- This exam is worth 100 points and has 6 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Begin each problem on a new page.
- DO NOT LEAVE THE EXAM UNTIL YOUR HAVE SATISFACTORILY SCANNED <u>AND</u> UPLOADED YOUR EXAM TO GRADESCOPE.
- You are taking this exam in a proctored and honor code enforced environment. No calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one 8.5"× 11" crib sheet with writing on one side.
- Remote students are allowed use of a computer during the exam only for a live video of their hands and face and to view the exam in the Zoom meeting. Remote students cannot interact with anyone except the proctor during the exam.
- 0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." FAILURE TO INCLUDE THIS STATEMENT AND YOUR SIGNATURE MAY RESULT IN A PENALTY.
- 1. [2360/062824 (10 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
 - (a) If A, B are square matrices of the same order, then it is always the case that AB = BA
 - (b) If A is a square matrix with $|\mathbf{A}| = 0$, then $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{0}}$ is inconsistent.
 - (c) If \mathbb{U} is the set of all points in the *xy*-plane except the origin, then \mathbb{U} is not a vector space.
 - (d) If **A** is an $n \times n$ matrix, then Tr **A** = Tr (**A**^T).
 - (e) If $|\mathbf{AB}| = 0$, and \mathbf{A} is nonsingular, then 0 is an eigenvalue of \mathbf{B} .

2. [2360/062824 (21 pts)] Let
$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 \\ -2 & 1 & 0 \\ 6 & -3 & 0 \end{bmatrix}$$
.

- (a) (8 pts) Find the eigenvalues of A and give their algebraic multiplicities.
- (b) (13 pts) For each eigenvalue, find a basis for the eigenspace and give the geometric multiplicity of the eigenvalue.
- 3. [2360/062824 (15 pts)] Which of the following subsets of \mathbb{R}^3 [parts (a) and (b)] and \mathbb{M}_{22} [part (c)] are subspaces. Fully justify your answers.
 - (a) (5 pts) The solution set of $x_1 + x_2 + x_3 = 0$.

(b) (5 pts) Vectors in
$$\mathbb{R}^3$$
 having the form $\begin{bmatrix} a \\ a \\ 1 \end{bmatrix}$ where $a \in \mathbb{R}$.

- (c) (5 pts) Matrices in \mathbb{M}_{22} of the form $\begin{bmatrix} a & b \\ -b & c \end{bmatrix}$ where $b \ge 0, a, c \in \mathbb{R}$.
- 4. [2360/062824 (20 pts)] The following problems are not related. Provide full justification for your answers.

(a) (10 pts) Can the vectors
$$\left\{ \begin{bmatrix} 2\\4\\-2 \end{bmatrix}, \begin{bmatrix} -12\\6\\-3 \end{bmatrix}, \begin{bmatrix} -3\\4\\-2 \end{bmatrix} \right\}$$
 be a basis for \mathbb{R}^3 ?

(b) (10 pts) Let $\vec{\mathbf{p}}_1 = t^2 + 5$, $\vec{\mathbf{p}}_2 = 5t^2 + t$, $\vec{\mathbf{p}}_3 = 5t + 5$. Do constants c_1, c_2, c_3 , not all zero, exist such that $c_1 \vec{\mathbf{p}}_1 + c_2 \vec{\mathbf{p}}_2 + c_3 \vec{\mathbf{p}}_3 = 0$ for all real t?

MORE PROBLEMS BELOW/ON REVERSE

- 5. [2360/062824 (16 pts)] The following problems are not related.
 - (a) (8 pts) Find all values of k such that $\mathbf{G}\vec{\mathbf{x}} = \vec{\mathbf{0}}$ has nontrivial solutions, where $\mathbf{G} = \begin{bmatrix} 1 & 0 & k \\ 0 & k & 0 \\ k & 0 & 9 \end{bmatrix}$.
 - (b) (8 pts) If **B** is an invertible matrix with $\mathbf{B}^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 3 & 2 & -1 \\ 1 & 2 & 3 \end{bmatrix}$, find the solution of $\mathbf{B}^{\mathrm{T}} \vec{\mathbf{x}} = \begin{bmatrix} 1 \\ -4 \\ 2 \end{bmatrix}$
- 6. [2360/062824 (18 pts)] Some friends of yours need the solution to a linear system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$. They have already performed a number of elementary row operations on the augmented matrix, and have given you the following:

Your friends (and grader) have several requests:

- (a) (6 pts) Find a particular solution of the system.
- (b) (8 pts) Find a basis for the solution space of the associated homogeneous system. What is its dimension?
- (c) (4 pts) Find the (general) solution, \vec{x} , to the problem.