



#### Group 20: Semi-Autonomous Imaging Land Rover (SAILR)

# Critical Design Review

<u>Robert Beddome</u>, Krystal Horton, <u>Sam Stewart</u>, <u>Luke Roberson</u>, <u>Skyler Schull</u>, <u>Trevor Reed</u>, <u>Luca Barton</u>, Chris Nylund, Aidan Jones, Caleb Bristol, Noah Freeland, <u>Suphakan Sukwong</u>

**Project Sponsor**: Barbara Streiffert **Project Advisor**: Dr. Rafi

\*\* Emphasized names correspond to presenting members



# **Project Motivation**

Extreme environments not suitable for human exploration require the use of semi-autonomous rovers to surveil area and assess locations of interest.



NIFTi Unmanned Ground Vehicle (UGV) Image Source: Advanced Robotics

#### **Potential Applications:**

• Space Exploration

PL

- Natural Disaster Relief
- Law Enforcement

Project

Description



Curiosity's Selfie at Mont Mercou Image Source: NASA JPL





## **Relevant Definitions**



- **Typical Mission Environment:** Flat, dry terrain containing obstacles placed along the path from the ground station to the location of interest adhering to the requirements for the environment.
  - Level 1: 1 obstacle in environment
  - **Level 2**: 3 obstacles in the environment, spaced 10m apart or greater
- **Terrain:** The terrain will consist of either mowed grass, dry dirt, or concrete which may contain naturally occurring twigs no more than 0.5 inches in diameter. The terrain will contain no inclines or declines greater than 5° from horizontal.
- **Obstacles:** Obstacles include natural rocks and dense shrubs of a height greater than 2.5 inches and a diameter greater than 2.5 inches.



3







## **Relevant Definitions**



- **Ground Station:** The ground station will be an interface which displays images and video taken by the rover and displays the rover's location. The ground station will also provide a means for a user to input manual control commands and location of interest coordinates.
- Location of Interest: A set of GPS coordinates defined by the user indicating the location that the rover will navigate to. Location of interest coordinates must be within a 100-meter radius of the ground station.





## Functional Requirements .



| Req. # | Requirements                                                                                                                 |
|--------|------------------------------------------------------------------------------------------------------------------------------|
| FR.1   | The rover shall move forwards, backwards and turn in any direction                                                           |
| FR.2   | The rover shall transmit and receive data between the on-board computer and the ground station                               |
| FR.3   | The rover shall utilize remote sensing subsystems to determine a path to a location of interest                              |
| FR.4   | The power delivery subsystem shall be able to monitor and sustain the rover / ground station for the duration of the mission |
| FR.5   | Rover shall have a footprint no larger than 1' x 1'                                                                          |
| FR.6   | The ground station shall display video, images, and location of rover                                                        |
| FR.7   | The ground station shall provide an interface to allow for input of manual commands from user                                |









Rover Continuously Communicating & Sending Video Packets to Ground Station



#### **Initiate Rover**

1. Setup ground station 2. Initialize rover and ground station communication 3. User sends location of interest through ground station to rover 4. Initiate rover video recording









— Rover Continuously Communicating & Sending Video Packets to Ground Station



7







Rover Continuously Communicating & Sending Video Packets to Ground Station







Project



9



Rover Continuously Communicating & Sending Video Packets to Ground Station













# Design Solution Overview

Rover design overview, general component selection, hardware FBD, power FBD



### **Rover Design Solution**







**Predicted Rover Specs:** 

Design Solution

Overview

- Weight: 2.96 kg
- <sup>o</sup> 30.48 x 30.48 x 16.5 cm (no antenna)





#### Critical Components -LiDAR-













#### Critical Components -Camera System-





Design Solution

Overview





13

#### Critical Components -ESC-







Design Solution

Overview





#### **Critical Components** -Onboard Computer-









Project Design Solution

Overview

JPL



#### **Critical Components** -Micro Controller-





Overview





#### **Critical Components**

-Motors-









Overview

#### Critical Components -Wireless Transceiver-





Design Solution

Overview





JPL



#### Functional Block Diagram





19

Design Solution

Overview



#### Power Functional Block Diagram











# . CPEs and Risk Analysis

Critical project elements, unmitigated risk analysis, risk mitigation strategies, mitigated risk analysis





## **Critical Project Elements**



| CPE # | Subsystem                                                                                                                                                                                                                    | <b>Critical Project Element (CPE) Description</b>                                                                                                                                                                                                                      |                     |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| 1     | Locomotion                                                                                                                                                                                                                   | The rover needs a method of locomotion which allows it to successfully navigate in the typical mission environment to reach the location of interest. If the rover cannot successfully reach the location of interest, it cannot satisfy its mission.                  | 1                   |  |  |  |
| 2     | Command and<br>Control - Manual                                                                                                                                                                                              | A backup manual control system will be implemented as a safeguard in the event that the autonomous control of the rover fails. This element of manual control is necessary in the case of automation failure or required operator interaction.                         | 2,7                 |  |  |  |
| 3     | Command and<br>Control –<br>AutonomousThe rover must be able to use autonomy to navigate itself to the location of interest. This<br>involves sensing its environment, making path planning decisions to define its next<br> |                                                                                                                                                                                                                                                                        |                     |  |  |  |
| 4     | Video and Imaging                                                                                                                                                                                                            | Streaming live video to the operator is essential for manual control of the rover, when the rover is not in line of sight of the operator. The rover's mission is also to collect images of a location of interest, making imaging an essential function of the rover. | 2,6                 |  |  |  |
| 5     | Ground Station                                                                                                                                                                                                               | The ground station shall provide a method of communication between the operator and the rover. The ground station will allow the exchange of video, images, and manual control.                                                                                        | 6,7                 |  |  |  |
| 6     | Power/Endurance                                                                                                                                                                                                              | The battery must be capable of powering all systems for the duration of a typical mission.                                                                                                                                                                             | 4                   |  |  |  |
| 7     | Integration into<br>Rover                                                                                                                                                                                                    | Integration pertains to integrating all of the previous critical project elements into a single rover, and the successful interaction of the elements.                                                                                                                 | 5                   |  |  |  |
|       |                                                                                                                                                                                                                              | 지하는 것은 이상에 가지 않는 것으로 이상에 가지 않는 것이다. 이상에 가지 않는 것은 것이 있는 것은 것이라. 이것은 것이 있는 것이 가지 않는 것이 있는 것이 가지 않는 것이다. 것이 있는 것이 가지 않는                                                                                                                                                   | ALCONDUCT ALCONDUCT |  |  |  |

CPEs & Risk

Analysis

Design Solution

Overview



## **Risk Matrix: Unmitigated**





24

# **Risk Mitigation**



| Risks                            | Pre-Mitigation                                                                                                                                                                        | Mitigation Strategy                                                                                                                                            |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. Rover autonomy failure        | <ul> <li>Autonomy most difficult CPE</li> <li>Potential for autonomy to unsuccessfully<br/>navigate around obstacle OR unsuccessfully<br/>navigate to location of interest</li> </ul> | Manual override contingency                                                                                                                                    |  |  |
| 2. Rover stuck in environment    | <ul> <li>Possibility of small sticks in typical mission<br/>environment</li> <li>Chain drive exposed to sticks</li> </ul>                                                             | • Protection for the rover to prevent sticks and other objects from entering the drivetrain                                                                    |  |  |
| 3. Insufficient rover<br>battery | • Significant power pull from motors,<br>wireless communication, and onboard<br>computer                                                                                              | <ul> <li>Optimize path to reduce total distance travelled</li> <li>Optimize rover speed to most efficient motor speed</li> </ul>                               |  |  |
| 4. Loss of communication         | <ul> <li>Max distance of 100 meters</li> <li>Potential signal interference through obstacles</li> </ul>                                                                               | <ul> <li>Navigate back into communication contingency</li> <li>Design choices have large factor of safety considering our obstacles and environment</li> </ul> |  |  |











PL



### **Risk Matrix: Mitigated**



|                                                                               | Very Likely                            | ,        |     |       |                   |                  |             |                               |  |
|-------------------------------------------------------------------------------|----------------------------------------|----------|-----|-------|-------------------|------------------|-------------|-------------------------------|--|
| Probability                                                                   |                                        |          |     |       |                   |                  |             |                               |  |
|                                                                               | Likely                                 |          |     |       | 1. Ro<br>autonomy | ver<br>/ failure |             |                               |  |
|                                                                               | Possible                               |          |     |       |                   |                  |             |                               |  |
|                                                                               | Unlikely                               |          |     |       |                   |                  |             | 2. Rover stuck in environment |  |
|                                                                               | Very Unlikel                           | y        |     |       | 4. Los<br>commun  | s of<br>ication  |             | 3. Insufficient rover battery |  |
|                                                                               |                                        | Negligit | ole | Minor | Mode              | rate             | Significant | Severe                        |  |
| Impact                                                                        |                                        |          |     |       |                   |                  |             |                               |  |
|                                                                               | Risk Level:AcceptableWatchUnacceptable |          |     |       |                   |                  |             |                               |  |
| Project Design Solution CPEs & Risk Mechanical/ Electrical Autonomous Project |                                        |          |     |       |                   |                  |             |                               |  |

Analysis

**Overview** 









# . Modeling

Relating to CPEs #1,3,6







# Mechanical/Controls Design Solutions

CPE #1: Locomotion





#### Design Requirements: Mechanical



Verification Method: D = Demonstration, I = Inspection, A = Analysis, T = Test







# **Motor & ESC Selection**





DF Robot DC Geared Motor



DF Robot Motor Controller

- Purpose:
  - To manipulate power to the drivetrain, propelling the rover
- Procurement or Production:
  - Purchase 2x motors and 2x ESC (one for each motor)
- Specifications
  - Motor: 6 V input, max 210 rpm, max 0.98
     Nm torque, 3.1 W draw
    - **ESC:** 5-24 V max, 10 A max, analog input

pins





#### Drivetrain Satisfaction: Torque Requirements





**Governing Equations:**  

$$\tau = r \times F_{fr}$$
  $F_{fr} = \mu * g * \frac{m}{4}$ 

Assumptions:

- Weight is evenly distributed throughout the system
- All internal resistances are negligible
- Estimated required torque per wheel = 0.21 N·m
- Available torque from each motor = 0.98 N·m

\*Equation nomenclature is located in corresponding subsystem backups



Mechanical/ Controls Modeling Electrical Modeling



#### **Drivetrain Satisfaction: Torque Requirements**





**Governing Equations:**  $\tau = r \times F_{fr}$   $F_{fr} = \mu * g * \frac{m}{4}$  **Assumptions:** 

- Weight is evenly distributed throughout the system
- All internal resistances are negligible
- Estimated required torque per wheel = 0.21 N·m
- Available torque from each motor = 0.98 N·m

Satisfies FR. 1: "The rover shall move forwards, backwards and turn in any direction" and all subsequent design requirements







#### **Drivetrain Satisfaction:** Dimension Requirements





Overview

#### **Size:**

Rover maximum dimensions:30.48 cm x 30.48 cm

#### **Drivetrain Orientation:**

- Two independent motors (left and right side)
- Independent motor control
  - Allows for turning in place







#### **Drivetrain Satisfaction:** Dimension Requirements





#### \*All units in cm

Satisfies FR. 5: "Rover shall have a footprint no larger than 1' x 1'" and all subsequent design requirements

#### Size:

Rover maximum dimensions: 30.48 cm x 30.48 cm

#### **Drivetrain Orientation:**

Two independent motors (left and right side)

#### Independent motor control

Allows for turning in place

Satisfies FR. 1: "The rover shall move forwards, backwards and turn in any direction" and all subsequent design requirements





#### Design Requirements: Controls



Verification Method: D = Demonstration, I = Inspection, A = Analysis, T = Test



1.5.4: Rover control system shall override autonomous commands with manual control commands when manual control commands are received.

Mechanical/

**Controls Modeling** 

D,T



Design Solution

# **Micro-controller Selection**

Mechanical/

**Controls Modeling** 



Teensy 4.1 Micro-controller



- **Purpose:** 
  - To control the voltages supplied to motors to produce desired rover motion
- **Procurement or Production:** 
  - Purchase a Teensy 4.1 Development
     Board
- System Specifications:
  - 18 analog input pins
  - 35 PWM output pins
    - Compatible with ESC
  - C-based programming




# IMU/Magnetometer Selection



• Purpose:

Mechanical/

**Controls Modeling** 

- To provide translation and rotation position, velocity, and acceleration data for use in feedback control
- Procurement or Production:
  - Purchase an Adafruit LSM6DS3TR and LIS3MDL breakout.
- System Specifications:
  - 6 DoF accelerometer/3 axis magnetometer on a single board
  - Up to 1.6 kHz sampling rate
  - Teensy 4.1 compatible







Adafruit LSM6DS3TR IMU and LIS3MDL Magnetometer



## **Controls Flow Chart**





#### Commands from SBC



tion Design Solution CPEs & Risk Overview Analysis Mechanical/ Controls Modeling Electrical Modeling





## **Controls Flow Chart**





Design Solution

Overview

#### Control Elements

39

Mechanical/ Elect Controls Modeling Mod

Electrical Modeling









## **Controls Satisfaction:** Rover Dynamics





- Simplifying Assumptions:
  - Drivetrain components impose negligible friction (bearings, chain links, etc.)
  - Motors are ideal and identical
  - Wheels can be approximated as hoops

\*Equation nomenclature is located in corresponding subsystem backups









#### Command: Move forward 3 meters



Project Planning













Design Solution CPEs & Risk Overview

Mechanical/ Controls Modeling Electrical Modeling omous Pro ing Pla









Forward 5m

command

**Backward 5m** 

command

360° rotation

command

FR. 1: The rover shall move forwards, backwards and turn in any direction.

Ann and H.J. Smead Aerospace Engineering Sciences Lawn

5m

FR. 5: Rover shall have a footprint no larger than 1' x 1'

## Locomotion Verification: Test Plan



#### **Objective:**

Verify integration of drivetrain and controller is successful in translating rover forward and backward as well as turning 360°

#### **Test Plan:**

- Command drivetrain to move forward 5m
- Command drivetrain to move backward 5m
- Command drivetrain to turn in place 360°

#### Data Collected:

- Rover distance traveled
- Rover degrees of rotation
- Pass Criteria:
  - Rover travels 5m forward/backward after receiving the respective command
  - Rover rotates in place complete 360° after receiving the command



360°





# Electrical Design Solutions

CPE #6: Power/Endurance





## Design Requirements: Electrical



Verification Method: D = Demonstration, I = Inspection, A = Analysis, T = Test



Modeling

Overview





# **Battery Selection**



#### LI-2S1P-2200 Battery

#### **Purpose:**

- Provide power for all on-board rover subsystems
- **Procurement or Production:** 
  - Purchasing 3X LI-2S1P-2200 battery

## System Specifications:

Electrical

Modeling

- Minimum voltage on discharge: 6.0V
- Minimum power: 12.9Wh
- Maximum discharge: 3A
- Continuous discharge: 2.4A





## **Battery Satisfaction: Drivetrain Subsystem**



120



Time Elapsed [min]

- Max battery discharge rate: 3A
- Max current demand: 1.7A

- Time Elapsed [min]
- Sustainable battery discharge rate: 2.4A
- Average current demand: 1.15A





## **Battery Satisfaction: Communication Subsystem**





Time Elapsed [min]

- Max battery discharge rate: 3A
- Max current demand: 1.63A

- Sustainable battery discharge rate: 2.4A
- Average current demand: 1.25A



100



## **Battery Satisfaction: All Other Components**



70



Time Elapsed [min]

**Component Battery Power Consumption vs. Time** 

- Max battery discharge rate: 3A
- Max current demand: 2.07A

Sustainable battery discharge rate: 2.4A

**Component Battery Power & Consumption vs. Time** 

Average current demand: 1.61A



Electrical Modeling





## Battery Satisfaction: All Other Components





- Max battery discharge rate: 3A
- Max current demand: 2.07A

- Sustainable battery discharge rate: 2.4A
- Average current demand: 1.61A





# **Power Verification:**

## Test Plan

**Controls Modeling** 



#### **Objective:**

Verify batteries will sustain all onboard components for mission duration

#### **Test Plan:**

- Run each battery with respective components
- All components will be under full loading conditions for test duration (ex: motors have friction)

#### Data Collected:

- Battery capacity and voltage over time
- Component functionality during test

#### **Pass Criteria:**

- All components maintain functionality for 1.5x factor of safety of expected mission duration (15 minutes)
- 30% power margin is maintained for 15minute expected mission duration



FR. 2: The electrical subsystem shall be able to monitor and sustain the rover / ground station for the duration of the mission







# Autonomous Design Solutions

CPE #3: Command and Control – Autonomous





## Design Requirements: Autonomy



D

D,T

Verification Method: D = Demonstration, I = Inspection, A = Analysis, T = Test



1.6.1: The autonomy subsystem shall determine a path to location of interest

1.6.2: The autonomy subsystem shall receive data from the remote sensing subsystem

1.6.3: The autonomy subsystem shall send commands to the control subsystem

1.6.4: The autonomy subsystem shall determine a path to the back to the ground station after taking a panoramic image at the location of interest

1.6.5: The autonomy subsystem shall determine when the rover has reached the location of interest











Raspberry Pi 4 Model B

- Purpose:
  - Serve as the primary processor for the onboard automation and communication subsystems
- **Procurement or Production:** 
  - Purchase Raspberry Pi 4 Model B
- System Specifications:
  - □ 2x USB 2.0, 2x USB 3.0
  - Ethernet
  - 4 GB Ram

Controls M

Electrical Modeling



## **Microprocessor Selection**





#### **Purpose:**

- Serve as the primary processor for the
   onboard automation and
   communication subsystems
- **Procurement or Production:** 
  - Purchase Raspberry Pi 4 Model B
- System Specifications:
  - 2x USB 2.0, 2x USB 3.0
  - Ethernet

4 GB Ram







60

## **Autonomy Animation**







## **Autonomy Animation**







## Autonomy Algorithm Flow Chart





JPL

## Autonomy Algorithm Flow Chart

JPL











## Design Requirements: Autonomy Continued



Verification Method: D = Demonstration, I = Inspection, A = Analysis, T = Test











# **LiDAR Selection**

- Purpose:
  - To detect obstacles in the mission environment.
- Procurement or Production:
  - RPLIDAR A2M8 sensor acquired from previous team.
     No purchase needed.
- System Specifications:
  - Angular resolution: ~1 deg
  - Max range: 12 m
  - FDA Class I laser (Non-hazardous to unassisted eye)
  - Field of View: 360 deg (180 deg effective)
  - Capable of detecting 6cm wide objects at 3 meters distance

Autonomous

Modeling



cm





Satisfies "DR. 1.7.1: The remote sensing subsystem shall detect objects defined as obstacles" and "DR. 1.7.2: The remote sensing subsystem shall have a horizontal FOV of at least 120 degrees"

# **LiDAR Selection**

- Purpose:
  - To detect obstacles in the mission environment.
- Procurement or Production:
  - RPLIDAR A2M8 sensor acquired from previous team.
     No purchase needed.

## • System Specifications:

- Angular resolution: ~1 deg
- Max range: 12 m
- FDA Class I laser (Non-hazardous to unassisted eye) Field of View: 360 deg (180 deg effective)
  - Capable of detecting 6cm wide objects at 3 meters

→ distance







# LiDAR Satisfaction & Preliminary Testing







#### Coordinates Measured by LiDAR



Project Planning





# LiDAR Satisfaction & Preliminary Testing







# **GPS Selection**





SparkFun GPS-RTK Board - NEO-M8P-2

- Purpose:
  - To provide Earth fixed coordinates of the rover for navigation to and from the location of interest
- Procurement or Production:
  - SparkFun GPS-RTK Board NEO-M8P-2 acquired from previous team. No purchase needed.

## System Specifications:

- Max sampling rate: 10 Hz
- Horizontal accuracy: 2.5 m without RTK
- Operating voltage: 3.3 V

k Arrow Mechanical/ Controls Mo ling Electri Model





# **GPS Selection**





SparkFun GPS-RTK Board - NEO-M8P-2

Satisfies "DR. 1.8.1: Rover shall determine its location to an accuracy of 10 m or less" and "DR. 1.8.2: The rover shall communicate its location to the ground station at least once every 5 meters..."

#### Purpose:

- To provide Earth fixed coordinates of the rover for navigation to and from the location of interest
- **Procurement or Production:** 
  - SparkFun GPS-RTK Board NEO-M8P-2 acquired from previous team. No purchase needed.

## System Specifications:

- Max sampling rate: 10 Hz
- Horizontal accuracy: 2.5 m without RTK
- Operating voltage: 3.3 V

hanical/ Electrols Modeling Alectro




## GPS Satisfaction & Preliminary Testing



GPS Accuracy Analysis at 40.004N, 105.2607W



- **O Preliminary Test Observations:** 
  - Max distance error: 2.2895 m
  - Mean distance error: 1.4127 m
  - Standard deviation: 0.46 m
  - $\Box \quad \text{Precision:} \pm 1.15 \text{ m}$
- **Preliminary Test Results:** 
  - GPS accuracy is at worst 3.39 meters.
  - Rover will stop within 4.54 meters from the target

Autonomous

Modeling



77



## GPS Satisfaction & Preliminary Testing



GPS Accuracy Analysis at 40.004N, 105.2607W



#### **Preliminary Test Observations:**

- Max distance error: 2.2895 m
- Mean distance error: 1.4127 m

Autonomous

Modeling

- Standard deviation: 0.46 m
- Precision:  $\pm$  1.15 m
- Preliminary Test Results:
  - GPS accuracy is at worst 3.39 meters Rover will stop within 4.54 meters from the target





LOI

GPS-

RTK Board

20m

a path to a location of interest

LiDAF

GPS Antenna

FR. 3: The rover shall utilize remote sensing subsystems to determine

Ann and H.J. Smead Aerospace Engineering Sciences Lawn

Obstacle Detected

Proceed w/

Avoidance Protocol

**Distance** to

LOI: 20m

Proceed w/ Path

lanning & Navigation

## **Autonomous Verification:**

#### Test Plan



#### **Objective:**

Verify autonomous path planning algorithm functionality utilizing object detection and location determination components.

#### **Test Plan:**

- Place obstacle in LiDAR red avoidance zone
- Move GPS sensor/antenna 20m from specified location

#### Data Collected:

- LiDAR data points
- GPS coordinates (translated to distance between LOI and GPS components)

#### **Pass Criteria:**

- Obstruction detected and avoidance commands prompted by automation software
- Distance between LOI and GPS components calculated with path planning continuing until LOI is reached







## Project Planning

*"Day in the Life" test plan, work plan, spring schedule, cost plan* 







**Test Site:** 

- Pleasant View Sports Complex
  - Public access
  - $\square$  100m of unobstructed mowed grass

#### **Test Objective:**

- Execute primary CONOPS to assess final system integration functionality in defined mission environment
   Test Equipment:
  - Rover & ground station
  - Obstacles to satisfy system objectives

**Test Criteria:** 

 All functional and design requirements must be validated according to their indicated test method



Proiect

Planning



78

**Work Plan** 

S.A.I.L.R





**GANTT Chart** 







**Cost Plan** 

| Subsystem(s)             | Cost     |  |
|--------------------------|----------|--|
| Structure/<br>Drivetrain | \$380.17 |  |
| Sensing                  | \$19.95  |  |
| Picture/Video            | \$150    |  |
| SBC/Micro-<br>controller | \$150.49 |  |
| Electrical               | \$198.78 |  |
| Total                    | \$899.39 |  |

Design Solution

Overview



- All GPS and communications components obtained from past projects
- Uncertainty in SBC cost due to supply chain issues

Project

Planning





# Questions?







## Subsystem Backups

*Controls, autonomy, communications, video/imaging, ground station, electrical, mechanical* 







## Controls Backups





### **Controls Diagram**





## **Equation Nomenclature**



$$\dot{\omega} = \frac{GK_t}{RJ}V - \frac{G^2K_t}{K_vRJ}\omega$$

$$ar{V} = rac{(\omega_{fL}+\omega_{fR})r_f}{2}$$

$$\omega_t = \frac{\omega_{fL} * r_f}{r_d} + \frac{\omega_{fR} * r_f}{r_d}$$

G = motor gear ratio

- J = drivetrain moment of inertia [kg\*m2]
- K<sub>t</sub> = motor torque constant [N\*m/A]
- K<sub>v</sub> = motor angular velocity constant [rad/s\*V]
- R = motor resistance [ohms]
- V = voltage applied to motor [V]
- $\bar{V}$  = rover linear velocity [m/s]
- r<sub>f</sub> = rover wheel radius [m]
- r<sub>d</sub> = rover drivetrain radius [m]









## Mechanical Component Validation Testing



| Component(s)<br>Being Tested | Equipment<br>Required                                                                                  | Test Description                                                                                                                                                                                          | Passing Metrics                                                                                                    | Design<br>Requirements                                           |
|------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Micro-controller             | <ol> <li>Ground station</li> <li>SBC</li> <li>Microcontroller</li> <li>Motor Interface</li> </ol>      | <ol> <li>Send motion commands from<br/>ground station and SBC separately<br/>and observe response</li> <li>Attempt to overwrite SBC<br/>commands with manual commands<br/>and observe response</li> </ol> | 1. Drivetrain moves after receiving<br>commands and automated<br>commands can be overwritten by<br>manual commands | $1.9.1, 1.9.2, \\1.9.3, 1.9.4, \\1.5.1, \\1.5.2, 1.5.3, \\1.5.4$ |
| Magnetometer/IMU             | <ol> <li>Magnetometer/<br/>IMU board</li> <li>Laptop/ desktop<br/>computer</li> <li>Compass</li> </ol> | <ol> <li>Collect accelerometer and<br/>magnetometer data at different<br/>orientations</li> <li>Simultaneously collect data from a<br/>compass</li> </ol>                                                 | 1. Accelerometer and<br>magnetometer data are accurate<br>within 10%                                               | 1.9.4                                                            |
| Motor/ESC                    | <ol> <li>Power supply</li> <li>ESC/ motor</li> <li>Drivetrain</li> <li>Assembly</li> </ol>             | <ol> <li>Connect motors to drivetrain</li> <li>Power motors and observe<br/>drivetrain</li> </ol>                                                                                                         | <ol> <li>Drivetrain moves rover forward<br/>and backward</li> <li>Drivetrain turns rover</li> </ol>                |                                                                  |







## Autonomy Backups



## Microprocessor/ Microcontroller Selection



|                                 | SBC         | Microcontroller |
|---------------------------------|-------------|-----------------|
| Processing power required(25%)  | 93.66 Mbps  | 980.4 Kbps      |
| Memory required(25%)            | 349.96 MB   | 172.8 KB        |
| Processing power required(100%) | 374.63 Mbps | 3921.6 Kbps     |
| Memory required(100%)           | 1399.86 MB  | 691.2 KB        |

- 25% number is calculated from what is known so far video storage, sensor baud rate, etc.
- $^{\bigcirc}$  100% number is a margin factor of 4 to account for unknown requirements.
- SBC selection (Raspberry Pi 4) is 4GB(4000MB) and 1.5GHz 64-bit.
- Microcontroller (Teensy 4.1) is 7936KB and 600MHz 32-bit.





## Automation Zoning Satisfaction





#### **Obstacles:**

- Minimum of 2.5 in width
- Sense as far away as possible so we can optimize path

Lidar Resolution

- 1 degree resolution
- Geometry defines that 2.5 inch objects can be detected 3.5 meters away



## **GPS Satisfaction Process**





#### 1. Identify known coordinates

JPL

#### 2. Collect GPS data









## **GPS Satisfaction Process**



#### 3. Conduct accuracy analysis on collected data



#### **Optimal Case (Satellites in View >=15)**

- Max distance error: 1.3031 m
- Distance error mean: 0.75604 m
- Standard deviation: 0.19 m
- Precision: +/- 0.63 m
- Satellites in view: 15-16





**GPS Satisfaction** 





Key:

- Star target
- Green 10m radius
- Yellow 1.15m radius (stop radius)
- Orange 3.39m radius (rover location radius)

Maximum distance from target when the rover stops: 1.15m + 3.39m = 4.54m





## Autonomy Component Validation Testing



| Component(s)<br>Being Tested | Equipment<br>Required                                                   | Test Description                                                                                                                                                                                                                                                                              | Passing Metrics                                                                                | Design<br>Requirements        |
|------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------|
| LiDAR Sensor                 | <ol> <li>LiDAR</li> <li>Rock/ Shrub</li> </ol>                          | 1. Run LiDAR sensor in mission<br>environment to sense the placed<br>obstacle                                                                                                                                                                                                                 | 1. 24 number of data points detected by LiDAR sensor indicating an obstacle in line of motion. | 1.6.2, 1.7.1,<br>1.7.2, 1.7.3 |
| GPS Chip/GPS<br>Antenna      | <ol> <li>GPS chip</li> <li>GPS antenna</li> <li>Raspberry Pi</li> </ol> | <ol> <li>Set up GPS at least 20<br/>meters from the<br/>simulated target with<br/>known coordinates</li> <li>Start collecting GPS data</li> <li>Approach the target until<br/>algorithm signals to stop<br/>(decided by stop radius)</li> <li>Measure distance from the<br/>target</li> </ol> | 1. GPS antenna is within 10 m from the target when stops                                       | 1.6.2, 1.6.5,<br>1.8.1, 1.8.2 |







# Communications Backups





### **Design Requirements:** Rover Communications



Verification Method: D = Demonstration, I = Inspection, A = Analysis, T = Test







## Communications Configuration





Rocket M2

- **Purpose:** 
  - Transmit and receive data between ground station and on-board computer
- **Procurement or Production:** 
  - Procured Rocket M2s and Antennas from heritage project(s)
- **System Specifications:** 
  - Operating Frequency: 2.4 GHz
  - Dever: 24V, 1A PoE
  - Size: 160 x 80 x 30 mm
  - Minimum Data Rate: 36 Mbps
  - @ -80dBm







**Structure:** Utilize rsync over secure shell (ssh) to continuously synchronize files that contain necessary data and commands between ground station and on-board computer

#### Data flow structure:

- The commands file will update based on user input to the ground station UI which will be transmitted to the on-board computer
- The updated commands file will be read on the on-board computer and the necessary command will be applied
- The on-board computer will sync .png and .mp4.gz files to the ground station when created







**Initial proof of concept:** Connected two virtual machines together on local machine (laptop) and transmitted changes to a .txt, an added .png file, and an added .mp4 file



commands.txt=> updated commands file15sec-recording.mp4.gz=> synced video file (compressed)pano-img.png=> synced image from panoramic stitching scriptcoordinates.txt=> gps coodinates of rover







#### Initial proof of concept modeling results: Testing sending sample image and video files

```
[root@onboardcomputer comms-gs]# rsync -v /root/comms-gs/Pano.jpg 192.168.56.101:/root/comms-gs/Pano.jpg
root@192.168.56.101's password:
Pano.jpg
sent 190,302 bytes received 35 bytes 54,382.00 bytes/sec
total size is 190,180 speedup is 1.00
[root@onboardcomputer comms-gs]#
```

[root@onboardcomputer comms-gs]# rsync -v /root/comms-gs/SampleVideo\_720x480\_30mb.mp4.gz 192.168.56.101:/root/comms-g s/SampleVideo\_720x480\_30mb.mp4.gz root@192.168.56.101's password: SampleVideo\_720x480\_30mb.mp4.gz

sent 31,487,927 bytes received 35 bytes 8,996,560.57 bytes/sec total size is 31,480,141 speedup is 1.00 [root@onboardcomputer comms-gs]#







|                          | root@onboardcomputer:~/comms-gs                                                                                                         | root@groundstation:~/comms-gs                                                                                                           |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                          | <pre>[root@onboardcomputer comms-gs]# python3 obcfile sync.py sending incremental file list test.txt</pre>                              | <pre>^ [root@groundstation comms-gs]# python3 gsfilesync<br/>.py<br/>sending incremental file list<br/>test.txt</pre>                   |
| Initial proof of concept | sent 151 bytes received 41 bytes 128.00 bytes/<br>sec<br>total size is 57 speedup is 0.30<br>sending incremental file list<br>test.txt  | <pre>sent 131 bytes received 41 bytes 344.00 bytes/s ec total size is 38 speedup is 0.22 sending incremental file list test.txt</pre>   |
| modeling results:        | sent 188 bytes received 41 bytes 458.00 bytes/<br>sec                                                                                   | sent 170 bytes received 41 bytes 140.67 bytes/s                                                                                         |
| Convey automatic         | total size is 95 speedup is 0.41<br>sending incremental file list<br>test.txt                                                           | total size is 76 speedup is 0.36<br>sending incremental file list<br>test.txt                                                           |
| sending of updated .txt  | sent 226 bytes received 41 bytes 534.00 bytes/                                                                                          | sent 206 bytes received 41 bytes 494.00 bytes/s                                                                                         |
| between VMs              | sec<br>total size is 132 speedup is 0.49<br>sending incremental file list<br>test.txt                                                   | ec<br>total size is 113 speedup is 0.46<br>sending incremental file list<br>test.txt                                                    |
|                          | sent 263 bytes received 41 bytes 202.67 bytes/<br>sec<br>total size is 169 speedup is 0.56<br>sending incremental file list<br>test.txt | sent 245 bytes received 41 bytes 572.00 bytes/s<br>ec<br>total size is 151 speedup is 0.53<br>sending incremental file list<br>test.txt |
|                          | sent 299 bytes received 41 bytes 226.67 bytes/<br>sec<br>total size is 205 speedup is 0.60                                              | sent 281 bytes received 41 bytes 214.67 bytes/s<br>ec<br>total size is 187 speedup is 0.58                                              |





#### Comms Verification: Test Plan



FR. 2: The rover shall transmit and receive data between the onboard computer and the ground station



- **Objective:** 
  - Verify transfer of data, image, and video files between ground station and rover communication system

#### **Test Plan:**

- Utilize rsync capabilities to transfer test files for the three data types
- Utilize rsync capabilities to transfer manual command from rover to ground station

#### Data Collected:

- Data throughput on airOS
- Latency via script

#### Pass Criteria:

- Communication is sustained between ground station and OBC when translating the rover from 1m to 100m in the mission environment
- All files are received following transmission from one rocket M2 to the other





## **Comms Component** Validation Testing



| Component(s)<br>Being Tested | Equipment<br>Required                                                           | Test Description                                                                                                                                                                                                                                                                                                                                                                                                         | Passing Metrics                                                                                                                                         | Design<br>Requirements                         |
|------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Rocket M2                    | <ol> <li>Ground<br/>Station Rocket<br/>M2</li> <li>OBC Rocket<br/>M2</li> </ol> | <ol> <li>Set up bridge network between<br/>ground station Rocket M2 and on-<br/>board computer Rocket M2</li> <li>Monitor data throughput on<br/>airOS and latency via script</li> <li>Verify rsync capabilities of sending<br/>sample files at one meter distance:<br/>.txt, .png, .mp4.gz</li> <li>Utilize ground station UI to update<br/>file and trace transmission of<br/>change made to file via rsync</li> </ol> | 1. Communication is<br>sustained between<br>ground station and<br>OBC when<br>translating the rover<br>from 1m to 100m in<br>the mission<br>environment | 1.3.1, 1.3.2,<br>1.3.3, 1.3.4,<br>1.3.5, 1.3.6 |







# Video / ImagingBackups





#### Design Requirements: Video / Imaging



Verification Method: D = Demonstration, I = Inspection, A = Analysis, T = Test







1.4.3: Rover video subsystem shall take video at a minimum resolution of 640 x 360

1.4.4: Rover imaging subsystem shall have a 360 degree field of view

1.4.5: Rover imaging subsystem shall take image at a minimum resolution of 1920 x 360

1.4.6: Rover imaging subsystem shall take a panoramic image when it reaches the location of interest



D

D

D





## Video / Imaging Configuration



#### Arducam 1080P Fisheye Camera







#### **Purpose:**

- The primary purpose of this subsystem is to record video and take 360 degree panoramic images
- **Procurement or Production:** 
  - Purchasing three widescreen fisheye cameras
- System Specifications:
  - Frame rate: 30 FPS
  - Resolution: 1920x1080
  - □ FOV: 160 degrees (diagonal)





## Video / Imaging Satisfaction



#### Camera

- Sensor: 1/2.8" IMX291
- Resolution: 2MP 1945H x 1109V
- Data Format: MJPG/YUY2/H.264
- Frame Rate: H.264 30fps@1920 x 1080; MJPG 30fps@640×320, 30fps@640×360, 30fps@800×600, 30fps@848×480, 30fps@960×720, 30fps@1024×576, 30fps@1280×720, 30fps@1920×1080; YUY2 30fps@640×320, 30fps@640×360, 30fps@800×600, 30fps@848×480, 30fps@960×720, 30fps@1024×576, 30fps@1280×720, 30fps@1920×1080
- Dynamic Range: 80dB
- USB Connector: B4B-ZR(LF)(SN)

#### Lens

- Field of View (FOV): D= 160°
- Lens Mount: M12
- Focusing Range: 6.56ft (2M) to infinity
- IR Sensitivity: Integral IR filter, visible light only







## Video/Imaging Verification: Test Plan



FR. 2: The rover shall transmit and receive data between the onboard computer and the ground station

Ann and H.J. Smead Aerospace Engineering Sciences Building



- **Objective:** 
  - Verify video files and panoramic images are captured during respective mission phases

#### **Test Plan:**

- Command camera to begin recording video and stop recording after 2 minutes
- Command all three cameras to capture a single image
- Utilize image splicing code to form a single panoramic

#### Data Collected:

- Video file
- Three images
- Pass Criteria:
  - Camera is successful in beginning and ending video recording at specified interval
  - All cameras capture an image when commanded
  - Image splicing results in a single 360° panoramic




#### **Comms Component** Validation Testing



| Component(s)<br>Being Tested                 | Equipment<br>Required                                                    | Test Description                                                                                                                                                                                             | Passing Metrics                                                                                                                                    | Design<br>Requirements |
|----------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Arducam 1080P<br>Fisheye Camera<br>(Imaging) | <ol> <li>3 Arducam<br/>cameras</li> <li>Ground<br/>Station</li> </ol>    | <ol> <li>Assemble three cameras with<br/>camera mount and USB adapter</li> <li>Command each camera to take a<br/>photo simultaneously</li> </ol>                                                             | <ol> <li>3 images captured</li> <li>Images spliced into a<br/>single 360°<br/>panoramic with a<br/>minimum resolution<br/>of 1920 x 360</li> </ol> | 1.4.4, 1.4.5,<br>1.4.6 |
| Arducam 1080P<br>Fisheye Camera<br>(Video)   | <ol> <li>1 Arducam<br/>cameras</li> <li>2. Ground<br/>Station</li> </ol> | <ol> <li>Assemble three cameras with<br/>camera mount and USB adapter</li> <li>Command one camera to start<br/>recording video</li> <li>After 2 minutes command same<br/>camera to stop recording</li> </ol> | 1. A single 100° FOV<br>video with a<br>minimum resolution<br>of 640 x 360 at a<br>minimum of 15<br>frames per second                              | 1.4.1, 1.4.2,<br>1.4.3 |







# Ground StationBackups





#### Design Requirements: Ground Station



Verification Method: D = Demonstration, I = Inspection, A = Analysis, T = Test





#### **Design Requirements:** Ground Station Continued



Verification Method: D = Demonstration, I = Inspection, A = Analysis, T = Test

FR. 7: The ground station shall provide an interface to allow for input of manual commands from user

1.2.9: Ground station shall receive manual control commands inputs from user

1.2.10: Ground station shall transmit manual control commands to the rover

D,T

D





## Ground Station Configuration



- Purpose:
  - The primary purpose of these subsystem is to display video and images taken by the rover, the rover location, and accept user inputs
- System Description:
  - Our ground station consists of a laptop, a radio, and an antenna
  - □ For this subsystem we will be using the 20dBi directional panel antenna and Rocket M2 radio utilized in the previous year's rover project (AEROSS)
  - An aerospace department laptop has been checked out for the duration of the semester



#### Ground Station Satisfaction







#### \*Rover Location to be added

G

#### Ground Station Satisfaction

PL







## Ground Station Test Overview



| Telemetry                                                                                  | Image                                                                                                                                                              | Video                                                                                                                                                            | Manual Controls                                                                                       |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1.2.1, 1.2.2, 1.2.6                                                                        | 1.2.3, 1.2.5, 1.2.7                                                                                                                                                | 1.2.4, 1.2.5, 1.2.8                                                                                                                                              | 1.2.9, 1.2.10                                                                                         |
| 1.2.1 (I)- Ground station<br>will write LOI input to text<br>file and send to rover        | 1.2.3 (A)- Rover will send<br>captured images to ground<br>station through radio<br>which will be analyzed to<br>determine if resolution is<br>at least 1920 x 360 | 1.2.4 (A)- Rover will send<br>captured video to ground<br>station through radio<br>which will be analyzed to<br>determine if resolution is<br>at least 640 x 360 | 1.2.9 (I)- Ground station<br>will provide user interface<br>for user to input manual<br>controls      |
| 1.2.2 (I)- Rover will write<br>current location to text file<br>and send to ground station | 1.2.5 (T)- Ground station<br>will display image received<br>within 10 seconds as<br>compared to timer                                                              | 1.2.5 (T)- Ground station<br>will display video received<br>within 10 seconds as<br>compared to timer                                                            | 1.2.10 (I)- Ground station<br>will write manual control<br>commands to text file and<br>send to rover |
| 1.2.6 (T)- Ground station                                                                  | 1.2.7 (A)- Ground station                                                                                                                                          | 1.2.8 (A)- Ground station                                                                                                                                        |                                                                                                       |
| will display rover location                                                                | will display images which                                                                                                                                          | will display images which                                                                                                                                        |                                                                                                       |
| sent in text file within 2                                                                 | will be analyzed to                                                                                                                                                | will be analyzed to                                                                                                                                              |                                                                                                       |
| seconds as compared to                                                                     | determine if resolution is                                                                                                                                         | determine if resolution is                                                                                                                                       |                                                                                                       |
| timer                                                                                      | at least 1920 x 360                                                                                                                                                | at least 640 x 360                                                                                                                                               |                                                                                                       |





## **Ground Station Test Plan**



- <u>Necessary Hardware:</u> 2 Rocket M2 radios, 2 laptops, ground station panel antenna, and rover omnidirectional antennas
- <u>**Test location:**</u> Outdoors, flat area with no obstructions and negligible interference
- To test sending from rover to ground station: Video, images, and rover location
- To test sending from ground station to rover: Manual controls, control mode input, and location of interest input







# - Electrical Backups





#### Drivetrain Power Budget



| Motor Subsystem                |                          |                   |                                   | -                                   |                     |            |                                              |
|--------------------------------|--------------------------|-------------------|-----------------------------------|-------------------------------------|---------------------|------------|----------------------------------------------|
| Component                      | Operating Voltage<br>(V) | Input Voltage (V) | Estimated<br>Current Draw<br>(mA) | Estimated percent time of operation | Operating Watts (W) | Losses (W) | Loss Notes                                   |
| Motor 1                        | 6                        | 6                 | 600                               | 0.85                                | 3.06                | 0          | Losses will have<br>already occured in ESC   |
| Motor 2                        | 6                        | 6                 | 600                               | 0.85                                | 3.06                | 0          | x                                            |
| ESC 1                          | 6                        | 7.2               | 50                                | 0.85                                | 0.255               | 0.051      | 7.2Vin, operates at 6V,<br>1.2V drop @ 600mA |
| ESC 2                          | 6                        | 7.2               | 50                                | 0.85                                | 0.255               | 0.051      | x                                            |
| Total Power (W)                | 6.732                    |                   |                                   |                                     |                     |            |                                              |
| Max Current Draw<br>(mA)       | 1700                     |                   |                                   |                                     |                     |            |                                              |
| Estimated Avg Current<br>Draw: | 1105                     |                   |                                   |                                     |                     |            |                                              |
|                                |                          |                   |                                   |                                     |                     |            |                                              |





#### Computer Power Budget ...



| Computer Subsystem             | (Used for<br>calculations of<br>Component<br>Subsystem) |                                                            |                                   |                                         |                     |                          |                                                                              |  |
|--------------------------------|---------------------------------------------------------|------------------------------------------------------------|-----------------------------------|-----------------------------------------|---------------------|--------------------------|------------------------------------------------------------------------------|--|
| Component                      | Operating Voltage<br>(V)                                | Input Voltage (V)                                          | ESTIMATED<br>CURRENT<br>DRAW (mA) | OPERATION DURATION<br>/MISSION DURATION | OPERATING WATTS (W) | Losses <mark>(W</mark> ) | Loss Notes                                                                   |  |
| Micro-Controller               | 3.3                                                     | 5                                                          | 100                               | 1                                       | 0.33                | 0.34                     | 5Vin, operates at 3.3V,<br>1.2V drop @ 100mA<br>(MC)+100mA<br>(magnetometer) |  |
| GPS Board                      | 3.3                                                     | 5                                                          | 27                                | 0.2                                     | 0.01782             | 0.00918                  | 5Vin, operates at 3.3V,<br>1.2V drop @ 27mA                                  |  |
| GPS Antenna                    | 3.3                                                     | 5                                                          | 15                                | 0.2                                     | 0.0099              | 0.0051                   | 5Vin, operates at 3.3V,<br>1.2V drop @ 15mA                                  |  |
| Magnetometer                   | 3.3                                                     | 3.3                                                        | 100                               | 1                                       | 0.33                | o                        | see micro-controller<br>loss notes                                           |  |
| Encoder 1                      | 3.3                                                     | 3.3                                                        | 200                               | 1                                       | 0.66                | 0                        | x                                                                            |  |
| Encoder 2                      | 3.3                                                     | 3.3                                                        | 200                               | 1                                       | 0.66                | 0                        | x                                                                            |  |
| Camera 1                       | 5                                                       | 5                                                          | 300                               | 1                                       | 1.5                 | o                        | x                                                                            |  |
| Camera 2                       | 5                                                       | 5                                                          | 300                               | 0.1                                     | 0.15                | 0                        | x                                                                            |  |
| Camera 3                       | 5                                                       | 5                                                          | 300                               | 0.1                                     | 0.15                | 0                        | x                                                                            |  |
| Total Power (W)                | 4.162                                                   |                                                            |                                   |                                         |                     |                          |                                                                              |  |
| Max Current Draw<br>(mA)       | 1542                                                    | Shouldnt ever occur<br>if cameras operate<br>one at a time |                                   |                                         |                     |                          |                                                                              |  |
| Estimated Avg.<br>Current Draw | 908.4                                                   |                                                            |                                   |                                         |                     |                          |                                                                              |  |
|                                |                                                         |                                                            |                                   |                                         |                     |                          |                                                                              |  |





#### . Component Power Budget .\_\_



| Component Subsytem             |                       |                   |                                |                                            |                        |            |                                               |
|--------------------------------|-----------------------|-------------------|--------------------------------|--------------------------------------------|------------------------|------------|-----------------------------------------------|
| Component                      | Operating Voltage (V) | Input Voltage (V) | Estimated Current<br>Draw (mA) | OPERATION<br>DURATION /MISSION<br>DURATION | OPERATING WATTS<br>(W) | Losses (W) | Loss Notes                                    |
| Computer                       | 5                     | 5                 | 800                            | 1                                          | 4                      | 0          | x                                             |
| Computer-Powered<br>Components | Varyied               | 5                 | 908.4                          | 1                                          | 4.162                  | 0.35428    | See Computer<br>Subsytem Notes                |
| Lidar                          | 5                     | 5                 | 500                            | 1                                          | 2.5                    | 0          | x                                             |
| USB Power Hub                  | 5                     | 14.4              | 2208.4                         | 1                                          | 0                      | 0.5521     | 0.95% effecieny @<br>11.042W = 0.5521<br>Loss |
| Ave Melves                     |                       |                   | March Values                   |                                            |                        |            |                                               |
| Buck converter<br>Effeciency   | 0.96                  |                   | Buck converter<br>Effeciency   | 0.96                                       |                        |            |                                               |
| Output power (W)               | 11.042                |                   | Output power (W)               | 14.21                                      |                        |            |                                               |
| Output Voltage (V)             | 5                     |                   | Output Voltage (V)             | 5                                          |                        |            |                                               |
| Output Current (mA)            | 2.2084                |                   | Output Current (mA)            | 2.842                                      |                        |            |                                               |
| Input Power (W)                | 11.5941               |                   | Input Power (W)                | 14.9205                                    |                        |            |                                               |
| Input Voltage                  | 7.2                   |                   | Input Voltage                  | 7.2                                        |                        |            |                                               |
| Avg. Input Current             | 1.610291667           |                   | Max Input Current              | 2.072291667                                |                        |            |                                               |
|                                |                       |                   |                                |                                            |                        |            |                                               |
|                                |                       |                   |                                |                                            |                        |            |                                               |





## Communications Power Budget



|                                 |                                                      | 지 문제 제공 방송에서 집에서 다 다 있었다.                    |                 |
|---------------------------------|------------------------------------------------------|----------------------------------------------|-----------------|
| Antenna Subsystem               |                                                      |                                              |                 |
| boost converter<br>calculations | RocketM2 Values<br>(6.5W @ 24V, iv=p<br>i=p/v=0.271) | POE Injector Values                          | Boost Converter |
| Effeciency                      | 0.97                                                 | 0.75                                         | 0.9             |
| Power Needed Ideal<br>(W)       | 6.5                                                  | 6.53                                         | 8.1625          |
| Power Needed Actual<br>(W)      | 6.53                                                 | 8.1625                                       | 8.97875         |
| Current in (A)                  | 0.272083333                                          | 0.680208333                                  | 1.247048611     |
| Expected Current<br>Draw (A)    | 1.247048611                                          |                                              |                 |
| Max Current Draw                | 1.621163194                                          | just added 30%<br>margin                     |                 |
| Loss                            | 2.47875                                              | loss=P_actual-P_expec<br>ted=(8.97875)-(6.5) |                 |
|                                 |                                                      |                                              |                 |





#### Battery Component Validation Testing



| Component(s)<br>Being Tested     | Equipment<br>Required                                                                                           | Test Description                                                                                                                                                                                                                                                          | Passing Metrics                                                                                                                                                   | Design<br>Requirements    |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Motor Battery                    | <ol> <li>Motor battery</li> <li>Motors</li> <li>Oscilloscope</li> <li>Simulated<br/>load</li> </ol>             | <ol> <li>Motors that will be set up with<br/>an equivalent load to the rover<br/>weight and powered with the<br/>respective battery</li> <li>Battery terminal voltages will<br/>be measured using the<br/>oscilloscope</li> </ol>                                         | Recorded voltages will be<br>compared to specification<br>sheet voltage/capacity<br>chart values to calculate actual<br>discharge rate and capacity<br>over time. | 1.10.3, 1.10.4            |
| Component/<br>RocketM2 Batteries | <ol> <li>Component<br/>battery</li> <li>Bread board<br/>equivalent<br/>circuit</li> <li>Oscilloscope</li> </ol> | <ol> <li>A bread board circuit with<br/>expected equivalent current<br/>and voltage to the actual<br/>component circuit will be<br/>powered with the respective<br/>battery</li> <li>Battery terminal voltages will<br/>be measured using the<br/>oscilloscope</li> </ol> | Recorded voltages will be<br>compared to specification<br>sheet voltage/capacity<br>chart values to calculate actual<br>discharge rate and capacity<br>over time. | 1.10.1, 1.10.2,<br>1.10.5 |







# Mechanical Backups





#### Torque Governing Equations





**Governing Equations:**  

$$\tau = r \times F_{fr}$$
  $F_{fr} = \mu * g * \frac{m}{4}$ 

**Nomenclature:** 

- m = mass of rover [kg]
- r = radius of rover tire [m]
- μ = static coefficient of friction;
   rubber on grass
- □ F<sub>fr</sub> = Frictional Force [N]
- g = gravitational constant [m/s2]





#### Structural Analysis of Baseplate



• Applied Load of 25 N (21 N is estimated weight Force Applied to Plate)









#### Structural Analysis of Bearing



Moment of Chain force at Gear Distance + Weight Force of Rover at Wheel distance









#### **Torque Requirements and Speed Estimates**







128



#### Additional CAD Views of Rover

















# General Backups

Additional CONOPS, mission environment, assumptions, cost breakdown, resources







| JPL                                                                                                               | •                                                                                                                                                                                                                                                                      | Loss of Signal<br>CONOPS                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                        | S.A.I.L.F                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                   |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |
| Rover<br>Autonomously<br><u>Navigates</u><br>1. Rover is<br>autonomously<br>navigating to location<br>of interest | Rover Moves out of<br>Communication2. Rover loses communication to<br>the ground station due to an<br>obstacle or due to being out of<br>range of the ground station3. Communication check detects<br>that is no longer in<br>communication with the ground<br>station | Rover Navigates into<br>Communication<br>4. The rover automation shall control<br>the rover to move backward following<br>the same path it had just taken<br>5. The rover will continue to move<br>backward until the communication<br>check detects that communication has<br>been re-established | Rover Sets new Path6. Rover manual control shall be<br>enabled by the automation code after<br>the rover moves back into<br>communication7. The rover will move past the<br>obstacle continuing to check<br>communication with the ground<br>station8. If communication is lost under<br>manual command return to step 2 | <u>Continue</u><br><u>Mission</u><br>9. The rover shall<br>pass the object and<br>continue<br>autonomously<br>navigating towards<br>the location of<br>interest |





## Mission Environment Elements



\*\*Images not to scale



#### Ideal Shrub:

- Height greater than 2.5 inches
- Diameter greater than 2.5 inches
- High leaf density to prevent visibility through the shrub

#### Ideal Rock:

- Height greater than 2.5 inches
- Diameter greater than 2.5 inches

#### Ideal Twigs:

• No more than 0.5 inches in diameter





## Assumptions



- Uniformity of the environment the grass height will be approximately constant throughout the entire mission environment
- Obstacles will be fixed in place, meaning they will not move relative to the ground
- To test our rover's ability to navigate around obstacles we will test the rover's ability to navigate around the smallest obstacles. It is assumed that if our rover can sense and navigate around the smallest obstacles it will be able to sense and navigate around larger obstacles (given sufficient battery life and a possible path)









- The terrain will be hard enough that the rover does not sink into the ground more than 0.5 inches when initially placed in the environment.
- There will not be an obstacle located within the 10m radius around the location of interest or the ground station
- The LOI coordinates will be determined using the GPS sensor onboard the rover



#### **Cost Breakdown**



| Item                   | Quantity | Cost     | Purpose          | Obtained? Y/N | Total    |
|------------------------|----------|----------|------------------|---------------|----------|
| Motor                  | 2        | \$19.90  | Drivetrain       | No            | \$39.80  |
| Wheels                 | 1        | \$52.99  | Drivetrain       | No            | \$52.99  |
| Chain                  | 2        | \$17.64  | Drivetrain       | No            | \$35.28  |
| Structure Material     | 1        | \$0.00   | Structure        | Yes           | \$0.00   |
| Sprocket               | 4        | \$13.25  | Drivetrain       | No            | \$53.00  |
| Axle                   | 4        | \$10.28  | Drivetrain       | No            | \$41.12  |
| Nut                    | 1        | \$11.00  | Drivetrain       | No            | \$11.00  |
| Bearing                | 8        | \$4.82   | Drivetrain       | No            | \$38.56  |
| GPS Chip               | 1        | \$0.00   | GPS              | Yes           | \$0.00   |
| GPS Antenna            | 1        | \$0.00   | GPS              | Yes           | \$0.00   |
| Lidar                  | 1        | \$0.00   | Sensing          | Yes           | \$0.00   |
| Camera                 | 3        | \$50.00  | Pictures / Video | No            | \$150.00 |
| Rocket M2              | 1        | \$0.00   | Comms            | Yes           | \$0.00   |
| Magnetometer           | 1        | \$19.95  | Control          | No            | \$19.95  |
| ESC                    | 2        | \$8.90   | Drivetrain       | No            | \$17.80  |
| Teensy                 | 1        | \$31.50  | Control          | No            | \$31.50  |
| Raspberry Pi           | 1        | \$118.99 | OBC              | No            | \$118.99 |
| 8mm x 1' shaft         | 1        | \$5.35   | Drivetrain       | No            | \$5.35   |
| Bearing Mount Screws   | 1        | \$12.45  | Drivetrain       | No            | \$12.45  |
| Aluminum Sheet         | 1        | \$7.97   | Motor Bracket    | No            | \$7.97   |
| Neodymium Magnets      | 8        | \$0.50   | Structure        | No            | \$4.00   |
| Boost Converter        | 1        | \$0.00   | Electrical       | Yes           | \$0.00   |
| USB Hub                | 2        | \$16.95  | Electrical       | No            | \$33.90  |
| DC-DC Poe Adapter      | 1        | \$0      | Electrical       | Yes           | \$0.00   |
| Buck Converter         | 1        | \$14.88  | Electrical       | No            | \$14.88  |
| Batteries              | 3        | \$50     | Electrical       | No            | \$150.00 |
| Standoffs              | 12       | \$1.88   | Structure        | No            | \$22.56  |
| Standoffs              | 4        | \$1.99   | RocketM2         | No            | \$7.96   |
| Standoff Screws        | 1        | 15.08    | Structure        | No            | \$15.08  |
| Bearing Mount Material | 1        | 15.25    | Structure        | No            | \$15.25  |







- IMU/Magnetometer Selection: <u>https://www.adafruit.com/product/5543</u>
- Lidar Selection: RPLidar A2M8 Photo, <u>https://www.slamtec.com/en/Lidar/A2Spec</u>
- Lidar Selection: Datasheet A2M8, <u>https://www.slamtec.com/en/Support#rplidar-a-series</u>
- GPS Selection: <u>https://www.sparkfun.com/products/15005</u>
- GPS Survey Point Map: <u>https://geodesy.noaa.gov/NGSDataExplorer/</u>
- Land Moves: <u>https://www.weather.gov/jetstream/plates\_max</u>
- Ground Station Antenna Selection: <u>https://www.tupavco.com/products/panel-antenna-24ghz-wifi-20dbi-wireless-outdoor-18-directional-n-f</u>
- Ground Station/Rover Radio Selection: <u>https://store.ui.com/collections/operator-airmax-devices/products/rocket-m2</u>
- Camera Selection/Spec Sheet: <u>https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os/</u>
- Coefficient of Friction: <u>https://www.engineeringtoolbox.com/friction-coefficients-d\_778.html</u>







- Curiosity Image: <u>https://www.nasa.gov/image-feature/jpl/curiosity-s-selfie-at-mont-mercou</u>
- NIFTi Image: Kruijff, G. J. M., Kruijff-Korbayová, I., Keshavdas, S., Larochelle, B., Janíček, M., Colas, F., Liu, M., Pomerleau, F., Siegwart, R., Neerincx, M. A., Looije, R., Smets, N. J. J. M., Mioch, T., van Diggelen, J., Pirri, F., Gianni, M., Ferri, F., Menna, M., Worst, R., ... Hlaváč, V. (2014). Designing, developing, and deploying systems to support human–robot teams in disaster response. Advanced Robotics, 28(23), 1547–1570. https://doi.org/10.1080/01691864.2014.985335
- Pleasant View Sports Complex Image: <u>https://sportsfieldmanagementonline.com/2015/12/21/championship-field-pleasant-view-sports-complex-boulder-co/7729/</u>
- Shrub Image: <u>https://www.collinsdictionary.com/us/dictionary/english/bush</u>
- Rock Image: <u>https://www.pngwing.com/en/free-png-zaziy</u>
- Twig Image: <u>https://daily.wordreference.com/2021/07/05/intermediate-word-of-the-day-twig-2/</u>







#### All Components

| Motor                  | https://www.mouser.com/ProductDetail/DFRobot/FIT0521?qs=0lQeLiL1qyZe5LlZGe9xQg%3D%3D                                                         |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Wheels                 | https://www.amazon.com/INJORA-Beadlock-Wheels-Crawler-Traxxas/dp/B07CWQ7BS7                                                                  |
| Chain                  | https://www.mcmaster.com/6261K171/                                                                                                           |
| Chain Sprocket         | https://www.mcmaster.com/2737T102/                                                                                                           |
| Fastener (Hex Screw)   | https://www.mcmaster.com/91280A284/                                                                                                          |
| Fastener (Nut)         | https://www.mcmaster.com/91423A511/                                                                                                          |
| Ball Bearing           | https://www.mcmaster.com/5972K91/                                                                                                            |
| GPS RTK Board          | https://www.sparkfun.com/products/15005                                                                                                      |
| GPS/GNSS Antenna       | https://www.sparkfun.com/products/14986                                                                                                      |
| LiDAR Sensor           | https://www.slamtec.com/en/Lidar/A2Spec                                                                                                      |
| Camera                 | https://www.amazon.com/Arducam-Computer-Fisheye-Microphone-Windows/dp/B07ZS75KZR?th=1                                                        |
| IMU                    | https://www.adafruit.com/product/5543?gclid=Cj0KCQjwteOaBhDuARIsADBqRejB6XwzW9MWYGnD6Z1rjf-<br>sMFtspATbbgo9m5cIFM6jJ76kiW9WyzEaAl36EALw_wcB |
| ESC- Motor Driver      | https://www.dfrobot.com/product-2429.html                                                                                                    |
| Teensy 4.1             | https://www.pjrc.com/store/teensy41.html                                                                                                     |
| Raspberry Pi 4 Model B | https://www.raspberrypi.com/products/raspberry-pi-4-model-b/                                                                                 |







#### All Components

| Steel Rod                            | https://www.mcmaster.com/8920K26-8920K261/                                                                                                                                                                                                                                                                                                       |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fastener (Screw)                     | https://www.mcmaster.com/91772A508/                                                                                                                                                                                                                                                                                                              |
| Aluminum Sheet                       | https://www.mcmaster.com/89015K171/                                                                                                                                                                                                                                                                                                              |
| DC-DC Converter                      | https://www.amazon.com/dp/B09ZXT6J7S?ref =cm_sw_r_cp_ud_dp_MSED5QYZBHRZ4P14AVBR                                                                                                                                                                                                                                                                  |
| USB Hub                              | https://www.amazon.com/Sabrent-4-Port-Individual-Switches-HB-UM43/dp/B00JX1ZS5O?th=1                                                                                                                                                                                                                                                             |
| DC to DC Converter &<br>PoE Injector | https://www.tyconsystems.com/tp-dcdc-1224g                                                                                                                                                                                                                                                                                                       |
| Voltage Regulator                    | https://www.amazon.com/dp/B099YQDGCH? encoding=UTF8&psc=1&ref =cm_sw_r_cp_ud_dp_GP1JMZDDT5M5T11FRJJM                                                                                                                                                                                                                                             |
| Battery                              | https://www.digikey.com/en/products/detail/rose-batteries/LI-2S1P-<br>2200/15283295?utm_adgroup=Battery%20Products&utm_source=google&utm_medium=cpc&utm_campaign=Dynamic%20Search_EN_Pr<br>oduct&utm_term=&utm_content=Battery%20Products&gclid=Cj0KCQiA4OybBhCzARIsAIcfn9k3V3ybhwnEMUH8EVHfyMmRkzJJIdbGG<br>h4rBpF5R22EuIMkg1x87iQaAkadEALw_wcB |
| Fastener (Standoff)                  | https://www.mcmaster.com/98952A101/                                                                                                                                                                                                                                                                                                              |
| Fastener (Standoff)                  | https://www.mcmaster.com/98952A107/                                                                                                                                                                                                                                                                                                              |
| Fastener (Screw)                     | https://www.mcmaster.com/91290A013/                                                                                                                                                                                                                                                                                                              |
| Aluminum Bar                         | https://www.mcmaster.com/9008K87-9008K871/                                                                                                                                                                                                                                                                                                       |

