersonic flow was achieved
- Pressure gradient decreases,
 so mass flow decreases
- Resulting in Mach number decreasing to ~1.10
- Shock diamonds confirm supersonic flow in Schlieren photography

Test Bed Testing Results (Mach 1.06)

- Model predicts consistent Mach number of 1.06 (blue line) during test
- Pressure suggests M < 1
- Shock diamonds suggest supersonic flow in Schlieren photography
- Predicted that the pitot probe
 was positioned behind a normal
 shock at the exit, causing for
 proportionally lower
 pressure measurements

Cold Flow Schlieren Photography

Mach 1.06

Mach 1.30

Functional Requirements Met

• FR 1: The Nozzle accelerates flow from subsonic to supersonic conditions.

• FR 5: The Nozzle's performance shall be verified and validated through the use of an alternate cold-flow test bed.

Cold Flow Testing Success

	Model/Simulation	Design/Manufacturing	Testing
Level 1	•Model stock engine exhaust with given parameters (T, V, P, m) •Model air in nozzle (SABRE and plastic) changing from subsonic flow to supersonic flow •No decrease of T/W (SABRE Nozzle)	•Manufacture convergent-divergent nozzle that attaches to JetCat engine •Material survives the exhaust environment for at least 30 seconds	•Replicate an engine analog that simulates exhaust velocity and pressure (adjusted for temperature), within 15% of the needed conditions for a M=1.3 test.
Level 2	Nozzle) 100% •Verification that modeled nozzle and plastic manufactured	additive manufacturing, where material survives testing	 Replicate an engine analog that simulates exhaust velocity and pressure (adjusted for temperature) within
	5% of one another 75%	least 150 seconds	15% of the needed conditions for a M=1.06 test. 100%
Level 3	•Verification that modeled nozzle and SABRE nozzle have output performance within 20% of one another	•Nozzle built using additive manufacturing that can be reused 3 times and not fail in the testing environment	•Nozzle integrated and tested with the JetCat engine 100% •Replicate an engine analog that simulates exhaust velocity and pressure (adjusted for temperature), within 5% of needed conditions for M=1.3
	Level 2	Level 1 given parameters (T, V, P, m) •Model air in nozzle (SABRE and plastic) changing from subsonic flow to supersonic flow •No decrease of T/W (SABRE Nozzle) •Increase T/W by 20% (SABRE Nozzle) •Verification that modeled nozzle and plastic manufactured nozzles output performance within 5% of one another •Verification that modeled nozzle and SABRE nozzle have output performance within 20% of one	Level 1 given parameters (T, V, P, m) •Model air in nozzle (SABRE and plastic) changing from subsonic flow to supersonic flow •No decrease of T/W (SABRE Nozzle) •Increase T/W by 20% (SABRE Nozzle) •Verification that modeled nozzle and plastic manufactured nozzles output performance within 5% of one another •Verification that modeled nozzle and SABRE nozzle have output performance within 20% of one another •Nozzle built using additive manufacturing, where material survives testing environment for at least 150 seconds •Nozzle built using additive manufacturing environment for at least 150 seconds

0%

<u>Legend</u> **Total Success Partial Success** No Success

and M=1.06 tests. 75%

Systems Engineering

Cold Flow Test

Top Down Design Solution:

- Customer Design Requirements & Prior Knowledge of the P90-Rxi Engine
 - Functional Requirements & Levels of Success
- Design Concept Selection
 - Nozzle Contour & Test Bed Method Trade Studies
- Risk Analysis
 - FMEA matrix approach -> Modified Engine & Cold Flow Test Bed Testing
- Subsystem Design
 - COTS parts selection, CAD models, Additive Manufacturing

Bottom Up Integration & Testing:

- Lab Testing of Electronics & Moving Mechanical Parts
- Full System Testing

Project Overview

Modified Engine Testing

Nozzle Contours:

	Weighting	de Laval	Variable Geometry	Annular	Expansion-Deflection	Minimum Length
Weight	0.4	4	1	2	2	4
Cost	0.3	4	1	2	3	5
Complexity	0.25	5	1	3	2	4
Altitude Envelope	0.05	1	5	1	4	1
Total	5	4.1	1.2	2.2	2.4	4.15

- MLN required the least amount of material to 3D print
 - Lower cost
 - Lower weight

Test Bed Method:

	Weighting	JetCat Engine	Cold Flow	Hot Flow
Cost	0.15	4	4	2
Flow Accuracy	0.4	5	3	4
Feasibility	0.35	1	4	2
Repeatability	0.1	2	5	3
Total	5	3.15	3.7	2.9

- Cold Flow was chosen due to its feasibility
 - JetCat Engine was deemed unlikely to perform with the SABRE Nozzle

Engine System Alteration

- The engine could not achieve full performance with the SABRE Nozzle
- Manufacturer tolerances are often not reliable

Cold Flow Test Bed Integration

- Appreciation for the energy in large volumes of compressed air
- Necessity for a thorough safety plan
- Integrating electronics to validate test bed performance

Project Management

Management Structure

Cold Flow Test Bed Systems Engineering Project Management

Management - Approach

Weekly Meetings

- Prepared list of goals and tasks
- Deadlines for upcoming milestones
- Summarize priorities for the next week

Team Communication

- Utilized GroupMe messenger
- Team availabilities

Utilized TeamGantt as Schedule Tracker

- Reference for progress throughout the year
- Aided in meetings for team priorities

SABRE Nozzle

Great resource for determining time remaining

Management - Lessons

Weekly Meetings

- Physical list of tasks most effective
- Continuous feedback best for project progress
- Assign all team members a task(s) for week

TeamGantt Chart

- Hard to edit with several users
- Sections hard to detail without cluttering page

- Assuming:
 - \$65,000 yearly annual Salary
 - 2,080 hrs/year (40 hrs/week)
 - 200% Overhead Rate

Total Hours	3920.5 hours
Total Direct Labor Cost	\$122,515.63
Overhead Rate	200%
Overhead Cost	\$245,031.26
Material Cost	\$6,000
Total Industry Cost	\$382,546.89

Acknowledgements

Air Force Research Laboratory
CU Boulder AES Department
Dr. Nabity

Appendix

Engine Testing Results (TSFC)

Engine Testing Data

M = 1.3 Test Data

At Nozzle Exit

M = 1.3 Test Data

M = 1.3 Test Data

M = 1.06 Test Data

At Nozzle Exit

M = 1.06 Test Data

M = 1.06 Test Data

Hardware Flow Chart

Circuit Diagrams

Instrumentation Amplifier

Power MOSFET

2nd Order Low Pass Filter

Feedback Circuit

Thermistor Measurement

Stagnation temperature affects the optimal throat and exit areas of the nozzle.

- Cold flow test requires nozzle designed to operate at cold flow stagnation temperature
- Same design method can be used to design cold flow nozzle

