Answer the following problems showing all of your work and simplifying your solutions.

1. (36 pts) Evaluate the following integrals. Show all work!
(a) $\int \frac{2 x^{4}+4 x^{2}+2}{x^{3}+2 x} \mathrm{~d} x$
(b) $\int_{0}^{1} x^{3} \sqrt{1-x^{2}} \mathrm{~d} x$
(c) $\int \sin ^{-1}(x) \mathrm{d} x$
2. (24 pts) With $I=\int_{0}^{4} \frac{1}{\sqrt{1+x}} \mathrm{~d} x$, answer the following. Leave your answer in exact form.
(a) Compute T_{4} to estimate I. Do not combine fractions.
(b) Find a reasonable bound for the error $\left|E_{T}\right|$ of your calculation in part (a).
(c) What is the minimum number n of trapezoids required so that T_{n} is within 10^{-10} of the true solution I ?
(d) Suppose we change the bounds of integration to be $J=\int_{-1}^{4} \frac{1}{\sqrt{1+x}} \mathrm{~d} x$. Compute T_{5} to approximate J. What happens to T_{5} in this case?
3. (20 pts) Do the following integrals converge or diverge? Fully justify your answers.
(a) $\int_{-1}^{\infty} \frac{2}{(x-1)^{3}} \mathrm{~d} x$
(b) $\int_{1}^{\infty} \frac{\ln x}{x^{3}} \mathrm{~d} x$
4. (20 pts) Let \mathcal{R} be the region bounded by $y=\tan ^{-1}(x), y=0$, and $x=1$.
(a) Sketch and shade the region \mathcal{R}. Label all axes, curves, and intersection points.
(b) Set up, but do not evaluate, integrals to determine each of the following:
i. The area of \mathcal{R} using integration with respect to x.
ii. The area of \mathcal{R} using integration with respect to y.

Trigonometric Identities

$$
\cos ^{2}(x)=\frac{1}{2}(1+\cos 2 x) \quad \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \sin 2 x=2 \sin x \cos x \quad \cos 2 x=\cos ^{2} x-\sin ^{2} x
$$

Inverse Trigonometric Integral Identities

$$
\begin{aligned}
& \int \frac{\mathrm{d} u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1}\left(\frac{u}{a}\right)+C, u^{2}<a^{2} \\
& \int \frac{\mathrm{~d} u}{a^{2}+u^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+C \\
& \int \frac{\mathrm{~d} u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1}\left(\frac{u}{a}\right)+C, u^{2}>a^{2}
\end{aligned}
$$

Midpoint Rule

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \Delta x\left[f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+\cdots+f\left(\bar{x}_{n}\right)\right], \Delta x=\frac{b-a}{n}, \bar{x}_{i}=\frac{x_{i-1}+x_{i}}{2},\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}
$$

Trapezoidal Rule

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right], \Delta x=\frac{b-a}{n},\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}
$$

