Answer the following problems and simplify your answers.

1. $(22 \mathrm{pts})$ Let \mathcal{R} be the region bounded by the curves $y=x^{2}-2 x$ and $y=2 x$.
(a) Sketch and shade the region \mathcal{R}, labeling the axes, intersection points, and curves.
(b) Set up, but do not evaluate, an integral with respect to x to find the volume of the solid generated when \mathcal{R} is revolved about the line $x=-1$.
(c) Set up, but do not evaluate, an integral with respect to x to find the volume of the solid generated when \mathcal{R} is revolved about the line $y=8$.
2. (18 pts) Consider the curve $y=\ln (\cos (x))$ on the interval $0 \leq x \leq \pi / 4$.
(a) Set up, but do not evaluate, an integral to find the arc length of this curve. Fully simplify $\mathrm{d} s$.
(b) The curve is rotated about the x-axis to generate a surface. Set up, but do not evaluate, an integral to find the surface area.
3. (24 pts) Assuming a uniform density ρ, find the centroid of the region under the curve $y=\cos (x)$ and above the x-axis with $0 \leq x \leq \pi / 2$.
4. (12 pts) A 10 m long chain with a mass of 50 kg hangs vertically from a crane. How much work is required to lift the entire chain to the top? (Use $10 \mathrm{~m} / \mathrm{s}^{2}$ as the acceleration due to gravity).
5. (24 pts) Determine whether the sequences below converge or diverge. For the convergent sequences, find their limit.
(a) $a_{n}=\tan \left(\frac{\pi n^{4}+3 n^{2}-1}{4 n^{4}-5}\right)$
(b) $b_{n}=(-1)^{n} \frac{(n-1)!}{(n+1)!}$
(c) $c_{n}=\frac{(2 / 5)^{n}}{(1 / 4)^{n}}$

Trigonometric Identities

$$
\cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \quad \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \sin 2 x=2 \sin x \cos x \quad \cos 2 x=\cos ^{2} x-\sin ^{2} x
$$

Inverse Trigonometric Integral Identities

$$
\begin{aligned}
& \int \frac{\mathrm{d} u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1}\left(\frac{u}{a}\right)+C, u^{2}<a^{2} \\
& \int \frac{\mathrm{~d} u}{a^{2}+u^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+C \\
& \int \frac{\mathrm{~d} u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1}\left(\frac{u}{a}\right)+C, u^{2}>a^{2}
\end{aligned}
$$

Center of Mass Formulas

$$
\begin{aligned}
M_{y} & =\rho \int_{a}^{b} x(f(x)-g(x)) \mathrm{d} x \\
M_{x} & =\rho \int_{a}^{b} \frac{1}{2}\left((f(x))^{2}-(g(x))^{2}\right) \mathrm{d} x \\
m & =\rho \int_{a}^{b} f(x)-g(x) \mathrm{d} x
\end{aligned}
$$

