

Manufacturing Status Review

SPECTROM

<u>Scientific Platform for the Exact Control of Thermally</u> <u>Regulated Optical Mechanisms</u>

 Team: Cameron Coupe, Jeff Ellenoff, Jaevyn Faulk, Zach Fellows, Sarah Levine, Eli McKee, Josh Mellin, Tyler Talty, Josh Whipkey, Josh White
 Customer: Ball Aerospace & Technologies Corp. Joe Lopez
 Advisor: Bob Marshall

Project Purpose

• Maintaining precise alignment of optical instrumentation

Budget

Project Statement

Design, integrate, and verify precision, of an active control system that utilizes thermal expansion to adjust the alignment of spacecraft optical instrumentation. This system will correct for misalignment introduced by thermal expansion of an aluminum optical bench.

Concept of Operations

1. The test bed is heated to induce alignment error between two planes.

2. Alignment error is measured by the Alignment Measurement System (AMS).

3. Heating is applied to the Alignment Correction System (ACS) to maintain alignment of the two planes.

4. Displacement and temperature data are recorded and stored by the electronics package.

Critical Project Elements

Critical Project Elements	System Solution
Active control of plane alignment using expansion of a high CTE material	Alignment Correction System (ACS)
Accurate measurement of plane alignment in three- axes	Alignment Measurement System (AMS)
Introduction of controlled thermally induced alignment error	Test Bed
Thermal control and measurement of heated elements	Electronics Package

Levels of Success

	Test Demonstration Unit (TDU)	Alignment Correction System (ACS)	Alignment Measurement System (AMS)	Electronics Package
evel 1	• Induce > $100\mu m$ of plane alignment translation error over ΔT =10K	 Correct plane alignment to within ±2 μm of original position within 120 seconds 	 Measure translation displacement of two planes with 1.75 μm accuracy 	 Heater control to enable translation correction within ±2 μm
evel 2	 Induce customer-provided temperature profile to within 0.5 K at all times Know temperature of actuators to within ±0.3 K at all times 	 Maintain plane alignment within ±2µm for 95% of the test bed heating profile 		 Active temperature control using thermistor feedback Record time, position and temperature data for duration of testing
evel 3	 Induce > 50 μm rotational displacement over ΔT of 10 K starting from 296.15 K 	 Maintain plane alignment within ±2 μm and ±20 μrad for 95% of the test bed heating profile 	 Measure translation and rotation displacements to ±1.75 μm and ±15.3 μrad accuracy 	 Record, and display real- time position and temperature data at a rate of at least 1 measurement per second
	Overview	Schedule Ma	anufacturing	Budget 6

Overview Schedule Manufacturing Budget

Design Updates

Overview

Testing Schedule

Slide Submission

Manufacturing

Structure Manufacturing

Overview

Schedule

Manufacturing

Budget

Manufacturing Schedule

Manufacturing: Carbon Fiber Rods

+Ζ

Manufacturing

- Carbon Fiber Supports
 - Will be manufactured using purchased bit on machine shop end mill
 - Safety Considerations:

Overview

- Breathing masks worn for manufacturing
- Shop vac held to collect dust

Schedule

8.00″

15

Budget

Manufacturing: Epoxy Washers

- Epoxy Washers
 - Cast washers, mold needs to be manufactured
 - Casting may require multiple iterations to ensure useable washers

Manufacturing: Carbon Fiber Rod Plugs

- Plugs:
 - Tight tolerance component for ensuring slip fit with carbon fiber tubes
 - Each plug custom machined
 - Potential variation of carbon fiber tube shape
 - Machined to enable desired 5 thou layer of epoxy between support and plug
 - Manufacturing pushed until carbon fiber supports complete

Manufacturing

Budget

Electronics Package CONOPS

Electronics Package Status

Electronics Package Status

Manufacturing Electronics: Possible Complications

- Thermistor Calibration
 - Require precise knowledge of R_{sense} and R_{therm} for each thermistor
 - Will hand measure each R_{sense} and use an ice bath to determine each R_{therm}
- LVDT Output Gains
 - Requires high gain resistor precision for accurate LVDT output
 - Will build in extra resistor pads to PCB design for gain adjustment
- Relay Integration
 - Each relay requires 2mA activation current, which each myRio DIO line must be able to supply
 - Will test current output through each relay with all outputs on to verify

Software Overview

- Software designed and implemented through LabVIEW
- Four distinct development areas:
 - LVDT Interfacing
 - Thermistor Interfacing
 - Heater Control
 - Data Display/Storage

Software validated through component tests. Test data will be compared to predicted MATLAB results.

Software Status: LabView

Software Schedule

BACKUPS

Drawing Package

Mechanical Drawings: Long Aluminum Actuators

Mechanical Drawings: Aluminum Actuators

Mechanical Drawings: Magnesium Actuators

Mechanical Drawings: Back Mounting Plate

Mechanical Drawings: Tesseract

Mechanical Drawings: Carbon Fiber Plug

Mechanical Drawings: Carbon Fiber Supports

LVDT PCB Schematic

Thermistor Schematic

Single Heater Control Schematic

All Heaters Control Schematic

Power Board PCB Schematic

Thermistor Calibration 1

- For accurate temperature readings, it is important to know R_{sense} with great certainty (1 ohm)
- *R_{sense}* value will be measured and recorded for each thermistor in the chain

Thermistor Calibration 2

- Each R_{therm} will be slightly different than advertised, so each thermistor must be fine tuned
- Thermistors will be put in a closed off de-ionized ice water bath (known 0°C reference)
- Special LabVIEW code will record each thermistor measurement and determine the refined R_{therm} value
- These refined values will be stored in a data file for future reference

LVDT R_{gain} Refinement

Relay myRIO compatibility

- Need at least 2mA activation current for each relay
- Plug Ammeter in series with one relay and measure correct output
- Can be taken as current for each DIO line

Software: LVDTs

- 1. Read a single LVDT and get meaningful data $\sqrt{}$
- 2. Convert voltages to displacements $\sqrt{}$
- 3. Time averaging $\sqrt{}$
- 4. Implement system of equations for linear/rotational displacements

Software: Thermistors

- 1. Read a single thermistor and get meaningful data $\sqrt{}$
- 2. Convert voltages to temperatures $\sqrt{}$
- 3. Time averaging $\sqrt{}$
- 4. Multiplex 32 signals

Software: Heater Control

- 1. Generate customer-provided temperature profile $\sqrt{}$
- 2. Interface with SSRs $\sqrt{}$
- 3. Implement control conditionals

Software: Data Display/Storage

- 1. Save all data in external .csv file
- 2. Design VI

Budget: Test for CDR

ltem	Cost
Al Rods	\$ 43.98
Mg Rods	\$ 38.44
Test Heater	\$ 55.00
Demo Board	\$ 155.49
16 bit ADC	\$ 14.95
Bread Boards	\$ 54.75
Total:	\$ 406.59

Budget: Materials

Item	Cost
Carbon Fiber Rods	\$ 144.45
Screws	\$ 143.72
Plates and Shims	\$ 502.05
Ероху	\$ 63.45
Total:	\$ 853.67

Budget: Electronics/Sensors

Item	Cost
Extender cable for myRio	\$ 24.74
Relays	\$ 86.57
Total:	\$ 111.31

ltem	Cost
LVDTs	\$ 1,238.40
Thermistors	\$ 29.05
Total:	\$ 1,267.45

Budget: Electronics/Need to Purchase

Item	Cost
Extender cable for myRio	\$ 24.74
Relays	\$ 86.57
Total:	\$ 111.31

Item	Cost
Carbon Fiber Drill bit	\$ 25
New Relays	\$ 225
PCBs	\$ 300
Total:	\$ 550