Answer the following problems showing all of your work and simplifying your solutions.

1. (36 pts) Evaluate the following integrals. Show all work!

(a)
$$\int \frac{2x^4 + 4x^2 + 2}{x^3 + 2x} dx$$
 (b) $\int_0^1 x^3 \sqrt{1 - x^2} dx$ (c) $\int \sin^{-1}(x) dx$

- 2. (24 pts) With $I = \int_0^4 \frac{1}{\sqrt{1+x}} dx$, answer the following. Leave your answer in exact form.
 - (a) Compute T_4 to estimate I. Do not combine fractions.
 - (b) Find a reasonable bound for the error $|E_T|$ of your calculation in part (a).
 - (c) What is the minimum number n of trapezoids required so that T_n is within 10^{-10} of the true solution I?
 - (d) Suppose we change the bounds of integration to be $J = \int_{-1}^{4} \frac{1}{\sqrt{1+x}} dx$. Compute T_5 to approximate J. What happens to T_5 in this case?
- 3. (20 pts) Do the following integrals converge or diverge? Fully justify your answers.

(a)
$$\int_{-1}^{\infty} \frac{2}{(x-1)^3} \, \mathrm{d}x$$

(b)
$$\int_{1}^{\infty} \frac{\ln x}{x^3} \, \mathrm{d}x$$

- 4. (20 pts) Let \mathcal{R} be the region bounded by $y = \tan^{-1}(x)$, y = 0, and x = 1.
 - (a) Sketch and shade the region \mathcal{R} . Label all axes, curves, and intersection points.
 - (b) Set up, but do not evaluate, integrals to determine each of the following:
 - i. The area of \mathcal{R} using integration with respect to x.
 - ii. The area of \mathcal{R} using integration with respect to y.

Trigonometric Identities

$$\cos^2(x) = \frac{1}{2}(1 + \cos 2x) \quad \sin^2 x = \frac{1}{2}(1 - \cos 2x) \quad \sin 2x = 2\sin x \cos x \quad \cos 2x = \cos^2 x - \sin^2 x$$

Inverse Trigonometric Integral Identities

$$\int \frac{\mathrm{d}u}{\sqrt{a^2 - u^2}} = \sin^{-1}\left(\frac{u}{a}\right) + C, u^2 < a^2$$

$$\int \frac{\mathrm{d}u}{a^2 + u^2} = \frac{1}{a}\tan^{-1}\left(\frac{u}{a}\right) + C$$

$$\int \frac{\mathrm{d}u}{u\sqrt{u^2 - a^2}} = \frac{1}{a}\sec^{-1}\left(\frac{u}{a}\right) + C, u^2 > a^2$$

Midpoint Rule

$$\int_{a}^{b} f(x) dx \approx \Delta x [f(\overline{x}_1) + f(\overline{x}_2) + \dots + f(\overline{x}_n)], \ \Delta x = \frac{b-a}{n}, \ \overline{x}_i = \frac{x_{i-1} + x_i}{2}, \ |E_M| \le \frac{K(b-a)^3}{24n^2}$$

Trapezoidal Rule

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)], \ \Delta x = \frac{b-a}{n}, \ |E_T| \le \frac{K(b-a)^3}{12n^2}$$