

ASEN 4028 - Team 5

Agenda

- Overview
- Schedule
- Test Readiness
- Budget

Main Acronyms and Definitions

VR - Virtual Reality	Computer-generated environment
PR - Physical Reality	The world we live in
HR - Hybrid Reality	 VR and PR combined. Interaction with PR has consequences in VR
EVA - Extravehicular Activity	Astronaut activity outside of a spacecraft/habitat
ORU - Orbital Replacement Unit	Block of electrical components for easy replacement/fixes
MSSQ - Motion Sickness Susceptibility Questionnaire	Form given to test subjects to predict likelihood of motion sickness
BS - Base Station	Device used to obtain the location of object trackers

Schedule

Overview

Intro

Test

Readiness

Budget

اراد

4

Overview

Mission Statement

The HEIST system will develop the capability to train humans for lunar EVA habitat maintenance and repair operations using HR.

Project's Goals

Develop a hybrid reality (HR) training system (VR + PR)

- Track the user's interaction with PR hardware
- Track the user's motion (head and hands) in PR
- Display the outcomes of the user's actions in VR

Increase training immersion

- Constrain user's arm and shoulder motion
- Display environmental constraints (in VR)

Create a safe and versatile training environment

Overview

Schedule

Test Readiness

Objectives & Levels of Mission Success

Objectives	Level 1 Success	Level 2 Success				
VR Environment	The project must include a VR environment that allows for some user interaction and resembles a lunar environment	The project must include a fully interactive and visually accurate VR lunar environment that includes shadows, lighting, and lunar textures				
Integrate with Real-World Elements	The project must allow for one tool and/or panel to integrate from PR to the VR environment, resulting in an HR environment	The project must allow for the integration of multiple tools and/or panels in the HR environment				
Lunar Environment Conditions	The project will represent lunar lighting, temperature, or auditory inputs	The project will simulate lunar lighting, temperature, and auditory inputs				
Movement Constraints	The project will incorporate range-of-motion constraints that limit arm and shoulder mobility more than regular clothes	The project will incorporate range-of-motion constraints that limit arm, upper-body, and hand mobility				

Se Se

Overview

Schedule

Test Readiness

2 🔍

Major Design Changes

- Arm Harness Design
 - Resistance Bands
 - 3D Printed Straps
 - Elbow Joint Hinge Method
- ORUs will be made from MDF
 wood instead of 3D-printed
- Panels will be made from MDF wood instead of foamed PVC
- Obtained Valve Index BS 2.0

Intro

Overview

Schedule

Test Readi<u>ness</u>

Schedule

HEIST Tests

Test Name	Location	Equipment	HITL?	
Arm Harness Elastic Bands	MTS Room	MTS Machine	No	
Switch/Button Bouncing Time	AERO 150	Oscilloscope	No	
EVA Panel Tipping		Safety foam, fish scale, weights	No	
Headset Battery Discharge			No	
Computer Processing Workload		_	INU	
Hand Tracking Accuracy		Dular 1 tracker	Voo	
Object Tracking Accuracy	AERO 140	Rulei, Tüdckei	res	
Arm Harness Counter-Torque		Fish scale, camera, tripod, test rig (HEIST design)	No	
Arm Harness Comfort		_	Yes	
HR Latency		Arduino DUE, button	Yes	
HEIST Day-In-The-Life	AERO 140	-	Yes	

Overview

CDR Gantt Chart

						S	9	Å	10		2()2	23				Sp	oring	Bre	ak			
WARS & CANTT CH	ADT			LEGEND																			
WBS & GANTT CH	4/(1		ES	EARLY	START													/					
			EF	EARLY	FINISH			_			_										ndustry S	mposium	n
SEMESTER START DATE	16-Jan-23		LS	LATE S	TART				AIAA	Int 1	TRR			In	it.	AIAA	4		INT	SER			
SEMESTER END DATE	10-May-23		LF	LATE F	NISH			DR .	Abstract		1	RR		AIA	AA	Paper				- Th	SFR		
							16-Jan	23-lan	30-lan	6-Feb	13-Feb	20-Feb	27-Eeb	6-Mar	13-Mar	20.Mar	27-Mar	3-Anr	10-Apr	17-Anr	74-Apr	1-May	8-May
	DAYS		DA	ATE		DAYS	10-3411	23-3411	Jo-Jan	0100	13-160	20100	27100	- Iviai	13-14101	20-14101	27-14101	3-7401	10-14	1/-mpi	24-14	T-IAIGA	o-may
TASK	DURATION	ES	EF	LS	LF	FLOAT						i			i		1			ill <mark>i</mark>	i		
DELIVERABLES																							
AIAA Abstract	7	16-Jan	22-Jan	23-Jan	29-Jan	7			i		i	i			i					i ii	i		
Internal Design Review	14	23-Jan	5-Feb	23-Jan	5-Feb	0		$\bullet \bullet \bullet$	••••														
Test Readiness Review - SLIDES	21	23-Jan	12-Feb	27-Jan	16-Feb	4																	
Test Readiness Review - SLIDE REVIEW	3	13-Feb	15-Feb	17-Feb	19-Feb	4						i								i ii	i		
Test Readiness Review - PRESENTATION	1	27-Feb	27-Feb	27-Feb	27-Feb	0					!		•		!					<u> </u>			
AIAA Paper	35	30-Jan	5-Mar	6-Feb	12-Mar	7																	
Spring Final Review - SUDES	28	13-Mar	9-Apr	20-Mar	16-Apr	7														Цİ.	j		
Spring Final Review - SLIDES REVIEW	4	17-Apr	20-Apr	20-Apr	23-Apr	3																	
Spring Final Review - PRESENTAION	1	26-Apr	26-Apr	26-Apr	26-Apr	0															•		
Prepare Symposium	7	10-Apr	16-Apr	14-Apr	20-Apr	4					i i									<u>i</u>			
BUILD & DEVELOPMENT																							
Develop VR Environment	35	16-Jan	19-Feb	3-Feb	9-Mar	18			i		i		5 p.							iŭ	i		
Order Components	7	16-Jan	22-Jan	19-Jan	25-Jan	3						1											
Build EVA Tool	7	16-Jan	22-Jan	23-Jan	29-Jan	7		1 p.															
Build Arm Constraints	21	23-Jan	12-Feb	6-Feb	26-Feb	14					3 p.	i –			i i					i Ü	i		
Build EVA Panel + Electronics	14	23-Jan	5-Feb	13-Feb	26-Feb	21				2 p.							L 1						
Integration	14	13-Feb	26-Feb	21-Feb	6-Mar	8			i			1	4 p.							i ii			
Testing Setup: Hardware & Software	10	13-Feb	22-Feb	21-Feb	2-Mar	8						3	р.										
VERIFICATION & VALIDATION																							
Phase T1: Component Testing	14	2-Mar	15-Mar	8-Mar	21-Mar	6					1				1								
Phase T2: Subsystem Testing	21	16-Mar	5-Apr	22-Mar	11-Apr	6																	
Phase T3: Day-in-the-life testing	5	6-Apr	10-Apr	12-Apr	16-Apr	6														i i			

Intro

Schedule

Overview

Readiness

Test

Software
Software Margin
Hardware
Hardware Margin

External Deadline
 Internal Deadline
 Critical Path

Testing Schedule

					Feb	ruary 2023	2010		March 2023			April 2023	1
Task #	Activity	Resource	S	ţ::	18 19 20 21	2223242526	2728 010203040	5060708091011121	3 14 15 16 17 18 19 20 21 22 2	23 24 25 26 27 28 29 30 31 01 02 03	304050607080910	11 12 13 14 15 16 17	18 19 20 21 22 23
7	Verification & Validation		+	•									
7.1	Test Resistance Bands	Hardware	V							SPRING			
7.2	Switch/Button Bouncing	Electrical	V							BREAK			
7.3	Battery Discharge	Software	-				Battery	ischarge		21 d			
7.4	EVA Panel Tipping	Hardware						Tipping		30 d			
7.5	Counter-torque	Hardware						Torque	9 d				
7.6	Arm Harness Comfort	Hardware							Comfort		9 d		
7.7	Processing Workload	Software						Processing Wkle	d 7 d				
7.8	Object Tracking Accuracy	Software						Object Tracking	17 d				
7.9	Hand Tracking Accuracy	Software						Hand Tracking	17 d				
7.10	HR Latency	Software							Latency	1	7 d		
7.11	Day-in-the-life	All									DITL Test	8 d	
							Test	Subject So	earch				
		Intro	0		> C	verviev	N	Schedule	Test Readine	Budg	get		

Test Readiness

COMPLETED Arm Harness Elastic Bands

Schedule

Overview

DR 2.1.2.1 - The PCs shall provide counter-torque to the elbow within a range of -6 to 7 ± 10% Nm.

- Used MTS Machine to obtain the Force vs.
 Displacement values for each Test Coupon (TC)
- Determined that the front band will be TC1 and back band will be TC2

Intro

Test Readiness Budget 21

COMPLETED Switch/Button Bouncing Time

DR 1.2.2 - The state of PR input devices shall be sampled at a rate of at least 90 Hz.

- Clicked buttons / flipped switches to find settling time to determine maximum sampling rate.
- Determined that all buttons and switches work in accordance with specifications and HEIST can sample at 300Hz (FS = 1.5) if needed.

	/	Settling Time	Buttons	Switches
	N N	Average (AVG) [ms]	1.62	0.69
φ <u>φ</u>		Absolute error (STD) [ms]	0.47	0.11
		Relative error (STD/AVG)	29%	16%
Intro	Overview	Schedule Test Readiness	Budget	22

Arm Harness Counter-Torque Test

COUNTER TORQUE - Purpose

- **Purpose**: to address concerns during CDR that arm harness would provide either too much or too little counter torque.
 - Too little = not as immersive, doesn't realistically simulate a space suit
 - Too much = might harm the user, be uncomfortable
 - Verify torque profile is within 10% of the EVA suit torque linear fit
- Past Tests:
 - Completed the Arm Harness Elastic Band test to find the necessary elastic bands to use in the Arm Harness system
 - Guided prediction of the counter-torque values based on angle

COUNTER TORQUE - Test Summary

DR 2.1.2 - The PCs shall constrain the user's elbow extension movement within a range of 0 - 115 deg.

Schedule

Test

Readiness

Budget

25

DR 2.1.2.1 - The PCs shall provide counter-torque to the elbow within a range of -6 to 7 ± 10% Nm.

- The arm harness will be flexed/extended at 5° intervals and the normal force required to keep it there will be measured.
- Torque will be calculated from T = Fr, where F is the measured force, r is the moment arm and T is the torque that the arm harness applies.

Overview

Intro

COUNTER TORQUE - Expected Data Outputs

Intro

Overview

Schedule

Test Readiness

COUNTER TORQUE - Pass/Fail Criteria

DR 2.1.2 - The PCs shall constrain the user's elbow extension movement within a range of 0 - 115 deg.

DR 2.1.2.1 - The PCs shall provide counter-torque to the elbow within a range of -6 to 7 ± 10% Nm.

Pass = Counter-Torque profile is within 10% of EVA suit torque linear fit profile of all measured locations.

Test

Readiness

Budget

27

Fail = 1 or more torque values is outside 10% of EVA suit torque linear fit profile. If this is the case, iterate on current design to adjust torque.

Schedule

Overview

Intro

COUNTER TORQUE - Procedure

Front View

- Clamp the arm harness
 (AH) 3D printed straps
 (purple) to the table
- 2. Slide metal rod through fish scale loop to the center and tighten nuts to hold it in place

Measurements in inches

Test Readine<u>ss</u>

Measurements in inches

COUNTER TORQUE - Procedure

- 3. Place the metal rod through the holes pre-set at 5-degree increments starting with hole 1
- 4. Attach the fish scale to the top straps of the AH with a zip tie
- 5. Allow the fish scale to settle, record the value on the fish scale

Side View

Top View

29

Intro

Overview

Schedule

Test Readiness

COUNTER TORQUE - Procedure

Isometric View

- Continue through all angle positions for the arm harness (1-24)
- 7. Repeat 9 more times steps1-6 for a total of 10 cycles
- 8. Send data to both the Test Lead and Hardware Lead for analysis

Intro

Measurements in inches

Schedule

Overview

Test

Readiness

30

COUNTER TORQUE - Materials Needed

Material	Size	Quantity	Supplier
Wood	MDF 1/4in thick	1	Home Depot Laser Cut @AERO
Metal Threaded Bar	¼ - 16 x 12in	1	Home Depot
Nuts	1⁄4 - 16	4	McGuckin's
Fish Scale	Maximum: 20 [kg] Precision: 0.01 [kg]	1	AES Electronics Shop
Clamps	N/A	2	AERO Machine Shop
Arm Harness	25 th Percentile Size	1	HEIST

Intro

HEIST Day in the Life Test

DAY IN THE LIFE - Summary

FR 1 - HEIST shall be an immersive HR system where the user can enter a VR environment and interact with it though PR elements.

FR 2 - The PCs shall inhibit movement of at least one part of the body.

FR 3 - The user shall be in no danger while operating in the HR environment.

DAY IN THE LIFE - Purpose

- This test will examine all components of the deliverable to verify that the project works as it is supposed to.
- To pass, the HEIST system must achieve all functional requirements and
 - Not cause motion sickness to the user

Intro

- Allow the user to complete training tasks in HR
- To run this test, all other tests must be completed. If any one of them should fail, the system will have to be modified to pass this final test

DAY IN THE LIFE - Safety

- Pre-screening with MSSQ, arm mobility, and epilepsy questionnaire
- HEIST supervisor will be always watching the test
 - The supervisor will also be checking in with the user every 3 minutes to guarantee that they are not becoming motion sick
 - They will cancel the test if necessary if the subject becomes sick

	Not Applicable - Never Traveled	Never Felt Sick	Rarely Felt Sick	Sometimes Felt Sick	Frequently Felt Sick	
Cars						
Buses or Coaches						
Trains						
Aircraft						
Small Boats						
Ships, e.g. Channel Ferries						
Swings in playgrounds						
Roundabouts in playgrounds						
Big Dippers, Funfair Rides						
	t	0	1	2	3	

DAY IN THE LIFE - Test Procedure

- Screen the subject: MSSQ and health screening.
- Obtain verbal consent from subject
- Load the VR environment and start the headset and the panel
- With the individual already in the play area, have them put the arm harness and VR goggles on
- Start the tasks within VR and observe the user completing the objectives
- Once the individual has completed the tasks, help them remove the head set and arm harness and then have them fill out the accompanying survey.

DAY IN THE LIFE - Materials Needed

- Completed Panel & ORUs
 - Including all electrical components hooked up and running
- Completed VR environment
- Completed arm harness (4x)
 - (1 right +1 left) per size
- Base Stations (2x)
- HTC Vive Trackers (4x)
- ORU Tool (1x)
- VR Laptop
- Personal Laptop
 - For the final survey

Intro

Schedule

Overview

e 🔪 Re

Test Readiness

DAY IN THE LIFE - Samples

- A minimum of 10 individuals must be sampled
 - NASA-STD-3001: standard for testing with humans in the loop
- All individuals must pass the MSSQ and health questionnaires
- A variety of ages, genders, and experiences with VR will be tested

Intro

Overview

Budget

38

Test

Readiness

Schedule

DAY IN THE LIFE - Expected Data Outputs

- We will collect data with a Likert survey
- Binary answer of if the user was able to complete the test
- 1-5 rating on motion constraint of the arm harness
- 1-5 rating on immersive capabilities of the system
- 1-5 rating on perceived safety of the system

DAY IN THE LIFE - Pass/Fail Criteria

Pass = At least 80% of individuals rate the system as having met all functional requirements

 Consider that a subject thinks that we meet a functional requirement if they score above a 3.4 / 5 in the questions about such functional req.

Fail = Less than 80% of individuals rate the system as having met all functional requirements

Overview

• The team will evaluate the results to find the short comings and fix these before attempting the test again

Test

Full Budget

lIJ

Status of Items - Received

Hardware

Item	Purpose	Supplier	Quantity	Cost/Unit	Cost
Flat Aluminum Bar 96x1x1/8	Used for arm harness as the structure	HomeDepot	2	\$22.93	\$45.86
Pine Board 2x2x8'	Used for the EVA stand	HomeDepot	10	\$15.20	\$152.00
Pine Board 2x10x8'	Used for the EVA stand	HomeDepot	1	\$16.57	\$16.57
Resistance Loop Exercise Bands	Used to create resistance within the arm constraint mechanism	Amazon	1	\$10.87	\$10.87
Ball Bearing Roller	Used for locking and unlocking EVA panel door	McMaster	1	\$7.05	\$17.68
MDF Sheet	Used to construct EVA panel frame, ORUs	HomeDepot	1	\$54.33	\$54.33
Threaded Zinc Rod	Used for the EVA stand	HomeDepot	1	\$1.97	\$1.97
10-32-1 1/4 Machine Screw	Used for the EVA stand	HomeDepot	12	\$1.38	\$16.56
10-32-1 Machine Screw	Used for EVA stand and arm harness	HomeDepot	1	\$1.38	\$1.38
MDF Sheet 4x8' 1/4"	Used for EVA panel stand	HomeDepot	1	\$54.33	\$54.33
Software					
HTC Vive 3.0 Tracker	Tracking pucks that allow for VR tracking of physical objects	Amazon	2/4	\$129.98	\$519.92
HTC Base Station 2.0	Base stations communicate with the Vive Trackers, send info to the headset	Amazon	2	\$249.95	\$516.89
Base Station Tripod (2 pack)	Allows the base stations to be held up for better communication to the trackers.	Amazon	1	\$45.00	\$45.00
Batteries (AA)	Used to power Oculus controllers	HomeDepot	1	\$8.87	\$8.87
Intro	Overview Schedule	Test Readiness	Budget		43

Status of Items - Received

Overview

Electrical

Item	Purpose	Supplier	Quantity	Cost/Unit	Cost
Round Momentary Buttons (35 mm)	Buttons below the screen to control what the screen says/switch through tasks	Amazon	1	\$15.49	\$15.49
Rotary Potentiometer - 10k Ohm, Linear	used to track the motion of the hinge of the door	Amazon	1	\$9.98	\$9.98
Arduino Shield	Used to create the button panel on the EVA stand	Amazon	1	\$17.90	\$17.90
Square push buttons	Used for the buttons on the EVA panel	Amazon	1	\$12.99	\$12.99
Red and Black Wires	Used to connect electronics in EVA panel	Amazon	1	\$9.98	\$9.98

Schedule

Intro

Test

Readiness

Status of Items - Pending

Software

Item	Purpose	Supplier	Quantity	Cost/Unit	Cost
Vive 3.0 Trackers	Used with base stations to track objects or body positions.	Amazon	2/4	\$129.98	\$519.92

Amazon sent the trackers back, then resent them to the aerospace building, which took about a month. On arrival, only 2 of the 4 trackers ordered were in the package, the packing slip says that there should be 4. Working with Jacqui to determine if there is a second package still to arrive, or if Amazon did not send enough.

Status of Items - Planned

Hardware

Item	Purpose	Supplier	Qty	Cost/Unit	Cost
3d Filament	Used for printing mock tools	AES Department	1	\$50	\$50
Belt for mock tools	Keep track of tools when not in use	Amazon	1	\$15	\$15
Software					
DLink Air Bridge	Used to create a fast wireless connection to headset.	Meta	1	\$100	\$100
Quest 2 Strap	Alternate head strap option - more easily adjusted between people using headset.	Meta	1	\$59.99	\$59.99
3D Assets	Used to create immersion in the VR environment	Variable Locations	1	\$100	\$100

Other smaller items have also been planned for in the budget, such as fasteners, glue, etc.

Sc

Overview

Test Readiness

CURRENT SPENDING BY SUBTEAM

Intro

Overview

Schedule

Hardware	512.75
Software	1090.68
Electrical	66.34
TOTAL	1669.77

Remaining Budget: \$2330.23

47

Budget

Test

Readiness

PREDICTED SUBTEAM BUDGET BREAKDOWN

, **G**

Credits

Presenters

Sruthi Bandla Alicia Wu Esther Revenga Villagra Rachael Carreras Matthew Grewe

Lucy Davis

Additional Team Members

Trayana Athannassova

Hattie Rice

Sebastian Boysen

Akanksha Nelacanti

Julia Claxton

Steven Young

Faculty Advisor

Dr. Allison Anderson

Mentor Company

Blue Origin

CDR Reviewers

Gina Staimer

Thank you!

Q&A Time (15 min)

Appendix

Backup Slides

Full List of Acronyms

A	=	Analysis (V&V)	HR	=	Hybrid Reality
AR	=	Augmented Reality		=	Inspection (V&V)
BS	=	Base Station	LOS	=	Line Of Sight
CDR	=	Critical Design Review	Mech	=	Mechanical
CFO	=	Chief Financial Officer	Mgmt	=	Management
COTS	=	Commercial Off The Shelf	MS	=	Motion Sickness
CPE	=	Critical Project Element	ORU	=	Orbital Replacement Unit
D	=	Demonstration (V&V)	PC	=	Physical Constraint
DH	=	Data Handling	PDD	=	Preliminary Design Document
DoF	=	Degree of Freedom	PDR	=	Preliminary Design Review
DR	=	Design Requirement	PM	=	Project Manager
Elect	=	Electrical	PR	=	Physical Reality
EVA	=	Extravehicular Activity	SE	=	Systems Engineer
FBD	=	Functional Block Diagram	SME	=	Subject Matter Expert
FFBD	=	Functional Flow Block Diagram	SW	=	Software
FOV	=	Field Of View	Т	=	Test (V&V)
FR	=	Functional Requirement	TBD	=	To Be Determined
HEIST	=	Hybrid Environmental	TBR	=	To Be Refined
		Immersive Simulation Training	TPM	=	Technical Performance Measure
HT	=	Hand Tracking	UI	=	User Interface
		.	UX	=	User Experience
			VR	=	Virtual Reality 52

۶J

Switch/Button Bouncing Time Test

Distribution of Button Bouncing Times

Bouncing Time (ms)

Scenario: Solar Panel Repair

The heaters have failed at a moon sensor station, and thermally sensitive equipment is at risk. The user's task is to identify a damaged solar panel control unit (ORU) and address the issue immediately.

Training Scenario Details

(1/2)

- 1. Exit the habitat and move to the remote sensor station
- 2. Inspect the sensor station for visible damage (should see broken solar panel)
- 3. Use the screwdriver to open the panel on side of the station
- 4. Use the display and keypad to check the system status tab
- 5. Read the system status tab to confirm solar panel error and recognize a failure of a resistor assembly (one of the three ORUs)
- 6. Use the keypad to navigate to the safe shutdown screen on the display and shut down safely
- 7. Use the switch on the panel to turn off the power to the panel
- 8. Use the button to unlock the ORUs
- 9. Uninstall the correct ORU for the resistor module

Training Scenario Details

10. Reinstall the new module

- 11. Verify connection (did the right ORU end up in the right slot) using button and watching the button light up
- 12. Use button to re-engage locking of the ORUs
- 13. Navigate to the solar panel, recognize the damaged cell and release its latches
- 14. Remove solar panel, install new solar panel, and engage the latches
- 15. Navigate to the panel once again
- 16. Use the switch to turn on the panel power
- 17. Use the keypad and display to ensure proper installment of the ORU and solar panel replacement
- 18. Ensure the functionality of the heater and the rise of local temperature
 19. Close the panel, lock it, and return to habitat

HEIST System Layout

إراد

59

Requirements

Acronym	Verification	Description
-	Inspection	Use of human senses to verify requirement
А	Analysis	Modelling
Т	Test	Requires data aquisition and use of special equipment
D	Demonstration	Run test w/o special equipment to collect data

Level 0	Level 1	Level 2	Level 3	Requirement	Predicted Compliance	MS	HQ	Elect.	Mech.	Test
CONST	RAINTS									
C1				The cost of the project shall not exceed 4000 USD.						
C2				The system shall have a life span of no less than 3 years						
C3				Unity shall be used as the VR development engine.						
REQUIE	REMENT	S FLOW	DOWN	•						
FR 1	In	nmersiven	iess	HEIST shall be an immersive HR system where the user can enter a VR environment and interact with it though PR elements.						
				Physical Reality Environment (or PR) is a tangible environment with real objects.						
				Immersion : deep mental involvment.						
				Hybrid Reality (HR) is an environment with combined real time interaction between Virtual Reality (VR) and Physical Reality (PR). It consists of a VR environment that receives ques from the PR when the user interacts with set PR elements.						
	<u> </u>			Virtual Reality Environment (or VR) is a computer-generated environment.					-	
	DR 1.1			The user shall view a functional VR simulation of a lunar EVA.						
	EV		IONS							
		1.1.1		The VR simulation shall display environmental conditions of the Moon.	Compliant	х				I
			1.1.1.1	The VR simulation shall visually display temperatures within the range of -200 °C to 120 °C.	Compliant	х				I
			1.1.1.2	The VR simulation shall visually display the high-contrast lighting properties of the Moon.	Compliant	х				I
		1.1.2		The VR simulation shall simulate the reduced field of vision (FoV) that the user would have wearing an EVA spacesuit helmet.	Compliant	x				I
			1.1.2.1	The VR simulation shall simulate a FoV of at least 90° horizontal by 90° vertical.	Compliant	х				I
	TRAI	NING FEED	DBACK							
		1.1.3		The VR simulation shall provide mission-relevant task guidance to user.	Compliant	х				I
			1.1.3.1	The VR simulation shall provide training task sequence to the user, accessible at any time, in document form.	Compliant	х				I
		1.1.4		The VR simulation shall provide audio feedback to the user.	Compliant	х	х	х		1
			1.1.4.1	The VR simulation shall include ambient audio associated with an EVA.	Compliant	X		х		I
			1.1.4.2	The VR simulation shall include audio feedback in response to the user's input in PR.	Compliant	х	x	x		I.

Acronym	Verification	Description
I	Inspection	Use of human senses to verify requirement
А	Analysis	Modelling
Т	Test	Requires data aquisition and use of special equipment
D	Demonstration	Run test w/o special equipment to collect data

Level	1 Level 2	Level 3	Requirement	Predicted Compliance	SW	HQ	Elect.	Mech.	Test
PR	VRINTERAC	TIONS					Mech. Mech.		
DR 1.2			The user's actions in PR shall correlate to effects in VR.						
			NOTE: finger tracking is a Lvl. 2 success criteria, so it is not essential but nice to have.						
	TRACKING	3							
PR Eler	n. 1.2.1		The position and orientation of PR elements that the user can interact with shall be tracked.	Compliant			x	x	T/D
		1.2.1.1	The PR elements' user-relative orientation shall be tracked with an accuracy 10 ^o about three orthogonal axes.	Compliant			X		Т
		1.2.1.2	The PR elements' user-relative position shall be tracked with an accuracy of 0.025 m on three orthogonal axes.	Compliant			х		Т
		1.2.1.3	PR elements' tracked positional and orientation data shall be collected at a rate of 90 Hz.	Compliant		х	Х		Α
PR Inp	ut 1.2.2		The state of PR input devices shall be sampled at a rate of at least 90 Hz.	Compliant		х	Х		D
		1.2.2.1	At least 4 input devices shall be sampled during the simulation	Compliant		х	x	I	
Hands	1.2.3		The motion of the user's hands shall be tracked.	Compliant			х		T/D
		1.2.3.1	The user's hand orientation shall be tracked with an accuracy 7º about three orthogonal axes.	Partially Compliant			Х		Т
		1.2.3.2	The user's hand position shall be tracked with an accuracy of 2.5 cm on three orthogonal axes.	Partially Compliant			Х		Т
Fingers	1.2.4		The the motion of the user's fingers shall be tracked.	Partially Compliant			х		D
		1.2.4.1	The position of the user's fingers shall be tracked with an accuracy of 1.25 cm on three orthogonal axes.	Partially Compliant			х		Т
		1.2.4.2	User's finger orientation shall be tracked with an accuracy of 7 ^e about three orthogonal axes.	Partially Compliant			X		Т
Power	1.2.5		All electronic components, including tracking devices, shall be powered to their rated values.	Compliant			Х		Ι
COM	MUNICATIO	N TO VR							
PR Inp	ut 1.2.6		The state of PR input devices shall be communicated to the VR simulation at a rate of at least 90 Hz.	Compliant		х			D
PR Eler	n. 1.2.7		The dynamic PR elements' tracking data shall be communicated to the VR at a rate of 90 Hz	Compliant		х			D
		1.2.7.1	The data handling system shall send PR object positional data to the VR at a rate of 90 Hz.	Non Compliant		X			D
		1.2.7.2	The data handling system shall send PR object orientation data to the VR at a rate of 90 Hz.	Non Compliant		X			D
Hands	1.2.8		The user's hands tracking data shall be communicated to the VR in real time.	Compliant		X			D
Fingers	1.2.9		The user's finger tracking data shall be communicated to the VR in real time.	Compliant		х			D

Acronym	Verification	Description
I	Inspection	Use of human senses to verify requirement
А	Analysis	Modelling
Т	Test	Requires data aquisition and use of special equipment
D	Demonstration	Run test w/o special equipment to collect data

evel O	Level 1	Level 2	Level 3	Requirement	Predicted Compliance	SW	НО	Elect.	Mech.	Test
	DI	SPLAY IN	VR							
	PR Input	1.2.10		The VR simulation shall reflect user's interaction with PR input devices (e.g. switches, buttons, etc.) in real time.	Compliant	х				D
			1.2.10.1	The system shall display the state of PR input devices in the VR simulation in real time.	Compliant	x				D
			1.2.10.2	The VR simulation shall have indicators to show the current state of input PR devices.	Compliant	x				D
	PR Elem.	1.2.11	2.11 The VR simulation shall display the PR elements' motion to the user in real time. Compliant X		х				D	
			1.2.11.1	The VR simulation shall display the orientation of PR elements relative to the user in real time.	Compliant	х				D
			1.2.11.2	The VR simulation shall display the location of PR elements relative to the user in real time.	Compliant	х				D
	Hands	1.2.12		The VR simulation shall display the user's hands motion in real time.	Compliant	х				D
			1.2.8.1	The VR simulation shall display the user's hands orientation in real time.	Compliant	х				D
			1.2.8.2	The VR simulation shall display the user's hands location in real time.	Compliant	х				D
	Fingers	1.2.13		The VR simulation shall display the user's finger motion in real time	Partially Compliant	х				D
			1.2.13.1	The VR simulation shall display the user's finger position in real time.	Partially Compliant	х				D
			1.2.13.2	The VR simulation shall display the user's finger orientation in real time.	Partially Compliant	х				D
	USE	RIMMER	SION							
	DR 1.3			The user shall only NEED TO interact with PR elements, not with the VR.	Compliant	х			х	I.
		1.3.1		The VR simulation shall only serve as an immersivity tool to provide visual and auditory ques to the user.	Compliant	х				I
		1.3.2		The user shall only interact with PR elements with their hands.	Compliant				х	I
		1.3.3		The user shall receive primary visual and auditory cues only from the VR simulation.	Compliant	х		х	x	I
	DR 1.4			The user shall be spatially immersed in the VR simulation.	Compliant	х			х	I
		1.4.1		The user shall be capable to turn 360° to view their surroundings in the VR simulation.	Compliant	х				I
		1.4.2		The user shall have the option to translate (walk) in the VR simulation.	Compliant	х			x	I
	PR-US	ER INTERA	CTIONS							
	DR 1.5			The system shall have physical interactions with the PR that mimic Lunar habitat maintenance.	Compliant				х	D
		1.5.1		The system shall have at least one (1) panel with a door that can be opened and closed.	Compliant				x	D
		1.5.2		The system shall have at least two (2) switches that can be flipped.	Compliant			х	x	D
		1.5.3		The system shall have at least two (2) buttons that can be pressed.	Compliant			х	x	D
		1.5.4		The system shall allow for the replacement of at least one (1) object in PR as part of the training scenario.	Compliant				х	D
		1.5.5		The system shall allow for the use of at least one (1) tool in PR as part of the training scenario.	Compliant				х	D
	DR 1.6			The PR elements shall resemble the objects/tools that would be used during a lunar EVA mission.	Compliant				х	I
		1.6.1		The PR elements shall have a similar volume as the objects/tools that would be used during a lunar EVA mission.	Partially Compliant				х	I
		1.6.2		The PR elements shall have a smilar weight as the objects/tools that would be used during a lunar EVA mission.	Compliant				х	I
			1.6.2.1	The PR elements shall weigh of 1/6 of the object's weight on Earth with an accuracy of 10%.	Compliant				х	т
		1.6.3		The PR elements shall have a similar shape as tools that would be used during a lunar EVA mission.	Partially Compliant				х	I

Acronym	Verification	Description
I	Inspection	Use of human senses to verify requirement
Α	Analysis	Modelling
Т	Test	Requires data aquisition and use of special equipment
D	Demonstration	Run test w/o special equipment to collect data

Level 0	Level 1	Level 2	Level 3	Requirement	Predicted Compliance	SW	ΗΟ	Elect.	Mech.	Test
FR 2	Physi	ical Const	raints	The PCs shall inhibit movement of at least one part of the body.						
	Physical Constraint (or PC) is a real body movement restriction used to simulate wearing an EVA spacesuit; therefore, it is part of the PR.									
	ARM	I CONSTR/	AINTS	LVL 1 SUCCESS CRITERIA: ESSENTIAL						
	DR 2.1 The PCs shall simulate the impacts of physical constraints of a lunar EVA spacesuit on shoulder and elbow movement.		Compliant				x	T/D		
	2.1.1 The PCs shall constrain the user's shoulder abduction and adduction within a range of 0 - 150 degrees.		Compliant				X	Т		
	2.1.1.1 The PC shall provide a range of counter-torque to the shoulder between -31 and 29 ± 10% Nm.		Partially Compliant				X	Т		
	2.1.2 The PCs shall constrain the user's elbow extension movement within a range of 0 - 115 degrees. 2.1.2.1 The PCs shall provide counter-torque to the elbow within a range between -9 and 9 ± 10% Nm.			The PCs shall constrain the user's elbow extension movement within a range of 0 - 115 degrees.	Compliant				X	Т
			The PCs shall provide counter-torque to the elbow within a range between -9 and 9 \pm 10% Nm.	Partially Compliant				X	Т	
		2.1.3		The user shall perform the motor motions of pulling, picking up, and setting down PR elements.	Compliant				X	D
	HAND / FI	NGER CON	NSTRAINTS	LVL 2 SUCCESS CRITERIA: NOT ESSENTIAL						
	DR 2.2			The PCs shall simulate the impacts of physical constraints of a lunar EVA spacesuit on hand and finger motion.	Partially Compliant				X	T/D
	2.2.1 The PCs shall constrain movement of the user's fingers flexion.		Partially Compliant				X	Т		
	2.2.2 The PCs shall constrain the user's hand flexion within a range of -14 to 50 degrees.		Non Compliant				X	Т		
	2.2.3 The PC shall constrain the user's hand extension withing a range of -20 to 55 degrees.		Non Compliant				X	Т		
	2.2.4 The user shall be able to perform fine motor skills to push, flip, and grasp PR elements.								X	D

Requirements - FR3, FR4

Acronym	Verification	Description
Ι	Inspection	Use of human senses to verify requirement
A	Analysis	Modelling
Т	Test	Requires data aquisition and use of special equipment
D	Demonstration	Run test w/o special equipment to collect data

Level 0	Level 1	Level 2	Level 3	Requirement Con		SW	HQ	Elect.	Mech.	Test
FR 3		Safety The user shall be in no danger while operating in the HR environment.								
	DR 3.1 The system shall be safe for humans to use.		Compliant	X		X	X	T/D		
		3.1.1		The user shall not receive audio input or feedback at a volume higher than 70 dB.	Compliant	X				T/D
	3.1.2 The user shall be capable of spending at least one (1) hour in the simulation.		Compliant	х				T/D		
		3.1.3		The user shall be supervised during the entire training simulation.	Compliant					1
			3.1.3.1	The supervisor shall check in with the user every 10 minutes about their comfort and any motion sickness issues.	Compliant					I
	3.1.4 The VR headset shall display the VR simulation with a minimum frame rate of 90 fps (90 Hz). 3.1.5 The VR headset shall display the VR simulation with a minimum resolution of 3840 x 2160 pixels (4K).		Compliant	х		Х		I		
			Compliant	х		х		I		
		3.1.6		The PR-VR data transfer shall have a latency smaller than 180 ms.	Compliant					Т
	DR 3.2 The system shall cause no physical harm to the user. 3.2.1 The PR system shall have no sharp edges that the user could harm themselves with.		Compliant	X	X	X	X	1		
			The PR system shall have no sharp edges that the user could harm themselves with.	Compliant				x	I	
		3.2.2		The PR system shall have no obstacles that the user can't see though VR.	Compliant	X	х	х	x	I
		3.2.3		There shall be no objects other than those required for training in the PR training area.	Compliant		х	х	x	I
	DR 3.3 The VR simulation shall display a boundary such that the user will be warned if they approach the edge of the designated training area. 3.3.1 The VR simulation shall have a bounded training area of 8.5' x 9.5'.		Compliant	x			x	I		
			Compliant	х				D		
		3.3.2		The PR shall encompass a training area no larger than 9' x 10'.	Compliant				x	Т

FR 4	Adaptability		-y	The customer shall be able to implement their own training scenarios within the HR environment.y						
	DR 4.1			The system shall provide mission augmentation and customization for custom uses and scenarios.	Partially Compliant	X	X	X	X	T/D
	DR 4.2			The VR simulation shall run a specified mission scenario upon user selection in launch menu.	Compliant	X				T/D

Risk Identification

MS = Motion Sickness LOS = Line Of Sight

					Assess	sment
PROJECT ELEMENT	CAUSE	RISK	CONSEQUENCE	MITIGATION STRATEGY	Р	I
SAFETY	User is prone to motion sickness	MS due to high sensitivity	Impeding further participation in the simulation	Screen users to decrease likelihood of motion sickness	4	5
EVA PANEL	Buttons/switches are too close together. Trackers are in the way	Hard to operate panel	Loss of immersion	Spacing buttons/switches (hand tracking accuracy). Place trackers where they don't impede operation	2	3
HARDWARE	Arm constraints don't allow needed arm rotations	Arm constraints harm the user	Loss of immersion Inability to continue the simulation	Human testing	3	5
SAFETY PR-VR INTERACTION	High latency. Low fps of display. Low resolution of display	MS due to latency/resolution	Impeding further participation in the simulation	Decrease resolution to aceptable range and complexity of environment	3	5
TRAINING VERSATILITY	Schedule delays	No time to design several scenarios	Decrease training versatility. Can't meet versatility 2nd level success criteria	Work in parallell. Have baseline for several scenarios ready to implement at any time	4	4
TRACKING	Loss of LOS between base station and tracker. Reflective surfaces	Delay/disconnect in tracking	The system would be hard or impossible to use	Redundant base stations. Reduce reflective surfaces by covering them with opaque materials	4	3
HAND TRACKING	Hands are outside the FOV of the headset's cameras	Inaccurate hand tracking	Increased chance of MS. Inability to operate hardware. Subsystem failure	Brief user in proper location of hands to ensure accurate tracking.	2	4
HARDWARE	Arm constraints provide too much counter-torque	Too much arm constraint	Inability to engage in the simulation Loss of immersion	Model and test	2	3
PR-VR DATA LINK	Arduino can't handle data rates due to amount of components	Lag in PR - VR connection	Increased latency in the simulation. Increased risk of motion sickness.	Prototyping and testing	3	3
VR SIMULATION	Not enough processing power	Simulation glitch / freeze	Loss of immersion Increased chance of motion sickness	Test more complex simulations than expected with available hardware to ensure it can handle it	3	3
MANUFACTURING	Too many teams using AES facilities for manufacturing	Manufacturing delay	Delay in schedule. Lack of access to the necessary components	Schedule access to required equipment ahead of time. Turn in part models as soon as possible	2	3

HR Data Transfer DEMO

HR Data Transfer Demo Goals

- Demonstrate capability to accurately determine the state of multiple RW assets per DR 5.1
- Update state of RW assets at a rate of 90 Hz or greater per DR 6)
- ✓ 3. Communicate state of RW assets to Unity per DR ??

69

Keypad Internal Schematic

Demo Performance

- Demo accurately reads state of 19 inputs with two limitations
- Arduino communicates input devices' state to laptop at 2600 Hz - 2900 Hz
- Laptop can read and store state bitstring in Unity

Demo Limitations

1. Keypad 'Ghost' Presses

- Due to the nature of the keypad's multiplexing array, certain key combinations being depressed simultaneously can create erroneous sensed presses on nondepressed keys
- Only occurs when more than 3 keys are pressed simultaneously in certain combinations

2. Rotary Encoder Skips

- Rotary encoder does not read high speed rotations accurately
- Arduino loop speed is not fast enough to register each angle change pulse

Demo Limitations - Mitigation

1. Keypad 'Ghost' Presses

- Do not require user to press more than 3 keys simultaneously
- Reasonable limitation, as nearly all practical keypad use cases only require serial input and do not accept multiple simultaneous presses

2. Rotary Encoder Skips

- Option 1: Do not employ a rotary encoder in situations with rapid rotations (screwdrivers, drills, etc.)
- Option 2: Replace rotary encoder with potentiometer, which does not skip

HR Data Transfer - Feasibility Demo

74

DR 1.2.2.1 - At least 4 input devices shall be sampled during the simulation.

DR 1.2.6 - The state of PR input devices shall be communicated to the VR simulation at a rate of 90 Hz.

PR - VR Data Transfer DEMO

Arduino UNO + Button + Switch + Rotary Encoder + Multiplexed Keypad

Results:

- Arduino communicates input devices' state to laptop at 2600 Hz 2900 Hz
- The laptop can read and store state bitstrings in Unity
- Accurately reads the state of 19 inputs with two limitations:
 - Keypad 'Ghost' Presses
 - Mitigate: Don't require simultaneous inputs
 - Rotary Encoder Skips
 - Mitigate: Use a potentiometer

HR Latency Model & Test

HR Latency Void Test Environment

- Team built static panel
- Simple 1D plane
- Default Unity scene basic lighting
- Interactable button element developed by team
 - Includes collision box with pop up text to display interactability range
 - On button click, displays text, turns on several point lights and shows animation of button pressing and depressing

HR Latency Moon Test Environment

- Pre-built Unity moon environment
 available for free from Unity Asset store
 from developer Arcsine Technologies
 - Includes terrain, lighting and particle textures
- Team built static panel
- Default Unity scene basic lighting
- Interactable button element developed by team
 - Includes collision box with pop up text to display interactability range
 - On button click, displays text, turns on several point lights and shows animation of button pressing and depressing

Unity Processing Result Trends (Void)

Unity Processing Result Trends (Void)

Unity Processing Result Trends (Moon)

Unity Processing Result Trends (Moon)

Latency Calculations

- Arduino Reads in Data
 - Switch time takes 0.00092ms (from experimentation) to avoid bouncing
- Arduino Processes Data
 - Clock speed of 84MHz ($\frac{1}{84,000,000} = 0.0119 \mu s$ per operation)
- Arduino Baud Rate
 - Must send 4 bits for potentiometer + 9 for buttons + 4 for switches
 - Sends 4800 bits per second
 - Takes $\frac{(4+9+4)}{4800} = \frac{17}{4800} = 0.00354s$
- Unity Reads in Data from Serial Port
 - 0.068ms (from experimentation)
- Unity Processes the Interaction
 - 0.065ms (from experimentation)
- Meta Quest 2 Displays Picture
 - Operating at 120 FPS $(\frac{1}{120} = 8.33 ms)$
- Total Time $0.00092ms + 2 * 0.0119\mu s + 0.00354s + 1.1ms + 0.16ms + 8.33ms = 13.13ms$

- HTC Base Station Sends State
 - Worst case $60Hz = \frac{1}{60} = 16.6ms$
- Unity Reads in Data from Bluetooth
 - 0.068 ms (assumption)
- Unity Processes the Interaction
 - 0.065ms (from experimentation)
- Meta Quest 2 Displays Picture
 - Operating at 120 FPS ($\frac{1}{120} = 8.33 ms$)
- Total Time 16.6ms + 0.068ms + 0.065ms + + 8.33ms = 25.15ms

Processing Workload

Processing Workload Test

CPU

50 Interactables

200 Interactables

Hardware Used Processor: AMD Ryzen 5 2600 Six-Core Graphics: NVIDIA GeForce GTX 1070 Ti Memory: 32 GB DDR4

Hand Tracking Accuracy Test

Hand Tracking Accuracy Test Plan

PR

VR

PR-VR Alignment Error

Tracking Accuracy Issue

EVA Tool, ORUs, Door & Locking Mechanism Design

Door Panel

ORUs

ISO View

Front View

Side View

Gj

EVA Tool Design

EVA Panel Tipping Model

Software Process Flow

Modeling

Download or purchase premade models

Make 3D assets and models

Export to Unity

Import 3D models from modeling software

Unity

Generate lunar terrain asset

Combine assets and model into full lunar environment

Implement functionality

Create user interface

User runs the program on VR headset

User interacts with VR program

Full Budget: Hardware 1/2

Hardware		Supplier	Qty	Cost/Unit	Cost
Particle Board 5/8 2x4	Used as siding and eva panel on the stand	HomeDepot	1	\$15.82	\$15.82
Fiberboard 1/4 2x4	Used as a base for the EVA panel stand, provides stability and a way to add weight	HomeDepot	1	\$14.24	\$14.24
Wood Screws #10 2in 50pc	Used for EVA stand and arm harness	HomeDepot	1	\$10.83	\$10.83
Flat Aluminium Bar 96x1x1/8	Used for arm harness as the structure	HomeDepot	2	\$22.93	\$45.86
Pine Board 2x2x8'	Used for the EVA stand	HomeDepot	10	\$15.20	\$152.00
Pine Board 2x10x8'	Used for the EVA stand	HomeDepot	1	\$16.57	\$16.57
Resistance Loop Exercise Bands	Used to create resistance within the arm constraint mechanism	Amazon	1	\$10.87	\$10.87
1 inch buckles	Used to create adjustable straps for the arm harness	Amazon	1	\$10.99	\$10.99
25 1/4" Inch Stainless Steel Bearing Balls	Used to adjust the weight of the mock tools we create to give the user a sense of realisim	Amazon	1	\$5.65	\$5.65
HH-66 Vinyl Cement, 4 oz. can	Vinyl glue, to be used for prototyping the arm constraint hardware	Amazon	1	\$13.99	\$13.99
Ball Bearing Roller	Used for locking and unlocking EVA panel door	McMaster	1	\$7.05	\$17.68
Shoulder Bolts 1/4 diameter 3/8	Used to construct EVA panel frame	McMaster	8	\$2.34	\$18.72
Teflon Washers - 1D 1/4in	Used to construct EVA panel frame	McMaster	1	\$9.94	\$9.94

Overview

98

Full Budget: Hardware 2/2

Teflon Washers - 1D 0.197in	Used to construct EVA panel frame	McMaster	1	\$5.00	\$5.00
Nuts - pack of 100	Used to construct EVA panel frame	McMaster	1	\$2.20	\$2.20
Threaded inserts for PLA	Used to construct EVA panel frame	McMaster	2	\$10.00	\$20.00
MDF Sheet	Used to construct EVA panel frame, ORUs	HomeDepot	1	\$54.33	\$54.33
Gorilla Glue	Used to construct EVA panel frame	HomeDepot	1	\$12.98	\$12.98
3/8 Hex Nuts	Used to construct EVA panel frame	HomeDepot	4	\$0.21	\$0.84
Threaded Zinc Rod	Used for the EVA stand	HomeDepot	1	\$1.97	\$1.97
10-32-1 1/4 Machine Screw	Used for the EVA stand	HomeDepot	12	\$1.38	\$16.56
10-32-1 Machine Screw	Used for EVA stand and arm harness	HomeDepot	1	\$1.38	\$1.38
MDF Sheet 4x8' 1/4"	Used for EVA panel stand	HomeDepot	1	\$54.33	\$54.33

Full Budget: Software

Software		Supplier	Qty	Cost/Unit	Cost
HTC Vive 3.0 Tracker	Tracking pucks that allow for VR tracking of physical objects	Amazon	4	\$129.98	\$519.92
HTC Base Station 2.0	Base stations communicate with the Vive Trackers, send info to the headset	Amazon	2	\$249.95	\$516.89
Base Station Tripod (2 pack)	Allows the base stations to be held up for better communication to the trackers.	Amazon	1	\$45.00	\$45.00
Batteries (AA)	Used to power Oculus controllers	HomeDepot	1	\$8.87	\$8.87
Dlink Air Bridge	Used to provide a stable connection between Oculus headset and computer running unity	Meta	1	\$100.00	\$100.00

Overview

G

Full Budget: Electrical

Electronics		Supplier	Qty	Cost/Unit	Cost
Round Momentary Buttons (35 mm)	Buttons below the screen to control what the screen says/switch through tasks	Amazon	1	\$15.49	\$15.49
Rotary Potentiometer - 10k Ohm, Linear	used to track the motion of the hinge of the door	Amazon	1	\$9.98	\$9.98
Arduino Shield	Used to create the button panel on the EVA stand	IAmazon	1	\$17.90	\$17.90
Square push buttons	Used for the buttons on the EVA panel	Amazon	1	\$12.99	\$12.99
Red and Black Wires	Used to connect electronics in EVA panel	Amazon	1	\$9.98	\$9.98

Gi

101

Resources

VR/HR Resources

1/2

103

- 1. <u>https://www.pcmag.com/news/htcs-vr-hand-tracking-system-just-got-a-lot-better</u>
- 2. <u>https://www.raywenderlich.com/9189-htc-vive-tutorial-for-unity</u>
- 3. https://www.vive.com/us/
- 4. <u>https://soundgearlab.com/how-use-bluetooth-headphones-oculus-quest-</u>
 - 2/#:~:text=Although%20Oculus%20quest%202%20has,headphones%20to%20the%20headset% 20with

https://www.biorxiv.org/content/10.1101/2022.02.18.481001v1.full

- 5. https://learn.microsoft.com/en-us/hololens/hololens-core-components
- <u>https://www.breezecreative.com/dynamic-</u> <u>floor?gclid=CjwKCAjwg5uZBhATEiwAhhRLHv7BDOQdIQ6NFyaNNPwIXDQECx_ZjURp68v1mIB</u> <u>cf_zOKrb3PoV6sRoCnFQQAvD_BwE</u>
- 7. https://hi5vrglove.com/store/hi5glove
- 8. <u>https://www.manus-meta.com/software/polygon</u>
- 9. <u>https://www.ceva-dsp.com/ourblog/what-is-an-imu-</u> sensor/#:~:text=An%20IMU%20is%20a%20specific,considered%20a%209%2Daxis%20IMU.
- 10. https://pixycam.com/pixy-cmucam5/
- 11. www.vr-compare.com
- 12. https://sid.onlinelibrary.wiley.com/doi/10.1002/jsid.999

PCs Resources

- 1. <u>https://www.worldbrace.com/custom-best-shoulder-brace-support-manufacturer/</u>
- 2. https://dunbarmedical.com/wearing-shoulder-brace/
- 3. <u>https://www.braceability.com/products/shoulder-support-brace</u>
- 4. https://www.menshealth.com/fitness/g25803874/best-compression-sleeves/
- 5. https://www.bauerfeind-sports.com/us/compression-sleeves-arm/
- 6. <u>https://www.compressionstore.com/products/circaid-profile-foam-arm-sleeve</u>
- 7. https://www.verywellhealth.com/what-is-a-cast-for-broken-bones-made-out-of-2549317
- 8. https://www.hiltonphoto.co.uk/joby-gorillapod-3k-tripod-with-ball-socket/

