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Abstract
Honey bees make decisions regarding foraging and nest-site selection in groups rang-
ing from hundreds to thousands of individuals. To effectively make these decisions,
bees need to communicate within a spatially distributed group. However, the spa-
tiotemporal dynamics of honey bee communication have been mostly overlooked in
models of collective decisions, focusing primarily on mean field models of opinion
dynamics.We analyze how the spatial properties of the nest or hive, and the movement
of individuals with different belief states (uncommitted or committed) therein affect
the rate of information transmission using spatially-extended models of collective
decision-making within a hive. Honeybees waggle-dance to recruit conspecifics with
an intensity that is a threshold nonlinear function of the waggler concentration. Our
models range from treating the hive as a chain of discrete patches to a continuous line
(long narrow hive). The combination of population-thresholded recruitment and com-
partmentalized populations generates tradeoffs between rapid information propagation
with strong population dispersal and recruitment failures resulting from excessive pop-
ulation diffusion and also creates an effective colony-level signal-detectionmechanism
whereby recruitment to low quality objectives is blocked.
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1 Introduction

Honeybees forage in groups, as many animals do (Clark and Mangel 1986; Krause
et al. 2002). Groups of hundreds to thousands of foragers work together in a colony
to explore large patches of flowers, allowing foragers to focus on the richest flower
patches (Seeley 1986). Collective foraging in social insects emerges through group
members’ interactions in a decentralized decision-making process (Camazine et al.
2003; Detrain and Deneubourg 2006). In a honey bee colony, collective choice recruit-
ment arises through the waggle dance, a communication behavior by which colony
members share information about the locations of profitable food sources (Von Frisch
1967; Seeley and Visscher 1988). Worker bees perform a figure-eight dance after
returning to the hive from foraging to indicate the direction and distance to high-quality
foraging patches (Grüter and Farina 2009; Seeley 2010). Communication through
waggle dancing enables a honey bee colony to explore large patches of flowers and
collectively narrow their choice to the richest flower patches to forage (Seeley 1986).

Spatial properties of nest or hive impact the collective movement and decisions
of social insects inside (Pinter-Wollman 2015; Burd et al. 2010). It is well known
that the geometry and topology of networks strongly impact the rate of information
transmission along them (Karsai et al. 2011; Mateo et al. 2019), but there has been
little quantitativework addressing this aspect of communication in honeybee hives.We
study here how the spatial structure of a honeybee hive affects colony-wide recruitment
as bees share information via waggle dancing. In an enclosed hive, the movement of
bees and presence of wagglers determines whether an uncommitted bee in a nest is
recruited to forage. The speed at which the wagglers and the uncommitted bees move
is determined by the hive’s geometry, parameterized in our model by the number of
hive compartments and diffusion rate between them. Indeed, previous studies have
shown that in ant colonies, the probability an ant encounters another ant depends on
the nest architecture (Razin et al. 2013; Davidson et al. 2016; Pless et al. 2015).

Given undecided and decided agents are in proximity, classic models of collective
decisions often use mass action principles to define opinion dynamics within the
group (Franks et al. 2002; Seeley et al. 2012). The rate of recruitment scales linearly
with the density of group mates expressing opinions. However, decision commitment
in social insects (e.g., bees and ants) may be better fit by a nonlinear function of
evidence in favor of a choice (Bonabeau et al. 1996; Mailleux et al. 2006). When
decision commitment depends on a threshold function of choice evidence, deleterious
recruitment to overvalued choices is curbed (Pagliara et al. 2018). Moreover, key
features of individualized cognition (like threshold-dependent neural activation) are
also present in the collective cognition of honeybee groups (Passino et al. 2008).
As such, we extend previous models of collective decisions in honeybees, considering
waggle-based recruitment that is a threshold nonlinear function of the concentration of
wagglers. Combining thresholded recruitment and a spatially-extended hive geometry
makes for a more robust recruitment process, limiting loss from erroneous recruitment
while ensuring speedy recruitment when warranted.

Our model of recruitment assumes a bee waggle dances to recruit nest mates to her
opinion. Rather than considering choices between multiple foraging or house-hunting
alternatives (Seeley et al. 2012; Reina et al. 2017), the hive has a decision between
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departing to an external choice (forage) or remaining in the hive. The movement of
honey bees in the hive shaped by the architecture of the hive determines the rate of
information transfer between bees. When bees diffuse quickly through the hive, they
can facilitate rapid information transfer in the colony. However, colonies might not
always benefit from rapid information transfer, especially when the information is
erroneous. In our previous work, we showed that in a volatile environment with some
low quality resources, bees are often better off using private information instead of
the social information available through the beliefs of neighbors (Price et al. 2019;
Bidari et al. 2019). Indeed, positive feedback from waggle dancing not only generates
consensus but can also amplify errors (Sasaki and Pratt 2018). We demonstrate this
by analyzing our models in several tractable scenarios which exploit a separation of
timescales in the limit of slow/fast movement dynamics, and due to the piecewise
linearity of simple threshold functions.

The combination of thresholded recruitment and compartmentalized population
distributions within the hive allows the colony recruitment process to behave as a
switch.When evidence for a high quality option outside the hive is plentiful, there will
be many wagglers which will exceed the recruitment threshold of uncommitted bees.
However, if there is an insufficient fraction of the hive waggling or wagglers diffuse
quickly throughout the hive, no compartments of the hive will have sufficient wagglers
to initiate recruitment. It is therefore imperative that the colony balances the advantages
of diffusing throughout the hive to quickly spread a recruitment message with the
limitations in diffusing too fast, which can result in failed collective recruitment. Our
model analysis therefore leverages tools from nonlinear dynamics to determine the
parametric optima that appropriately balance these tradeoffs in the process shedding
light on the functional advantages of a spatially-distributed hive subject to thresholded
recruitment.

Our manuscript proceeds as follows: In Sect. 2, we describe the patch-based model
of recruitmentwithin the hive. Subsequently, we present analysis of this discretemodel
in Sect. 3, focusing on how parameterization of waggler and uncommitted bees’ move-
ments between patches shapes recruitment efficiency. Our analysis begins with the two
hive model, examining asymptotic extremes of slow/fast movement and recruitment,
and then studies cases in between determining the critical diffusion level of wagglers
belowwhich the full hive is still recruited.We then proceed to determine how the num-
ber of patches shapes recruitment performance. After studying recruitment efficiency,
we analyze the problem of signal detection in the environment, focusing on how the
recruitment threshold helps prevent errant recruitment events to poor foraging sites.
Our analysis of the patch-based model concludes with a calculation of how interac-
tion parameters shape overall foraging efficiency measured according to energy intake
over time. In Sect. 4, we introduce a continuummodel along which the movement and
transition of bees is described by a system of reaction–diffusion equations. We start
by analyzing recruitment efficiency in the limit of no foragers and then slow waggler
movement and conclude with a calculation of foraging yield as a function of transition
parameters.
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Fig. 1 Schematics of how hive elongation shapes bee movement and recruitment. a Waggling bee recruits
neighbors to a foraging site; b Two patch model in which uncommitted bees w j can only be recruited by
wagglers in the same patch v j ( j = 1, 2); c N patch hive requires recruiters originating in patch 1 (v1)
to diffuse across the hive to recruit uncommitted bees in distal patches; d Continuum model: Bees move
continuously via diffusion along a one-dimensional line segment

2 Discrete collective decisionmodel with threshold recruitment

We consider a model of recruitment in a honey bee colony that applies to foraging
and nest site colonization, extending prior work which ignored spatial aspects of the
communication process (Franks et al. 2002; Seeley et al. 2012). The analysis of this
paper specifically focuses on bees solving a foraging problem. A hive consists of
N discrete compartments with a total number of bees. The population is split into
fractions that are foraging u (actively collecting nectar at flower patches), waggling v

(in the hive waggling to recruit uncommitted bees), or uncommitted w (uncommitted
and in the hive). The mean field model we analyze evolves according to the following
system of equations (See also schematics in Fig. 1):

∂w j

∂t
= −βH [v j − θ ]wi +

{
Dw(w j±1 − w j ), j = 1, N

Dw(w j+1 − 2w j + w j−1), else
(1a)

∂v j

∂t
= −μv j +

⎧⎪⎨
⎪⎩

νu + Dv(v j+1 − v j ), j = 1

Dv(v j−1 − vi ), j = N

Dv(v j+1 − 2v j + v j−1), else

(1b)
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∂u

∂t
= −νu + β

∑
j

H [v j − θ ]w j + μ
∑
j

v j , (1c)

where movement within the hive is characterized by the diffusion coefficients Dw and
Dv of uncommitted bees and wagglers. Conservation ensures u(t) + ∑N

j=1 v j (t) +
w j (t) = 1 and u′(t)+∑N

j=1 v′
j (t)+w′

j (t) = 0.We assume spontaneous commitment
typical of such collective decision models (Franks et al. 2002; Seeley et al. 2012)
is weaker than recruitment and does not influence short-term recruitment dynamics
considered here. Likewise, we omit spontaneous abandonment term, as bees are not
competing against different foraging sites and the inclusion of abandonment term
would simply avert commitment of some of the bees in the hive. Uncommitted bees
in each compartment j are recruited to forage according to a rate β and threshold
function H(v j − θ) of the fraction of wagglers v j in that compartment. As we show,
thresholding can prevent erroneous recruitment to low yielding or perilous foraging
sites. Foragers switch to becoming wagglers at a rate ν and switch back to foraging at a
rateμ. Note in Eq. (1), we assumewaggling bees enter the hive at the first compartment
(i.e. hive entrance index E = 1: on the left end of the hive), but we will also analyze
cases in which the entrance is in the middle (1 < E < N ). Descriptions and numerical
ranges of model parameters are given in table in the Appendix.

Bees are assumed to be homogeneously mixed within each compartment, and com-
partments are small enough such that all bees within one compartment can perceive a
waggler within the compartment but not wagglers in other compartments. Our anal-
ysis begins by focusing on the simplest case of two hive compartments (Fig. 1b) and
subsequently increases the number of hive patches (Fig. 1c) before moving to the
continuum limit (Fig. 1d).

3 Analysis of the discrete model

3.1 Quantification of the recruitment efficacy

Our goal is to determine how different collective strategies influence the rate of infor-
mation transmission within the hive. We define this rate as the inverse of the time
needed for bees to receive a recruitment message from already recruited bees, holis-
tically the inverse of time required for some fraction of the colony to be recruited to
forage. For simplicity, we will plot this time directly, so that a lower time indicates
a higher rate of information transmission. Foraging yield will be defined as the total
amount of food obtained over a set time period from the whole colony.

In our spatially-extended model of a hive, we hypothesize the movement of uncom-
mitted and committed individuals affects the rate of information transmission as well
as the foraging yield. Slow information transfer leads to lags in foraging recruitment.
However, if individuals disperse throughout the hive too quickly, clusters of recruiters
may not be large enough to initiate population-wide recruiting (Passino et al. 2008;
Pagliara et al. 2018). Using numerical simulations, quasi-steady state analysis, and
bounding arguments, we show there exists a critical level of recruiter diffusion that
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allows the colony to balance the tradeoffs between rapid information propagation
resulting from population movement with recruitment failures resulting from exces-
sive population diffusion, which spreads the recruiting signal too thin. Our derivation
of the critical diffusion level is aided by the tractability of the piecewise linear model
of recruitment communication.

Since recruitment initiation depends on a threshold function of recruiter density,
diffusion of recruiters across the hive can eventually lead to all local densities of
recruiters falling below threshold, evenwhen some regions begin superthreshold. Note
this is not due to a loss of recruiters in the overall population, but to the fraction per
patch thinning as the population spreads. This creates an effective colony-level signal-
detection mechanism that can block recruitment to low quality foraging sites when an
insufficient number of recruiters attempts to initiate foraging in the rest of the colony.
We will later show how, using signal detection theory, we can tune the recruitment
threshold to maximize the foraging yield of a colony across possible environments
(favorable/unfavorable to foraging).

In our analysis of the efficacy of population-wide recruiting, we use two measures
to illustrate how hive geometry shapes recruitment: i. rate of information transfer, and
ii. foraging yield. We quantify the rate of information transfer using the time taken to
recruit 90% of the hive population, T90 where

u(T90) +
N∑
i=1

vi (T90) = 0.90.

Here, T90 represents the time when nearly all of the hive is recruited. Our results do
not change qualitatively when considering the time to commit 85% or 95% of the
population instead (Compare Figs. 2e, 3e, 4b to Fig. S2).

Foraging yield refers to the total food (e.g., nectar) collected in a foraging cycle.
We assume the waggle dancing bees forage between waggle runs in the hive while
active foragers mostly forage but do not waggle dance. We calculate foraging yield
using

J (β, Dv, Dw, ν, μ, T f ) =
∫ T f

0
r(t)dt

where r(t) = u(t) + γ
∑N

j=1 v j (t) is comprised of food reward provided by active
foragers u(t) and wagglers v j , which is a fraction γ ∈ (0, 1) of that provided by
active forager. Colonies can maximize their foraging yield by increasing their recruit-
ment rate β. However, a high recruitment rate could be detrimental to a colony in a
rapidly changing environment (Pagliara et al. 2018; Bidari et al. 2019). Alternatively,
colonies may tune their diffusion rates (Dv, Dw) for instance by modifying the inte-
rior shape of their hive, which controls the rate of rapid information propagation about
the hive, balancing higher foraging yields with restrained recruitment in low quality
environments.

As we will show, these alterations to strategy can lead to three different types of
recruitment dynamics. Strong recruitment corresponds to the case in which a sufficient
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fraction of bees are recruited early on so as to result in the entire hive being recruited in
the long time limit. Intermediate recruitment occurs when all the bees in the entrance
patch are recruited, but no others. Transient recruitment corresponds to the case in
which the entrance patch is partially recruited. These designations are most relevant
in the two hive case, especially because we can divide parameter space into when we
expect each scenario based on initial conditions and collective interaction parameters.

3.2 Two-patch hive

We begin by considering a hive with two compartments. As we ignore spontaneous
commitment and abandonment common in decision models for honey bees, uncom-
mitted bees are initially recruited to forage by a fraction of waggle dancing bees in the
first hive patch with density v1(0), which could be scout bees who have identified a
potential foraging site (Biesmeijer and Seeley 2005). Aside from the initial fraction of
foragers u(0), we assume the bees remaining in the hive are uncommitted and spread
evenly (w1(0) = w2(0) = 1−v1(0)−u(0)

2 ≡ w̄(0)). Note, we take v2(0) = 0, indicating
a group of recruiters arrives through an entrance in the first patch.

To zero in on the regions of parameter space that lead to non-trivial long-term
recruiting behavior, we start by noting conditions that ensure no recruiting occurs
at all. The ecological significance of this result is that the recruiting threshold can
prevent widespread recruiting events, in ways that do not occur for recruiting that
depends directly on the density of recruiters as in past models (Franks et al. 2002;
Seeley et al. 2012). We state our first result along these lines as the following theorem:

Theorem 1 If φ ≡ v1(0) + u(0) < θ initially in Eq. (1) with N = 2, then
limt→∞ w1(t) + w2(t) = w1(0) + w2(0), corresponding to no recruitment.

Proof Note that clearly H(v j (t) − θ) = 0 near t = 0, so Eq. (1) reduces to w1(t) =
w̄(0) = w2(t) and

v̇1 = −μv1 + Dv(v2 − v1) + νu;
v̇2 = −μv2 + Dv(v1 − v2);
u̇ = −νu + μ(v1 + v2).

Clearly, v1 + v2 + u = φ, since v̇1 + v̇2 + u̇ = 0. Moreover, the rate of change of
each density (v1, v2, u) is non-negative when v1 = 0 or v2 = 0 or u = 0 and the other
densities are non-negative, that is

v̇1 = Dvv2 + νu ≥ 0, if v1 = 0 & v2, u ≥ 0;
v̇2 = Dvv1 ≥ 0, if v2 = 0 & v1 ≥ 0;
u̇ = μ(v1 + v2) ≥ 0, if u = 0 & v1, v2 ≥ 0,

implying v1, v2, u ≥ 0 for all time if v1(0), v2(0), u(0) ≥ 0. Together with the
conservation condition, this implies v1, v2, u ≤ φ < θ , so recruitment will never
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begin. Thus, the diffusive coupling between patches equilibrates the distribution of
wagglers in the hive over time (Fig. 1b), so as long as v1(0) > v2(0), then v1(t) will
decrease and neither patch density can exceed v1(0), implying u(0)+v1(0) < θ leads
to no recruitment. 	


To examine the dynamics of recruitment, we must assume u(0) + v1(0) > θ , in
which case there are three possible phases of colony behavior determined by initial
conditions and model parameters. We defer the analysis of the full model in Eq. (1) to
the later in this section and start by considering limiting case of ν → ∞ and μ → 0
so all recruits become wagglers. We also consider the limits of committed (Dv → 0
and Dv → ∞) and uncommitted (Dw → 0 and Dw → ∞) bee movements as well
as slow and fast recruitment (β → 0 and β → ∞) to demonstrate how changes in
recruitment rate and diffusion impact qualitative recruitment behavior within the hive.

3.2.1 Limiting cases of no foragers

By assuming ν → ∞ and μ → 0, any committed bee instantaneously becomes a
recruiter for the site. To see this, note that in this limit, u → 0, so that

v′
1(t) + u′(t) = v′

1(t) = β [H [v1 − θ ]w1 + H [v2 − θ ]w2] + Dv(v2 − v1).

Thus, bees are either committed to recruiting or uncommitted (can be recruited).
This simplification is also relevant to phenomenon by which honey bees switch roles
fluidly according to colony needs, so they may readily move between pure foraging
and mixed foraging/waggling behaviors (Johnson 2003; Ribbands 1952; Biesmeijer
and de Vries 2001). In this case, the colony can either be fully recruited long term
(strong recruitment) or recruitmentmay ceasewith the colony only partially recruited
through the first patch (transient recruitment).We can delineate these caseswith their
respective fixed points. Since Eq. (1) is piecewise linear, there are four classes of fixed
points: (i) v1, v2 > θ ; (ii) v1 > θ > v2; (iii) v1, v2 < θ ; and (iv) v2 > θ > v1. We
show type (ii) and (iv) equilibria are not possible in the case of no foragers. This is
significant because it implies that the only possible long term equilibria involve either
both recruiter populations being superthreshold (leading to strong recruitment) or both
recruiter populations being below threshold:

Theorem 2 All fixed points of Eq. (1) with N = 2 and no foragers (ν → ∞ and
μ → 0) either satisfy v1, v2 > θ or v1, v2 < θ .

Proof Type (i): First, given an equilibrium of the form v1, v2 > θ , we have

βw j = Dw(wk − w j ), ( j, k) ∈ {(1, 2); (2, 1)};
β(w1 + w2) = Dv(v1 − v2), v1 = v2;

which can be solved for v̄1 = v̄2 = 0.5 and w̄1 = w̄2 = 0 using fact that v1 + v2 +
w1 + w2 = 1, which satisfies the threshold condition as long as 0.5 > θ .
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Type (iii): Next, note that equilibria of the form v1, v2 < θ satisfy w1 = w2 and
v1 = v2, a chain of fixed points that exists so long as v1 = v2 = v < θ so that
w1 = w2 = 0.5 − v > 0.5 − θ .
Type (ii): Now, note equilibria that would satisfy v1 > θ > v2 must obey

βw1 = Dw(w2 − w1); w1 = w2; βw1 = Dv(v1 − v2); v1 = v2;

implying w1 = w2 = 0 so v1 = v2 = 0.5 which violates the inequality condition
(v1 > θ > v2) for any θ for this class of equilibria, so this class of equilibria cannot
exist.
Type (iv): Lastly, note proposing v2 > θ > v1 as an equilibrium is also impossible
since such a fixed point would obey

w1 = w2, βw2 = Dw(w2 − w1); βw2 = Dv(v1 − v2); v1 = v2;

implying again w1 = w2 = 0 so v1 = v2 = 0.5 violating the proposed inequality. 	

Note the case of strong recruitment occurs for the type (i) equilibrium, which is

marginally stable as indicatedby thenon-positive eigenvaluesλ = {0,−2Dv,−2Dw−
β, β}.

The type (iii) equilibrium corresponds to transient recruitment, and we can demon-
strate that all bees are recruited via the first patch. Assume for contradiction that
some recruitment occurs in the second patch. As mentioned previously, this implies
v1 > v2 > θ for some time t . In this case, v1 > v2 > θ indefinitely thereafter, since
v1 + v2 > 2θ , implying that at v2 = θ we have v1 > θ and v′

2(t) = Dv(v1 − θ) > 0,
which cannot be if a type (iii) equilibrium is approached.

Thus, colonies that begin in the type (i) (v1, v2 > θ ) or (iii) (v1, v2 < θ ) regions
remain there indefinitely, and there is a separatrix in the type (ii) region (v1 > θ > v2)
delineating situations in which strong versus transient recruitment occurs long term.
In this case, the evolution equations for the population in the type (ii) region are given
by

w′
1 = −βw1 + Dw(w2 − w1); w′

2 = Dw(w1 − w2);
v′
1 = βw1 + Dv(v2 − v1); v′

2 = Dv(v1 − v2). (2)

A steady state analysis is thus insufficient to separate population behavior when initial
conditions begin in region (ii). As such, we will examine the dynamics of Eq. (2)
as it depends on model parameters. While we can derive full solutions to Eq. (2) by
hand, the implicit transcendental equations bounding different phases of recruitment
are most tractable in the limiting cases we explore now:

Detailed analysis of the v1 > θ > v2 case.

Slow recruitment: β/Dw → 0 and β/Dv → 0. In the limit of slow recruitment,
wagglers recruit uncommitted bees much slower than bees move about the hive. As
such, the patchiness of the hive does not matter as the colony becomes well mixed
quickly. On fast timescales, w1, w2 → w̃ (average of each other) and v1, v2 → ṽ.
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Combining the w and v equations, on slow timescales, we then have w̃′ = −βw̃ and
ṽ′ = βw̃ = β(0.5 − ṽ) by conservation. Recruitment will then cease if the limiting
fraction of wagglers in patch 1 in this initial phase (v1 → v1(0)/2) is below threshold
θ . Otherwise, if v1(0) > 2θ , recruitment continues till the whole colony is recruited.
Thus, if recruitment is slow, the colony must rely on a sufficiently large initial set of
wagglers to diffuse throughout the hive without falling subthreshold.
Fast recruitment: β/Dw → ∞ and β/Dv → ∞. If recruitment is much faster than
the movement of the bees within the hive, then wagglers in patch 1 quickly recruit all
bees there so v1 → v1(0) + w1(0) initially. If w1(0) > v1(0) > θ , recruitment will
continue until the whole colony is recruited since diffusion of the recruiters will bring
both patches above threshold. On the other hand, if w1(0) + v1(0) < 2θ , we can use
the fact that on slow timescalesw1 ≈ 0 and conservation to derive the slow subsystem

v′
1 = Dw(1 − v1 − v2) + Dv(v2 − v1); v′

2 = Dv(v1 − v2).

As the bees in patch 1 are quickly recruited, then at 0 < t1 � 1, v1(t1) ≈ w1(0)+v1(0)
and v2(t1) = 0 which results in the following solutions to leading order

v1(t) = 1

2
+ e−2t Dv ((1 + v1(0))Dv − Dw)

2 (2Dv − Dw)
+ e−t Dw(1 − v1(0))(Dw − Dv)

2 (2Dv − Dw)
(3a)

v2(t) = 1

2
− e−2t Dv ((1 + v1(0))Dv − Dw)

2 (2Dv − Dw)
− e−t Dw Dv(1 − v1(0))

2 (2Dv − Dw)
. (3b)

Checkingwhether or not strong recruitment occurs then depends onwhether v1(t) < θ

at some point in Eq. (3). If recruitment is sustained in the first patch, the fraction of
wagglers in the second patch will continue to increase above threshold θ , leading to
strong recruitment.

To study whether the fraction of recruiters within the first patch is increasing or
not, we differentiate v1(t) and determine bounds on when it is positive or negative.
When v1(0) ∈ [0, 1

2 ], we find v′
1(t) > 0 (so v1(t) increases monotonically) if Dw <

Dv <
Dw(1−v1(0))

v1(0)
, in which case recruitment will continue indefinitely. On the other

hand, when Dv ≥ Dw(1−v1(0))
v1(0)

(Dv < Dw), v1(t) is initially decreasing (increasing)
and obtains a minimum (maximum). This critical point occurs where

v′
1(t

∗) = −Dve−2t Dv ((1 + v1(0))Dv − Dw)

2Dv − Dw

− Dw (1 − v1(0)) e−t Dw (Dw − Dv)

2 (2Dv − Dw)
= 0

t∗ =
log

(
(1−v1(0))Dw(Dv−Dw)
2Dv((v1(0)+1)Dv−Dw)

)
Dw − 2Dv

.
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Thus, the critical point is

v1(t
∗) = 1

2
+ (Dw − (1 + v1(0))Dv)

2Dw

(
2Dv ((1 + v1(0))Dv − Dw)

Dw(1 − v1(0))(Dv − Dw)

) 2Dv
Dw−2Dv

. (4)

If Eq. (4) is less than the recruitment threshold (v1(t∗) < θ ), recruitment terminates,
but this will never occur when θ <

1+v1(0)
4 since Eq. (4) has a lower bound of 1+v1(0)

4 .
Note that for large values of recruitment thresholds, the critical waggler diffusion level
D̂v will depend linearly on the rate of uncommitted bee diffusion, D̂v = α ·Dw. Using
this ansatz, the equation for critical diffusion level becomes

f (θ, v1(0), α) = θ − 1

2
− 1 − α(1 + v1(0))

2

(
2α(1 − α(1 + v1(0)))

(v1(0) − 1)(α − 1)

) 2α
1−2α

.

The slope of the linear relationship between the movement of uncommitted Dw and
the critical waggler diffusion Dv must satisfy α ≥ 1. Note that f (θ, v1(0), 1) = θ − 1

2

and limα→∞ f (θ, v1(0), α) = θ − 1+v1(0)
4 . Thus, if 1+v1(0)

4 < θ < 1
2 , then due to

the continuity of f (θ, v1(0), α), it has a root guaranteed by the Intermediate Value
Theorem (IVT).
Lastly, we can consider individual limits of movement within the hive of both the
wagglers and uncommitted bees.
Slow uncommitted movement: Dw → 0. This assumption simplifies the dynamics
of the uncommitted population so there is nomovement between patches:w′

1 = −βw1
and w′

2 = 0 in the type (ii) region. Here, again, we can reduce the four-dimensional
Eq. (2) to a phase plane in the first time epoch using the fact thatw2(t) = (1−v1(0))/2
so w1 = (1 + v1(0))/2 − v1 − v2 and thus

v′
1 = β

[
1 + v1(0)

2
− v1 − v2

]
+ Dv(v2 − v1); v′

2 = Dv(v1 − v2).

We solve this system to obtain the following leading order equations

v1(t) = 1 + v1(0)

4
+ (Dv − β)(1 − v1(0))

2(β − 2Dv)
e−βt − 4Dvv1(0) − β(1 + v1(0))

4(β − 2Dv)
e−2Dv t ,

(5a)

v2(t) = 1 + v1(0)

4
+ Dv(1 − v1(0))

2(β − 2Dv)
e−βt + 4Dvv1(0) − β(1 + v1(0))

4(β − 2Dv)
e−2Dv t . (5b)

As in the case of fast recruitment, continued recruitment in the first patch leads to
strong recruitment of the entire hive. However, if there is a low initial fraction of
recruiters v1(0) or if the diffusion of recruiters Dv is rapid, the fraction of waggle
dancing bees in the first patch decreases and recruitment may cease.

We can differentiate v1(t) in Eq. (5a) and find that it increases monotonically
(obtains a maximum) when β ≤ Dv ≤ β(1−v1(0))

2v1(0)
(Dv < β) if v1(0) ∈ [0, 1

3 ], so
recruitment continues indefinitely in this case. Alternatively, v1(t) obtains a minimum
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when Dv ≥ β(1−v1(0))
2v1(0)

if v1(0) ∈ [0, 1
3 ], or when Dv > β if v1 ∈ ( 13 , 1]. To find the

minimum, we solve for the time when

v′
1(t

∗) = −β(1 − v1(0))(Dv − β)e−β

2(β − 2Dv)
+ Dve−2Dv t (4v1(0)Dv − β(1 + v1(0)))

2(β − 2Dv)
= 0

t∗ =
ln

(−4D2
vv1(0)+βDv(1+v1(0))

β(v1(0)−1)(Dv−β)

)
2Dv − β

.

Thus, the minimum is

v1(t
∗) = 1 + v1(0)

4
+ β(1 + v1(0)) − 4Dvv1(0)

4β

(−4D2
vv1(0) + Dvβ + βDvv1(0)

β(v1(0) − 1)(Dv − β)

) 2Dv
β−2Dv

.

(6)

If this minimum is less than the recruitment threshold fraction, recruitment terminates.
We obtain the critical level of diffusion separating strong and transient recruitment by
solving for Dv corresponding to where v1(t∗) = θ in Eq. (6).

The relationship between critical Dv and recruitment rate β is shown in Fig. 2c.
We affirm the linear relationship between critical Dv and recruitment rate β as seen
in Fig. 2c. Using the ansatz Dv = αβ, equation for critical diffusion level becomes

f (θ, v1(0), α) = θ − 1 + v1(0)

4

− 1 + v1(0) − 4αv1(0)

4

(
α(−4αv1(0) + 1 + v1(0))

(v1(0) − 1)(α − 1)

) 2α
1−2α

.

The slope of the linear relationship between the recruitment rate β and the critical

value Dv must satisfy α ≥ 1−v1(0)
2v1(0)

. Note that f
(
θ, v1(0),

1−v1(0)
2v1(0)

)
= θ − v1(0) and

limα→∞ f (θ, v1(0), α) = θ− v1(0)
2 thus if θ < v1(0) < 2θ (which is our assumption),

then due to the continuity of f (θ, v1(0), α), it has a root guaranteed by the Intermediate
Value Theorem (IVT).

Rapiduncommittedmovement: Dw → ∞. In this limit, the uncommittedpopulation
equilibrates to be well mixed (so w1 = w2 = w̃), so conservation implies

v′
1 = β

[
1 − v1 − v2

2

]
+ Dv(v2 − v1);

v′
2 = Dv(v1 − v2).
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which we solve to obtain the limiting evolutions of the waggler populations:

v1(t) = 1

2
+ 4v1(0)Dv − β

2(4Dv − β)
e−2Dv t + (1 − v1(0))(β − 2Dv)

4Dv − β
e− β

2 t , (7a)

v2(t) = 1

2
− 4v1(0)Dv − β

2(4Dv − β)
e−2Dv t − (1 − v1(0))2Dv

4Dv − β
e− β

2 t . (7b)

As opposed to the previous case, uncommitted bees from the second patch can diffuse
to the first patch and are recruited before recruitment begins in the second patch.
However, recruitment can terminate if the diffusion Dv of wagglers is high or the
initial fraction of recruiters v1(0) is too low. Using a similar approach to the cases
before, we find v1(t) is increasing when Dv <

β(1−v1(0))
2v1(0)

. Thus, the colony achieves

strong recruitment. On the other hand, v1(t) attains a minimumwhen Dv ≥ β(1−v1(0))
2v1(0)

if v1(0) ∈ [0, 1
2 ], or when Dv >

β
2 if v1 ∈ ( 12 , 1], which occurs where

v′
1(t

∗) = −Dv(4v1(0)Dv − β)

4Dv − β
e−2Dv t + β(1 − v1(0))(β − 2Dv)

2(4Dv − β)
e− β

2 t = 0

t∗ =
2 ln

(
− 2(4v1(0)D2−βD)

(v1(0)−1)β(2D−β)

)
4D − β

,

implying the critical point occurs at

v1(t
∗) = 1

2
+ (β − 4v1(0)Dv)

2β

(
2Dv(β − 4v1(0)Dv)

(v1(0) − 1)β(2Dv − β)

) 4Dv
β−4Dv

. (8)

If this minimum is less than threshold v1(t∗) < θ , recruitment eventually terminates.
We characterize the regions of strong and transient recruitment using this inequality.
The relationship between critical D̂v and recruitment rate β is shown in Fig. 2c as
determined by Eq. (8), and it is clear to see it is linear.

To show this, consider the ansatz D̂v = αβ, equation for critical diffusion level
now becomes

f (θ, v1(0), α) = θ − 1

2
− (1 − 4v1(0)α)

2

(
2α(1 − 4v1(0)α)

(v1(0) − 1)(2α − 1)

) 4α
1−4α

.

For initial recruiters fraction in the interval [0, 1/2], v1(t) obtains a minimum

when α ≥ 1−v1(0)
2v1(0)

. Noting then that f
(
θ, v1(0),

1−v1(0)
2v1(0)

)
= θ − v1(0) and

limα→∞ f (θ, v1(0), α) = θ − v1(0)
2 , we see that if θ < v1(0) < 2θ (which is

our assumption), f (θ, v1(0), α) has a root guaranteed by the IVT.

Slow waggler movement: Dv → 0. In this limit, wagglers from patch 1 never reach
patch 2, so v2 = 0 indefinitely. In this case, clearly v1 is always increasing since
v′
1 = βw1 > 0, so we will always have strong recruitment. All uncommitted bees will
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be recruited via patch 1, as determined by the phase plane dynamics:

v′
1 = βw1; w′

1 = −βw1 + Dw(1 − v1 − 2w1).

This system obtains its fixed point v1 = 1 and w1 = 0 with eigenvalues λ =
1
2

(
−β − 2Dw ± √

β2 + 4D2
w

)
, which are both clearly negative and the fixed point

is stable.

Rapidwagglermovement: Dv → ∞. Lastly,wagglersmay rapidly equilibrate across
the hive. In this case, to determine whether strong or transient recruitment occurs, we
simply check if v1(0) > 2θ or not. If v1(0) < 2θ , then v1, v2 → ṽ < θ rapidly
and the colony falls into the type (iii) region and recruitment (and all dynamics)
ceases. Otherwise, v1, v2 → ṽ > θ , which together with conservation means the
dynamics is described by the scalar equation for w1 = w2 = w, w′ = −βw, so
w(t) = 1−v1(0)

2 e−βt and ṽ(t) = 0.5+ 0.5(v1(0) − 1)e−βt . This is consistent with our
observation that the parameter space regions in which we expect a tradeoff in varying
the diffusion of the wagglers are those for which θ < v1(0) < 2θ in the two patch
model.

In total, our analysis shows that the initial fraction of wagglers in patch 1, v1(0),
must be sufficiently large, their rate of diffusion Dv must be sufficiently small, and
the recruitment rate β must be large enough for recruitment to persist until the whole
hive is recruited. The above asymptotic results reveal clear trends in the relationship
between these critical parameters that divide strong and transient recruitment. In par-
ticular, as β increases, the critical Dv increases linearly. Increasing the recruitment
rate thus affords the colony the ability to spread information throughout the hive faster
without the recruiters losing their critical capacity to influence the uncommitted. Sim-
ilarly, we identified a linear relationship between Dw and the critical diffusion rate
Dv , since uncommitted movement can also facilitate recruitment. Moving forward,
we now identify trends between these extremes, and show again that a colony must
balance a tradeoff between rapidly propagating recruitment into the second patch,
while preventing too rapid a dispersion of wagglers.

3.2.2 Critical diffusion level of waggling bees

The speed at which a colony can propagate information about potential foraging sites
and recruit the hive strongly depends on the fraction of initial recruits v1(0) waggle
dancing for the foraging sites. A high fraction of initial recruits facilitates rapid infor-
mation transfer via the diffusion of waggle dancing bees in the hive. In contrast, if the
initial fraction of recruiters is too low, strong diffusion can spread the population of
wagglers too thin. This suggests that there is an optimal level of movement of waggle
dancing bees that allows the colony to quickly recruit the hive without spreading the
wagglers below the recruitment threshold. We determine the level of diffusion that
separates strong from transient recruitment across multiple parameter regimes. Then,
assuming recruiters diffuse at a rate close to this critical level D̂v , we calculate the
shortest time to recruit 90% of bees in the hive, T90, for the hive with two patches. In
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a b

c d e

Fig. 2 a Two patch hive model schematic without foragers. b Numerical simulations of Eq. (1) resulting
in three different recruitment scenarios: strong recruitment (the fraction of recruiters increases in both
patches and recruitment commences in second patch), intermediate recruitment (the fraction of recruiters
might decrease in first patch but does not fall below the minimum required for recruitment but recruitment
does not commence in second patch), transient recruitment (the fraction of recruiters decreases in the
first patch and falls below the minimum required for recruitment and recruitment ceases in both patches). c
The critical level of diffusion of wagglers D̂v which causes recruitment to cease for different initial values
of recruiters v1(0) and θ = 0.1 in the limits of movement of uncommitted bees. d Level curves where
the critical diffusion coefficient for waggling bees is D̂v = 10. Along and to the left of these curves, if
Dv ≥ 10, strong recruitment ceases. The threshold of waggling bees required for recruitment varies as
θ = 0.05, 0.10, 0.15. The diffusion rate D̂v at which recruitment ceases for θ = 0.10 is shown in the inset.
e Level curves for time to recruit 90% hive population at the optimal Dv (in log scale), which was the value
just below the critical diffusion level. The inset shows the time to recruit 90% of the hive population when
θ = 0.10 and Dw = 0 in log scale

general, we find a rate of diffusion just below D̂v facilitates rapid transfer of informa-
tion in the hive while ensuring the eventual recruitment of all uncommitted bees in a
two patch and three patch hives with a central entrance (Fig. S1).

We did find that as the number of patches in the hive increases, the level of diffusion
close to the critical level D̂v is not optimal for rapid information transfer, since it takes
longer for the colony to reach a super-threshold waggler density across all patches.
Instead, the optimal level Dopt

v for maximizing the rate of 90% recruitment is notably
lower than the critical value D̂v . This lower level of diffusion leads wagglers to move
slowly in the hive, increasing waggler density in patches adjacent to the entrance, and
allowing recruitment to commence in more than one patch faster than when wagglers
spread rapidly across the hive.1 Thus, for hives with multiple peripheral patches, we
calculated T90 by optimizing time to recruit 90% of the hive across all possible levels
Dv of waggler diffusion, as we show subsequently.

In a hive with just two compartments, the critical level of diffusion of wagglers D̂v

is insensitive to changes in the diffusion rate Dw of uncommitted bees (Fig. 2c,d).
Diffusion of uncommitted bees is not a significant driver of recruitment dynamics in
a two patch hive when the uncommitted population is initially spread evenly in the

1 Further down, this can be seen in Fig. 4f, g, which demonstrates that recruitment in peripheral patches
begins sooner for a significantly lower than critical value of Dv .
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hive. If Dw is large, the population of uncommitted bees will stay balanced throughout
the recruitment process. If Dw is small, a substantial fraction of uncommitted bees
remains in the secondpatchuntil thewaggler population there becomes superthreshold,
at which point both patches will be recruited at an equal rate leading to larger fractions
of recruitment in the second patch, compensating for the lack of initial recruitment
there. This iswhy the shortest time to recruit 90%of the hive (T90) does not significantly
depend on the movement of uncommitted bees in the hive (Fig. 2e). These results hold
similarly when computing the shortest time to recruit 85% or 95% of the hive, T85 and
T95 (Fig. S2a,d). Note also that as the rate of recruitment β is decreased, the critical rate
D̂v decreases, since the waggler population must not be spread too thin too quickly.

In the following section,we show that themovement of uncommitted bees expedites
recruitment when the number of patches in the hive is higher as there is less crowding
around the waggle dancing bees when bees are spread out in higher number of patches.

3.3 Three-patch hive

In a hive with three compartments, movement becomes more import to spread infor-
mation throughout the spatially-distributed hive. The population of wagglers must
tune their movement to effectively reach and recruit uncommitted bees throughout the
hive. We consider scenarios in which waggle dancing bees can enter the hive through
the compartment at the center (central entrance: Fig. 3a) or at the either end (periph-
eral entrance: Fig. 3b). As in the two compartment hive, the movement of waggle
dancing bees determines the progression of recruitment in the hive. Rapid movement
of wagglers allows the colony to swiftly recruit all members for a timely exploitation
of resources, but at the risk of losing recruiters in the initial compartment, halting
recruitment. Given the hive is distributed across more patches, there is an increased
risk of spreading too thin, and the entire recruitment process ceasing.

In the absence of the foraging class, the fraction of committed and uncommitted
bees in the central entrance hive with three compartments evolve as follow

∂wi

∂t
= −βH [vi − θ ]wi +

{
Dw(w j±1 − w j ), j = 1, 3

Dw(w3 − 2w2 + w1), j = 2,
(9a)

∂vi

∂t
=

{
Dv(v2 − v j ), j = 1, 3,

β
∑3

i=1 H [vi − θ ]wi + Dv(v3 − 2v2 + v1), j = 2.
(9b)

As in the two patch case, we can determine the relative role of recruitment and bee
movement in the dynamics of the collective recruitment process in Eq. (9) by studying
its asymptotic limits in the case of central entrance hive:

Fast recruitment: β/Dw → ∞ and β/Dv → ∞. Wagglers in patch 2 are quickly
recruited so v2 → v2(0) + w2(0). If v2(0) + w2(0) < 3θ , we can use that w2 ≈ 0,
symmetry about the center patch (v1(t) = v3(t)), and conservation to derive the slow
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a

d e

b c

Fig. 3 Three patch hive model. a Hive with entrance in the center patch. b Entrance in the peripheral
patch. c The critical level of diffusion of wagglers D̂v halting recruitment for different initial values of
recruiters v1(0) and θ = 0.1 when diffusion of uncommitted bees is slow Dw = 0 (blue) and diffusion of
uncommitted bees is rapid Dw = ∞ (green). d Level curve for D̂v = 10 when the proportion of waggling
bees required for recruitment varies as θ = 0.05, 0.10, 0.15. Purple curve represents central entrance and
pink curve represents peripheral entrance. The diffusion rate D̂v at which recruitment ceases for θ = 0.10
is shown in the inset; e Level curves for time to recruit 90% hive population at optimal D̂v (in natural log
scale). We choose diffusion of waggling bees just below the critical diffusion level D̂v to be optimal for
the speedy recruitment of the hive in the central entrance hive but compute T90 in peripheral case through
numerical optimization across Dv . The figure shown is for the central entrance case, however the peripheral
case looks nearly the same. The inset shows the time to recruit 90% of the hive population when Dw = 0
and θ = 0.1 in natural log scale

subsystem

v′
1 = Dv(v2 − v1), v′

2 = Dw(1 − v2 − 2v1) + 2Dv(v1 − v2),

which we solve to obtain in this limit:

v1(t) = v3(t) = 1

3
+ 2(1 − v2(0))Dv

3(Dw − 3Dv)
e−t Dw + Dw − (2v2(0) + 1)Dv

3(3Dv − Dw)
e−3t Dv ,

v2(t) = 1

3
− 2(1 − v2(0))(Dw − Dv)

3(Dw − 3Dv)
e−t Dw + 2(Dv(2v2(0) + 1) − Dw)

3(3Dv − Dw)
e−3t Dv ,

so that v2(t) attains a minimum where

v′
2(t

∗) = 2Dw(1 − v2(0))(Dw − Dv)

3(Dw − 3Dv)
e−t Dw − 2Dv(Dv(2v2(0) + 1) − Dw)

3Dv − Dw

e−3t Dv = 0,

t∗ =
log

(−v2(0)DvDw+v2(0)D2
w+DvDw−D2

w

3Dv(2v2(0)Dv+Dv−Dw)

)
Dw − 3Dv

.
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The critical point is

v2(t
∗) = 1

3
+ 2 (Dw − Dv(2v2(0) + 1))

3Dw

(
−3Dv ((2v2(0) + 1)Dv − Dw)

(v2(0) − 1)Dw (Dv − Dw)

) 3Dv
Dw−3Dv

.

(12)

If this critical value is less than the recruitment threshold, recruitment will eventually
terminate. However, this is not achieved for any level of waggler diffusion if the
recruitment threshold θ <

2v2(0)+1
9 since in this case limDv→∞ v2(t∗) = 2v2(0)+1

9 ,
meaning strong recruitment will always occur if this inequality is satisfied.

Slow uncommittedmovement: Dw → 0. This simplifies the dynamics of the uncom-
mitted population as there is no movement of uncommitted bees between the patches:
w′
1 = w′

3 = 0 initially (before the waggler population in those patches becomes
superthreshold) andw′

2 = βw2. Here, we can reduce the six dimensional Eq. (9) to two
dimensions using the fact thatw1(t) = w3(t) = 1−2v1(0)

3 sow2 = 1+2v1(0)
3 −2v1−v2

and thus

v′
1 = Dv(v2 − v1); v′

2 = β

(
1 + 2v1(0)

3
− 2v1 − v2

)
+ 2Dv(v1 − v2),

which we solve to obtain

v1(t) = v3(t) = 1 + 2v2(0)

9
+ 9v2(0)Dv − β − 2v2(0)β

3(β − 3Dv)
e−3Dv t + Dv(1 − v2(0))

3(β − 3Dv)
e−βt ,

v2(t) = 1 + 2v2(0)

9
− 2(9v2(0)Dv − β − 2v2(0)β)

3(β − 3Dv)
e−3Dv t + (Dv − β)(1 − v2(0))

3(β − 3Dv)
e−βt ,

initially, and we find that v2(t) attains a minimum where

v′
2(t

∗) = 2Dv(9v2(0)Dv − β − 2v2(0)β)

β − 3Dv

e−3Dv t − β(Dv − β)(1 − v2(0))

3(β − 3Dv)
e−βt = 0

t∗ =
log

(
− 2

(
9v2(0)D2

v−2v2(0)βDv−βDv

)
(v2(0)−1)β(Dv−β)

)
3Dv − β

.

The critical point is

v2(t
∗) = 1

9
(2v2(0) + 1) + (1 − v2(0))(β − Dv)

9Dv

(
2Dv(2v2(0)β − 9v2(0)Dv + β)

(v2(0) − 1)β(Dv − β)

) β
β−3Dv

.

(15)
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The relationship between critical diffusion of wagglers D̂v and recruitment rate β as
determined by Eq. (15) is shown in Fig. 3c (compare to Fig. 2c). Again, we could
construct and argument to show D̂v depends linearly on β.

Rapiduncommittedmovement: Dw → ∞. In this limit, the uncommittedpopulation
equilibrates to be well mixed (so w1 = w2 = w3 = w̄), thus conservation implies

v′
1 = Dv(v2 − v1); v′

2 = β

(
1 − v1 − v2 − v3

3

)
+ Dv(v1 − 2v2 + v3); v′

3 = Dv(v2 − v3);

with solutions

v1(t) = v3(t) = 1

3
+ 3(1 − v2(0))Dv

β − 9Dv

e− βt
3 − (β − 9v2(0)Dv)

3(β − 9Dv)
e−3t Dv ,

v2(t) = 1

3
− (1 − v2(0))(β − 3Dv)

β − 9Dv

e− βt
3 + 2(β − 9v2(0)Dv)

3(β − 9Dv)
e−3t Dv ,

so v2(t) attains a minimum where

v′
2(t

∗) = β(1 − v2(0))(β − 3Dv)

3(β − 9Dv)
e− βt

3 − 2Dv(β − 9v2(0)Dv)

β − 9Dv

e−3t Dv = 0,

t∗ =
3 log

(
− 6

(
9v2(0)D2

v−βDv

)
(v2(0)−1)β(3Dv−β)

)
9Dv − β

.

The critical point is

v2(t
∗) = 1

3
+ 2(β − 9v2(0)Dv)

3β

(
6Dv(β − 9v2(0)Dv)

(v2(0) − 1)β(3Dv − β)

) 9Dv
β−9Dv

(18)

so D̂v occurs where v2(t∗) = θ in Eq. (18), which again depends linearly on β.

3.3.1 Critical diffusion level of waggling bees

We calculate D̂v for the peripheral entrance hive and intermediate values of Dv in
central entrance hive using numerical simulations. The critical level of diffusion of
wagglers D̂v in these cases is lower compared to the two patch case as bees have
more space to spread out and can more easily drop their patch populations below
threshold, so there is a higher premium on maintaining a superthreshold population
in the entrance patch. This effect is more drastic in the central entrance hive (Fig. 3d).
In this case, bees diffuse in both directions from the entrance (‘leaking’ at twice the
rate from the center patch), and the critical level of diffusion at which number of
waggle dancing bees goes below the recruitment threshold is lower, since the fraction
of recruiters in the entrance patch decreases more rapidly.

Adding a patch to the model slows recruitment since bees must now recruit from
more patches and traverse longer distances when the entrance is peripheral (Fig. 3d).
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Uncommitted bees in the hive are spread out further and wagglers need to be above
threshold in each compartment to sustain strong recruitment. Themovement of uncom-
mitted bees facilitates the recruitment of the entire hive more so than in the two patch
case, since there is more space to be covered (Fig. 3d).

If the colony tunes their diffusion rates with respect to the arrangement of the hive
(central vs. peripheral entrance), there is little to no difference between the time to
recruit 90% of the hive (T90) for the central entrance case and peripheral entrance case
(Fig. 3e). Results hold similarly when computing T85 or T95 for the three patch hive
(Fig. S2b,e). This suggests that even though it may be easier for recruitment to fail
in the central entrance case, the hive-wide rate of recruitment for an optimal tuned
colony does not suffer in comparison to the hive with a peripheral entrance.

3.3.2 N-patch hive: critical diffusion level of waggling bees

Themovement of uncommitted bees becomesmore essential to the recruitment process
as the number of hive compartments increases, since wagglers have more ground
to cover to communicate recruitment signals. There is also a higher premium for
sustaining superthreshold fractions of recruiters in each patch as number of patches
growwhich becomes unachievable at some patch number. In these cases, the only way
for the entire hive to be recruited is through the movement of uncommitted bees to the
compartments closer to the entrance with more recruiters, and having the recruiters
stay confined primarily close to the entrance to maintain a superthreshold fraction,
localizing the patch regions where recruitment occurs.

Diffusion of uncommitted allows distant uncommitted bees to move closer to the
entrance as those initially close to the entrance are recruited. As bees are recruited,
the population of recruiters increases as well. Recruiters can diffuse without their
populations in each patch dropping below the recruitment threshold. If uncommitted
bees diffuse slowly (low Dw), the critical level of recruiter diffusion D̂v decreases
rapidly with an increase in the number of compartments N , since a superthreshold
fraction must be maintained with fewer recruited bees per patch. However, when
uncommitted bees diffuse more rapidly (higher Dw), the critical level of diffusion D̂v

does not decrease as dramatically as more compartments are added (Fig. 4a), since
more bees will be recruited due to the movement of uncommitted bees.

Movement of uncommitted bees significantly reduces time to recruit 90% of the
hive in a hive with large number of patches (Fig. 4b). Furthermore, we find T90 does
not decrease monotonically with the diffusion of wagglers even in the range of dif-
fusion leading to super-threshold wagglers’ density (Fig. 4e). In larger hives, large
waggler diffusion delays the time taken for waggler population to be above threshold
in peripheral patches thus prolonging time to recruit 90% of the hive (compare Fig. 4f
and Fig. 4g). It is more advantageous for a colony to quickly reach super-threshold
waggler populations in the patches neighboring the entrance than to rapidly diffuse
and equilibrate the population across hive, resulting in longer time for recruitment to
commence in more than one hive. As number of patches in a hive increases, a balance
of movement of uncommitted and committed bees is required to fully recruit the hive.

Note the piecewise differentiable nature of the first patch’s waggler fraction tra-
jectory in Fig. 4f and Fig. 4g is due to the onset of recruitment of uncommitted bees
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a

c

f g

d e

b

Fig. 4 a Critical diffusivity level of waggling bees D̂v at which value recruitment eventually ceases as a
function of N , the number of patches in the hive. b Fastest time to recruit 90% hive population at critical Dv .
For panels a and b, θ = 0.05 and v1(0) = 0.1. Dashed lines form lower bounds for T90 when Dv, Dw = ∞
(lower dashed line) and Dv = 0, Dw = ∞ (upper dashed curve). c–e Level curves for fastest time to recruit
90% hive population T90 for a hive with: c Two compartments d Five compartments; e Ten compartments
f Time series of the recruitment dynamics showing how waggler density across different patches evolves in
a hive with five compartments: f Dv = 1 g Dv = 0.48

in peripheral patches each time the waggler fraction in each patch crosses above the
recruitment threshold. After each crossing event there is a marked jump in the rate
of the first patch’s waggler increase rate due to an expansion of the hive area being
recruited.

We expect the time T90 to recruit 90% of the hive to increase with the number of
compartments in the hive and decrease with the increase in recruitment rate. Indeed,
T90 grows exponentially with N when the population of uncommitted bees diffuses
rapidly and supraexponentially when uncommitted bees diffuse slowly (Fig. 4b).
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Wecancompute the time to recruit 90%of the hive directly in two limiting scenarios:
well mixed hive (Dv, Dw → ∞) and stationary wagglers Dv = 0, Dw → ∞. The
numerically computed T90 mostly fall in between these two values (Fig. 4b). The
single patch hive or the well mixed hive forms lower bound for our model. Results are
qualitatively similar when considering T85 or T95 (Fig. S2c,f).
Well mixed hive. In a well mixed hive (Dv, Dw → ∞), the number of uncommitted
and committed bees in each compartment of a hive is equalized wi = w̄ and vi = v̄

which evolves as

w̄′ = −βw̄, v̄′ = βw̄, (19)

so w̄(t) = e−βt

N (1 − v1(0)) and v̄(t) = 1
N − e−βt

N (1 − v1(0)), as long as θ <
v1(0)
N .

This is equivalent to the dynamics of a single patch hive with 1/N the fraction in the
single patch. Assuming θ <

v1(0)
N , recruitment continues until the hive is recruited,

requiring a time to recruit 90% of the hive T90 = − 1
β
log

(
0.1

1−v1(0)

)
.

Stationary wagglers. Next, assume no movement of wagglers (Dv = 0). For larger
number of patches N , recruitment ceases for any level of diffusion of wagglers Dv due
to overspreading of wagglers across the hive, so the only way such a hive can obtain
strong recruitment is if wagglers do not diffuse and recruitment occurs only in the
first patch through diffusion of uncommitted bees. Thus, for the hives with a higher
number of patches, T90 is upper bounded by the case where Dv = 0 and Dw = ∞.
Here, the fractions of uncommitted bees in each hive patch equalizes, wi = w̄ and
vi = 0 (i �= 1), and the fraction of wagglers in patch 1 evolves as

v′
1 = β

N
(1 − v1). (20)

Solving this and using conservation, v1(t) = 1 − e
−βt
N (1 − v1(0)) and w̄(t) =

e
−βt
N

(
1−v1(0)

N

)
. Again, we can directly compute T90 = − N

β
log

(
0.1

1−v1(0)

)
. We plot

both of these bounds for T90 in Fig. 4b along with the calculated values. The lower
dashed line is T90 corresponding to the well mixed assumption and the upper dashed
curve corresponds to the stationary waggler case where Dv = 0 and Dw = ∞. For
N ≤ 10, the fastest time to recruit 90% of the population by optimizing the movement
of wagglers falls between these two bounds.

3.4 Thresholded recruitment facilitates efficient collective signal detection

Though the threshold on recruitment can prevent and slow the initiation of colony-wide
foraging, it can also prevent the colony from erroneously departing for low-quality
food sources. To examine this tension between recruitment to high-quality foraging
sites and prevention of departure to low-quality sites, we will examine a colony-wide
thresholding mechanism that emerges to divide these two scenarios. In a simple hive
with two compartments, using the following system of equations we can map the
initial fraction of waggle dancing bees, v1(0) to the long term limit of committed
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bees, vs = limt→∞ v1(t) + v2(t). We define this mapping as the function vs ≡
g(v1(0); θ, β, Dw, Dv), where v1 and v2 evolve according to the two patch (N = 2)
and forager-free (ν → ∞ and μ → 0) version of the general patch-based collective
decision model Eq. (1):

ẇ1 = −βH [v1 − θ ]w1 + Dw(w2 − w1), (21a)

ẇ2 = −βH [v2 − θ ]w2 + Dw(w1 − w2), (21b)

v̇1 = β(H [v1 − θ ]w1 + H [v2 − θ ]w2) + Dv(v2 − v1), (21c)

v̇2 = Dv(v1 − v2), (21d)

If recruitment commences in the second patch (strong recruitment cycle), vs = 1
as all the bees will subsequently be recruited. If recruitment ceases in the first patch
(transient recruitment), vs = v2(t2) + θ where t2 is defined by v1(t2) = θ . For the
limiting cases discussed earlier, vs can be obtained analytically and numerically for
the cases in between.

How best can the two patch hive discern between foraging events worth of a colony-
wide recruitment event versus those for which the colony should stay in the hive? An
effective foraging strategywould lead to the full hive being recruitedwhen the foraging
site is plentiful and transient recruitment when a discovered foraging site is of poor
quality. Sometimes favorable sites may not lead to many initial recruits v1(0), and
sometimes the unfavorable state leads to many initial recruits v1(0) (Fig. 5b). Using
signal detection theory, we show that if the colony is capable of tuning the recruitment
threshold, they can facilitate foraging mostly at the favorable foraging sites and not at
unfavorable sites.

Define the distribution of possible initial recruit fractions v1(0) in the favorable
f+(v1(0)) and unfavorable f−(v1(0)) cases with v1(0) ∈ [0, 1]. Given the ini-
tial distribution functions f±(v) and the long term limit of committed bees vs ≡
g(v1(0); θ, β, Dw, Dv), we can compute the mean vs in both the favorable 〈vs〉+ and
unfavorable 〈vs〉− state using the formulas

〈v〉±|θ, β, Dw, Dv =
∫ 1

0
g(v; θ, β, Dw, Dv) f±(v)dv.

The long term foraging yield can be maximized across environments if bees are
often recruited in favorable environments and bees are seldom recruited in unfavorable
environments.Define the long termyield as as the sumof themean turn out of recruiters
in the favorable state plus the mean of the fraction remaining uncommitted in the
unfavorable state, representing the energy saved by not foraging an unfavorable site:

J (θ; β, Dv, Dw) =
∫ 1

0
(1 − vs)g−(vs)dvs +

∫ 1

0
vsg+(vs)dvs = 1 − 〈vs〉− + 〈vs〉+.

(22)

Note, we use Eq. (22) for simplicity, but it is related (by a constant additive factor) to
a more complicated objective function that provides bees foraging profitable sites (+)
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Fig. 5 a Probability density function for the fraction of scouting bees becoming recruiters after visiting
a high yielding foraging source f+ or a low yielding foraging source f−. b Response matrix depicting
all possible signal and response combination. Blue text indicates correct decisions and red text indicates
incorrect decisions. c Objective function J, the sum of the mean turn out of recruiters in the favorable state
plus the mean of the fraction remaining uncommitted in the unfavorable state varies with thresholding value
for β = 1, Dv = 5, Dw = 0. d The threshold θc maximizing J varies with model parameters β, Dv and
Dw

with twice the energy of those remaining in the hive and bees foraging unprofitable
sites (−) with no energy:

J̃ (θ;β, Dv, Dw) = 2 ·
∫ 1

0
vsg+(vs)dvs +

∫ 1

0
(1 − vs)g+(vs)dvs

+ 0 ·
∫ 1

0
vsg−(vs)dvs +

∫ 1

0
(1 − vs)g−(vs)dvs

= 2 · 〈vs〉+ + 1 − 〈vs〉+ + 0 · 〈vs〉− + 1 − 〈vs〉− = 2 − 〈vs〉−
+ 〈vs〉+

= J (θ;β, Dv, Dw) + 1,

and since the critical points are not affected by the constant shift, we retain Eq. (22).
The threshold θ in J (θ;β, Dv, Dw) can be varied to maximize Eq. (22), so the

optimal threshold θc balances the risk of terminating recruitment to a high-yielding
site due to a high threshold with recruitment to a perilous site through over-zealous
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recruiting (Fig. 5c). For most parameters, θc ∈ [0.9, 0.16], tending to increase with
β (preventing rapid recruitment) and decreasing with Dv (ensuring recruitment even
when recruiters diffuse) (Fig. 5d). The optimal threshold approaches a ceiling of
θ = 0.16 for higher values of β. This makes sense because when θ > 0.16, most of
the initial conditions (fraction of initial recrutiers) in favorable foraging environment
f+(v)will lead to recruitment dynamics that fall below threshold too quickly. For lower
values of β, the threshold θ should be decreased to prevent premature abandonment
of the recruiting process in the case of high-quality foraging sites.

3.5 Maximizing foraging yield

Honey bee colonies not only benefit from consensus in foraging decisions, but must
also implement strategies that result in sufficiently high foraging yields (Dornhaus et al.
2006). We also examined how the diffusion of bees (Dv, Dw) and the rate of exchange
between the pure foraging and recruiting populations (ν, μ) shape the foraging yield
of the colony. For this section, we consider full model in Eq. (1) where N = 2. Under
the initial conditions v1(0) > θ, v2(0) = 0, Eq. (1) reduces to

ẇ1 = −βw1 + Dw(w2 − w1); ẇ2 = Dw(w1 − w2); (23a)

v̇1 = −μv1 + Dv(v2 − v1) + νu; v̇2 = −μv2 + Dv(v1 − v2); (23b)

u̇ = βw1 − νu + μ(v1 + v2). (23c)

Based on dynamics of Eq. (23), there are three possible phases of colony behavior:

Transient recruitment: In this case, the fraction of recruiters in first patch v1(t)
decreases and falls below the threshold θ and recruitment ceases in both patches. This
could occur due to a high rate of diffusion of waggling bees Dv causing the waggling
bees to quickly spread between patches and fall below the threshold (See Fig. 6a for
a schematic and Fig. 6d for a phase-plane illustration), or when most waggling bees
become pure foragers (high μ).

Intermediate recruitment: In this case, the first patch is fully recruited, but recruit-
ment does not commence in second patch. This phase of recruitment occurs only when
there is no movement of uncommitted bees Dw = 0. This occurs when there is a low
level of diffusion of wagglers (Dv) in the hive and the switch rate from waggling to
foraging is much higher than the reverse. Too few wagglers move to the second patch
and so the uncommitted bees in the second patch remain unrecruited (Fig. 6b and
Fig. 6e). The dynamics eventually relaxes to the steady states of Eq. (23) given as

w̄1 = 0; w̄2 = 1 − v1(0)

2
; ū = μ(1 + v1(0))

2(ν + μ)
;

v̄1 = ν(1 + v1(0))(Dv + μ)

2(2Dv + μ)(ν + μ)
; v̄2 = νDv(1 + v1(0))

2(2Dv + μ)(ν + μ)
; (24)
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a b c

d e f

Fig. 6 Schematics of three different recruitment scenarios in a two patch hive model. The recruitment
threshold is three waggle dancing bees per patch. Green circle denotes an actively recruiting patch and
red circle denotes a patch with no ongoing recruitment. a Transient recruitment: Some waggle dancers
diffuse to second patch. Both compartments are below recruitment threshold; b Intermediate recruitment:
Recruitment begins in the first patch and somewaggle dancers then diffuse to second patch but not enough to
initiate recruitment in the second patch. Recruitment continues only in the first patch; c Strong recruitment:
Recruitment begins in the first patch and enoughwaggle dancers diffuse to second patch to begin recruitment
there. d–f Schematic of trajectories in phase plane corresponding to behaviors indicated in a,b,c. If v1, v2 <

θ (red), recruitment ceases altogether, if v1 > θ > v2 (dark green), only the first patch is being recruited,
and if v1, v2 > θ (light green), both patches are being recruited

with non-positive eigenvalues. This provides explicit bounds onmodel parameters that
allow intermediate recruitment, since we need that v̄2 < θ but v̄1 > θ .

Strong recruitment: In this case, the fraction of recruiters increase in both patches
and recruitment commences in second patch. The rate of diffusion of waggling bees
(Dv) and the conversion of waggling bees to foraging bees (μ) can be tuned to foster
recruitment throughout the hive (Fig. 6c and Fig. 6f). Here, all the bees in the hive are
eventually recruited to forage, maximizing the foraging yield of the colony when the
foraging site is favorable. Note, the steady states of Eq. (1) with N = 2 in this case
are

w̄1 = w̄2 = 0; ū = μ

ν + μ
; v̄1 = ν(Dv + μ)

(2Dv + μ)(ν + μ)
; v̄2 = νDv

(2Dv + μ)(ν + μ)
.

(25)

with non-positive eigenvalues. We note that in this case, the whole colony can be
recruited even when the second patch is subthreshold. As noted in our analysis of slow
waggler movement in Section 3.2.1, this occurs in the asymptotic limit of Dv → 0.
However, this kind of recruitment through just the first patch is slower than when
both the patches are superthreshold, since it limits the portion of the uncommitted
population that can be reached by recruiters.

Across these different phases of foraging and recruiting behavior, we calculate
foraging yield using
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a

c d e

b

Fig. 7 a Schematic showing calculation of foraging yield; b The foraging yield is maximized for a specific
set of parameters (Dv, ν, μ) when θ , β, and v1(0) are fixed. For each of these curves, we fix the values
of two other parameters such that they maximize the foraging yield at each point. Other parameters are
β = 1, Dw = 0, θ = 0.1, v1(0) = 0.15. The inset shows the recruitment dynamics at the optimal
parameters, i.e Dv = 0.66, ν = 0.215, μ = 0.255. c–e Heat-maps showing how the foraging yield varies
with the model parameters. Abrupt changes in foraging yield occur when the colony switches between
strong (yellow region), intermediate (red/orange region), and transient (dark region) recruitment regime.
For each heat map, the parameter not on the axes is fixed such that the foraging yield with respect to the
parameter is maximized. The maximum foraging yield on each map is represented with a grey dot

J (β, Dv, Dw, ν, μ, T f ) =
∫ T f

0
u(t) + γ

N∑
j=1

v j (t) dt . (26)

Bees in the foraging class u spendmost of their time foragingwhile thewaggle dancing
bees v j engage in foraging the fraction of the time between waggle runs (e.g., γ = 1

2 )
(See Fig. 7a for a schematic). The colony can tune the fraction of purely foraging
bees and the fraction of recruiters by changing the rate they switch between these two
behaviors (ν and μ). The rate of diffusion of waggling bees Dv can also be tuned to
maximize the foraging yield (Fig. 7b).

The foraging yield of the colony closely depends on how colony members are
recruited. Strong recruitment results in the highest foraging yield as there are greater
number of bees foraging at least half of the forage cycle. Transient recruitment results
in the lowest foraging yield. The heat maps for the foraging yield clearly delineates
the regions corresponding to different recruitment phases (Fig. 7c, d, e). Clearly there
is an optimal rate of diffusion for wagglers Dv that maximizes the foraging yield, but
the dependence upon the role switching rates (μ, ν) suggests both should be relatively
low, so recruits initially dwell in the foraging class momentarily before transitioning
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to waggling. Note the optimal parameter set is very close to the boundaries between all
three regions of behavior. There is a fine balance between devoting sufficient wagglers
to recruitment andmaximizing the fraction of active foragers (tuning ν andμ) diffusing
fast enough and spreading the population too thin across patches (tuning Dv).

We can partition parameter space into different types of recruitment by analyzing
the solution of Eq. (23) in the limit of slow uncommitted bees (Dw → 0). Here, we
can can solve Eq. (23) explicitly, so

v1(t) = Dv

(
v1(0)

(−2μ(β + ν) + βλ + 8D2
v − 4Dv(β + ν − 2μ) + 2μ2

) + βν
)

2(2Dv − ν)(2Dv + μ)(−β + 2Dv + μ)
e−t(2Dv+μ)

+ (Dv − ν)
(
v1(0)βν + 2v1(0)βμ − 2v1(0)νμ − 2v1(0)μ2 − βν

)
2(2Dv − ν)(ν + μ)(β − ν − μ)

e−(ν+μ)t

− (v1(0) − 1)ν(β − Dv − μ)

2(β − ν − μ)(β − 2Dv − μ)
e−βt + (v1(0) + 1)ν(Dv + μ)

2(2Dv + μ)(ν + μ)
,

and transient recruitment occurs where v1(t) < θ , allowing us to separate parameter
space based on this condition.

To denote strong recruitment, we can analyze the steady states of Eq. (24) in the
limit of small diffusion of uncommitted bees (Dw → 0),

v̄2 = νDv(1 + v1(0))

2(2Dv + μ)(ν + μ)
.

Recruitment commences in the second patch when v2(t) ≥ θ , thus setting
νDv(1+v1(0))

2(2Dv+μ)(ν+μ)
> θ provides a condition for strong recruitment to exist in a hive

with two compartments (Fig. 7c,d,e).

Single patch hive. To better understand the dynamics of waggler and forager inter-
actions, we also examined the case of a hive with single patch for comparison. For
N = 1, under the initial condition v1(0) > θ and for as long as v1(t) > θ , Eq. (1)
reduces to

w′ = −βw, v′ = −μv + νu, u′ = μv − νu + βw, (27)

which can be solved to obtain

w(t) = e−βt (1 − v(0)) (28a)

v(t) = ν

ν + μ
+ ν(1 − v(0))

β − ν − μ
e−βt − v(0)μ(ν + μ) + β(ν − v(0)ν − v(0)μ)

(β − ν − μ)(ν + μ)
e−(ν+μ)t

(28b)

u(t) = μ

ν + μ
+ (1 − v(0))(μ − β)

β − ν − μ
e−βt

+ v(0)μ(ν + μ) + β(ν − v(0)ν − v(0)μ)

(β − ν − μ)(ν + μ)
e−(ν+μ)t . (28c)
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We calculate foraging yield as

J (β, ν, μ, T f ) = v1(0)μ(ν + μ) + β(ν − v1(0)ν − v1(0)μ)

(ν + μ)2(−β + ν + μ)
(γ − 1)(1 − e−T f (ν+μ))

(29)

+ (v1(0) − 1)(β − γ ν − μ)

β(β − ν − μ)
(1 − e−βT f ) + T f (γ ν + μ)

ν + μ
. (30)

Clearly we see that the problem of optimizing foraging yield involves balancing mul-
tiple terms that arise from the exchange of bees between each of the three populations.
The final term represents the long term yield from the combination of wagglers (γ ν)
and foragers (μ). The first two terms represent the contributions to forager from the
initial transient dynamics while bees are reaching their equilibrium fractions. Clearly,
if T f is sufficiently large, it is best to make μ as large as possible, while still allowing
continued recruitment until the whole colony is recruited. Thus, the limit on increasing
foragers is primarily provided by the strong need for recruiters in the initial transient
stage.

Inherent in Eq. (27) is the assumption that v(t) > θ ∀t > 0. Thus, we add a
constraint that the minimum of v(t) is greater than θ ,

v(t∗) = λ

λ + μ
−

(1 − v(0))λ
(

(1−v(0))βλ
β(λ−v(0)λ−v(0)μ)+v(0)μ(λ+μ)

) β
−β+λ+μ

λ + μ
> θ. (31)

Thus, foraging yield is maximized by optimizing Eq. (30), subject to the constraint
Eq. (31).

In a patchy hive model, colonies that adapt individual movement to the properties
of hive are more effective in carrying information throughout the hive quickly. We
find two different strategies for effective propagation of social information in hive
based on the number of hive patches. In hives with fewer patches, rapidly moving
wagglers can disperse information throughout the hive. On the other hand, the colony
relies more on the movement of uncommitted bees for rapid information transfer in
larger hives. Movement of bees also strongly shapes foraging yield, which on short
timescales is maximized when the colony is rapidly recruited, foregoing the devotion
of bees to the foraging class. On longer timescales, a large class of wagglers is less
important, as long as it is sufficient to complete a total recruitment of the hive. Our
analysis demonstrates that the spatial extent of the hive is a strong driver of the optimal
strategy both for rapid recruitment as well as the allocation of bees to different roles.

4 Continuum collective decisionmodel with threshold recruitment
and analysis

We have shown that increasing the size of a hive can have strong consequences on the
ability of a colony to complete a total recruitment. Indeed, as the hive grows, themotion
of uncommitted bees becomes more important. Now we consider the continuum limit
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of a spatially distributed hive, and analyze how efficient foraging strategies are then
shapedby the size of the hive and the parameters ofmovement and recruitment. Starting
with a patch model, take the right edge of each patch to be x j = j · 
x where 
x =
L/N , the length of the hive L divided by the number of patches N . Fixing L and taking
the limit N → ∞, then x ∈ [0, L]. If we also divide the diffusion coefficients Dc (c =
w, v) by (
x)2 so D̂c = Dc/(
x)2, then D̂c(cn+1−2cn+cn−1) → Dccxx (x, t) on the
interior. At the boundaries, we take a no flux condition, so wx (0, t) = wx (L, t) = 0.
Thus, the population model for non-committed and waggling bees in the hive evolves
on a one dimensional line segment. The spatiotemporal evolution of the waggling
v(x, t), uncommitted w(x, t) and foraging u(t) bees evolves according to a piecewise
smooth coupled system of partial differential equations (PDE: schematic in Fig. 1d):

∂w

∂t
= Dwwxx − βH [v(x, t) − θ ]w(x, t), wx (0, t) = wx (L, t) = 0, (32a)

∂v

∂t
= Dvvxx − μv(x, t), −Dvvx (0, t) = νu(t), vx (L, t) = 0, (32b)

du

dt
= β

∫ L

0
H [v(x, t) − θ ]w(x, t) dx + μ

∫ L

0
v(x, t) dx − νu(t) (32c)

Waggling recruiters enter the hive at one of the ends (L = 0) according to the partially
reflecting boundary condition (arising from the continuum limit of the entry point
being solely in the first patch) and recruit uncommitted hivemates as long as their local
density exceeds a threshold θ . Tomeasure the efficacy of recruitment, wewill compute
the two same measures as before as population motion, foraging, and recruitment
parameters are varied: time to recruit 90% of the hive population and foraging yield.
Analogous to the discrete patch hive, colonies may tune their diffusion rates (Dv

and Dw) to alter the rate of information propagation about foraging site availability
throughout the hive.

Note, the form of the population density boundary conditions for the PDE is essen-
tial for conservation of bees. The total number of bees b(t) = ∫ L

0 w(x, t)dx +∫ L
0 v(x, t)dx + u(t) is constant:

db

dt
= Dw

∫ L

0
wxx (x, t)dx − β

∫ L

0
H [v(x, t) − θ ]w(x, t)dx

+ Dv

∫ L

0
vxx (x, t)dx − μ

∫ L

0
v(x, t)dx

+ β

∫ L

0
H [v(x, t) − θ ]w(x, t) dx + μ

∫ L

0
v(x, t) dx − νu(t)

= Dw(wx (L, t) − wx (0, t)) + Dv(vx (L, t) − vx (0, t)) − νu(t)

= νu(t) − νu(t) = 0.

As we do not include spontaneous commitment and abandonment, we consider the
role of an external foraging source as providing an initial fraction of recruiters at the
entrance of the hive (L = 0) at time t = 0 such that

∫ L
0 v(x, 0)dx = ∫ L

0 ζ δ(x −
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0+)dx = ζ . The remaining uncommitted bees are initially spread evenly in the hive
w(x, 0) = 1−ζ

L where L is the length of the hive, and are recruited in the regions
where waggling population is above recruitment threshold θ , initially just near the
hive entrance.

When uncommitted bees are recruited, the fraction of wagglers in the hive can
increase. However, if the switching rate from pure foragers to recruiters is low,
quick diffusion of wagglers can lead to the waggler population falling subthreshold
throughout the hive and recruitment ceases. The three different types of recruitment
(transient, intermediate and strong) persist in the continuousmodel, though the distinc-
tion between transient and intermediate is less pronounced. Figure 8 shows how the
hive population and densities evolve in each of these three different recruitment scenar-
ios.When wagglers diffuse rapidly, their initial population quickly spreads throughout
the hive such that the waggler density becomes subthreshold everywhere in the hive
(Fig. 8d–f). As in the discrete patch model, excessive movement of recruiters limits
their impact. When the diffusion of wagglers is slower and the recruitment rate is low,
recruitment is sustained for a brief period of time before the waggler density becomes
subthreshold resulting in fewer than half of the colony being recruited (Fig. 8g–i).
On the other hand, if uncommitted bees move rapidly while wagglers diffuse slowly,
the waggler density remains superthreshold in a region of the hive near the entrance,
eventually recruiting the entire hive (Fig. 8j–l). This is similar to the discrete hives
with a large number of patches, where only way to recruit the majority of the hive
population is through considerably slow diffusion of recruiters Dv → 0 and to allow
the uncommitted bees to meet this population. This illustrates how a critical threshold
on the fraction of recruiters needed to recruit foragers can lead to a requirement of the
localization of recruitment on dance floors to achieve widespread recruitment of the
uncommitted population, especially in large hives where maintaining a population of
superthreshold recruiters throughout the hive is not possible.

Asbefore, efficient recruitment requires balancing a rapid propagationof the recruit-
ment signal without the population of recruiters becoming too diffuse. To study the
problem more closely, we start by considering some limiting cases, as in the discrete
patch hive model. In the first of these cases, we consider a model with no pure foraging
class.

4.1 Limiting case of no foragers

Taking the limits ν → ∞ and μ → 0, any committed bee instantaneously becomes a
recruiter and remains that way indefinitely. Thus, bees are either recruiters or uncom-
mitted:

∂w

∂t
= Dwwxx − βH [v(x, t) − θ]w(x, t), wx (0, t) = wx (L, t) = 0 (33a)

∂v

∂t
= Dvvxx , Dvvx (L, t) = Dvvx (0, t) + β

∫ L

0
H [v(x, t) − θ]w(x, t) dx = 0

(33b)
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Fig. 8 a–c Schematic of three different recruitment scenarios in a line hive model representing committed
(green) and uncommitted (red) bees. d, e Changes in number of uncommitted and waggle dancing bees in
the hive in a transient recruitment scenario. fChange with time in number of bees in each class in a transient
recruitment scenario β = 1, Dw = 0.1, θ = 0.1, ν = 2, μ = 0, Dv = 1. g, h Changes in the number
of uncommitted and waggle dancing bees in the hive in an intermediate recruitment scenario. i Change
with time in number of bees in different class in an intermediate recruitment scenario β = 1, Dw =
0.1, θ = 0.1, ν = 2, μ = 0, Dv = 0.1. j, k Change with time in number of bees in different class in a
strong recruitment scenario. l Change with time in number of bees in different class in a strong recruitment
scenario β = 1, Dw = 1, θ = 0.1, ν = 2, μ = 0, Dv = 0.1

Movement of committed and uncommitted individuals play a crucial role in determin-
ing whether the hive population is recruited entirely and how quickly.

We examine specifically how the two diffusion rates (Dv, Dw) shape the time to
recruit the colony (Fig. 9). In contrast to the finite discrete patch case, here the hive
length L is the free parameter determining the relative extent of the hive. When the
hive is short, the movement of uncommitted bees impacts the dynamics of recruitment
weakly. This is because anymovement of the uncommitted bees tends to quickly spread
their population distribution across the hive. The time to recruit 90% of the hive thus
does not noticeably vary with changes in Dw for L = 2 (Fig. 9a). As the length of
hive increases, diffusion of uncommitted bees significantly reduces the time to recruit
nearly all the colony (Fig. 9b, c). Interestingly, for the longest hive length L = 10
we consider, the level curve is non-monotonic in Dv , since excessive diffusion can
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Fig. 9 Level curves for time to recruit 90% of the hive (T90 = 10) as they vary with the parameters of the
continuous model without foragers, Eq. (33). Note for parameter values above (below) the curve, the time to
recruit 90% is less than (more than) T90 = 10. We show the curve T90 = 10 varies with rate of recruitment
β, diffusion coefficient for wagglers Dv , and diffusion of uncommitted bees Dw for three different hive
lengths: a L = 2 b L = 5 c L = 10

spread the recruiter population thin. Analogous to the patch hive model, we see here
that for a fixed value of β, there is an optimal balance of recruiter and uncommitted
bee diffusion that minimizes the time to near total recruitment. Also, level curves for
T90 do not exist for higher values of diffusion rates Dv , since recruitment terminates
early due to the rapid diffusion of the waggler population causing them to locally fall
below threshold. For longer hive lengths L = 10, level curves for T90 do not exist for
low Dw.

4.2 Limiting case of slowwaggler movement

We now consider the role of pure foragers in shaping the foraging yield of the colony.
To better understand the exchange of roles throughout the colony, and how this shapes
recruitment, we consider the limit of slow moving recruiters Dv → 0, so the recruit-
ment term becomes a boundary condition in ourmodel, and the left boundary condition
of the uncommitted population becomes partially absorbing (Robin boundary condi-
tion). The other two equations are piecewise linear differential equations:

∂w

∂t
= Dwwxx , Dwwx (0, t) − βH [v0(t) − θ ]w(0, t) = wx (L, t) = 0

(34a)

∂v0

∂t
= νu(t) − μv0(t), (34b)

∂u

∂t
= μv0(t) − νu(t) + βH [v0(t) − θ ]w(0, t). (34c)

Note, the partially absorbing boundary condition associated with w emerges most
clearly when taking the Dv → 0 prior to taking the continuum spatial limit. Assuming
v0(t) > θ indefinitely, we can solve this system of equations to obtain a Fourier series
solution for the density of uncommitted bees,
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w(x, t) =
∞∑
n=0

ane
−Dwλn t

(
Dw

√
λn

β
cos(

√
λnx) + sin(

√
λnx)

)

where the eigenvalues λn are defined implicitly such that tan(
√

λL) = β

Dw

√
λ
and

an =
∫ L
0

1−ζ
L

(
Dw

√
λn

β
cos(

√
λnx) + sin(

√
λnx)

)
dx

∫ L
0

(
Dw

√
λn

β
cos(

√
λnx) + sin(

√
λnx)

)2
dx

= 1 − ζ

L

(
2β2

√
λn(Lβ2 + LD2

wλn + βDw)

)
,

which matches simulations of the full system very well (Fig. 10a). The waggler den-
sity at the left boundary is w(0, t) = Dw

β

∑∞
n=0 an

√
λne−Dwλn t , and so Eq. (34b,c)

becomes

v0t = νu(t) − μv0(t); ut = μv0(t) − νu(t) + Dw

∞∑
n=0

an
√

λne
−Dwλn t .

Solving this system of differential equations gives the series solution,

v0(t) = νζ

μ + ν
+ ν

μ + ν

∞∑
n=0

an√
λn

+ e−(μ+ν)t

μ + ν

(
ζμ − Dwν

∞∑
n=0

an
√

λn

Dwλn − μ − ν

)

+
∞∑
n=0

(
anνe−λn Dw t

√
λn(Dwλn − μ − ν)

)

u(t) = μζ

μ + ν
+ μ

μ + ν

∞∑
n=0

an√
λn

− e−(μ+ν)t

μ + ν

(
ζμ − Dwν

∞∑
n=0

an
√

λn

Dwλn − μ − ν

)

+
∞∑
n=0

(
ane−λn Dw t (μ − Dwλn)√

λn(Dwλn − μ − ν)

)
.

As before, we are interested in how the diffusion of bees (Dv, Dw) and rate of switch-
ing between pure foraging and recruiting influence foraging yield of a colony in the
continuum model. Foraging yield is calculated using a continuous version of Eq. 26,

J (β, Dv, Dw, ν, μ, T f ) =
∫ T f

0

(
u(t) + γ

∫ L

0
v(x, t) dx

)
dt . (35)
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Fig. 10 a Distribution of wagglers in the hive obtained by solving Eq. 34 at times: T f = 0, 10, 100. b
Foraging yield as it varies with increase in foragers (μ) and wagglers (ν) when β = 1, Dw = 1, Dv = 0.
Blue solid lines are the Fourier series solutions and dashed red lines are numerically computed solutions. c
Foraging yield varies with the model parameters in the continuum hive model. There are parameter optima
that maximize the foraging yield. For each of the curve, we fix the values of two other parameters such that
they maximize the foraging yield (β = 1, Dw = 0.01, θ = 0.1, L = 2). d–f Heat maps show how the
foraging yield delineates the regions in parameter space corresponding to strong and transient recruitment.
For each heat map, the parameter not on the axis is fixed such that the foraging yield with respect to the
parameter is maximized (Dv = 0.4167, ν = 0.25, μ = 0.3390). The grey dot shows the maximum yield

Thus, in this limiting case, we approximate the foraging yield using a finite number
of terms from the Fourier series:

J (β, Dv, Dw, ν, μ, T f ) = ζT f (2μ + ν)

2(μ + ν)
+ 1

2

N∑
n=0

νan(1 − e−T f Dwλn )

Dwλ
3/2
n (Dwλn − μ − ν)

+
N∑

n=0

an(1 − e−T f Dwλn ) (μ − Dwλn)

Dwλ
3/2
n (Dwλn − μ − ν)

+
T f (2μ + ν)

(∑N
n=0

an√
λn

)
2(μ + ν)

+
(1 − e−T f (μ+ν))

(
νDw

∑N
n=0

an
√

λn
Dwλn−μ−ν

− ζμ
)

2(μ + ν)2
,

and, for instance, we see that as the rate μ of transition to foraging is increased, so
does the foraging yield (Fig. 10b). Increasing the rate at which the recruiter population
is increased decreases the foraging yield in this case, since it does not increase the rate
of recruitment and limits the fraction of recruited bees devoted to foraging.
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4.3 Maximizing foraging yield

Returning to the general model, Eq. (32), we now study more closely how foraging
success depends on the movement of bees and their propensity to transition between
the foraging and waggler class. As in the case of patchy hives, bees in the foraging
class spend all of their time foraging while the wagglers divide their time between
foraging and waggle dancing in the hive. As in discrete patches, foraging yield can
be maximized by balancing the amount of time spent recruiting versus foraging and
tuning the movement of committed and uncommitted bees accordingly to prevent
spreading recruiters too thin while propagating information about food availability as
quickly as possible. If all committed bees were to become pure foragers, the foraging
yield gained from those particular bees would increase but recruitment in the hive
would cease as there would be no wagglers left to continue recruiting in the hive. We
see this scenario in the heatmap of foraging yield in Fig. 10d,e, where high switch rate
of bees from recruiting to foraging (high μ) limit the gains of the colony in foraging.
Clearly, it is best to limit the diffusive movement of the recruiters as well as the rates
of transition between recruiter and forager. The apparent advantage seems to be that
some recruited bees temporarily forage before becoming recruiters. Noticeably also,
if Dv is made too high or ν (the transition rate to becoming a recruiter) too low, then
there is a significant drop in foraging yield indicative of recruitment terminatation
(Fig. 10d and e; as in Fig. 7c,d).

Increasing the number of recruiters too much (large ν or small μ) can also reduce
foraging yields as the colony underutilizes its ability to have bees that purely forage.
Once a significant proportion of the colony is recruited, there is less need for the
waggling population.

Overall, the spatially-extended model of the hive leads to recruitment dynamics
and qualitative results that are similar to the patch-based model of a hive. In general,
increasing the spatial extent of the hive (either longer or with more patches), leads
to the slower recruitment of the non-committed bees, so motility of the uncommitted
bees is crucial for the eventual recruitment of the whole colony.Moreover, a balance of
pure foragers and recruiters is necessary to maximize the foraging yield of the whole
colony. Crucially, enough recruiters must be cycled into the population to maintain a
steady stream of recruited bees, so that the recruiter population does not fall below
threshold.

5 Discussion

The spatial geometry of a nest’s interior can considerably impact the motility of social
insects within and ultimately how information about the inside and outside world
are propagated throughout (Pinter-Wollman 2015). As honeybees communicate infor-
mation about foraging sites and recruit nest-mates via waggle dancing, the spatial
properties of their nest can affect colony-wide recruitment (Tautz 1996). We illus-
trate the effects of nest site geometry on the rate of recruitment and yield of a colony
of foraging honeybees. Inspired by the importance of curbing positive feedback in
the recruitment process Pagliara et al. (2018) and nonlinearity in collective commu-
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nication (Passino et al. 2008), we used a threshold nonlinear function of wagglers
concentration to model the rate of recruitment of uncommitted bees.

Our spatially-extendedmodel of collective foraging decisions in honeybee colonies
shows the efficacy of recruitment depends on the ability of the colony to tune the
movement of waggle dancing and uncommitted individuals according to the size or
length of the hive, ensuring the recruiting population is neither spread too thin nor
moving too slowly as to unnecessarily limit recruitment rate. When the hive consists
of only two patches or when the length of the hive is short in the continuous case,
diffusion of uncommitted bees is superfluous and the colony relies mostly on the
movement of wagglers to recruit everyone. However for larger hives, it is not feasible
to maintain a population of recruiters above threshold throughout the hive and the
diffusion of uncommitted bees is important for their continued recruitment. We also
found that for larger hives, the only way colony can recruit the hive is by localization
of recruitment to the region near the entrance through very slow movement of waggle
dancing bees supporting the theory of localized dance floors in hives observed in the
field (Tautz and Lindauer 1997; Seeley and Towne 1992).

We also found that the threshold nonlinear recruiting function generates a model
that is robust against recruitment to spurious foraging sites. Using the principles of
signal detection theory, bees can avoid perilous and low yielding foraging sites while
encouraging full colony recruitment to an ample foraging site. Such signal detec-
tion principles are known to be utilized by individual bees close to flowers, trying to
determine their yield based on multiple flower attributes (Leonard et al. 2011). Our
results are reminiscent of the types of signal detection mechanism common to the
nervous system, whereby only sufficiently strong stimuli lead to a population level
response of sensory areas of the brain (Verghese 2001). Recently, there has been a
growing interest in bringing traditional notions of signal detection theory from neuro-
science and psychology into the arena of ecological phenomena such as foraging and
predator-prey interactions (Leavell and Bernal 2019). Not only might an animal use
signal detection mechanisms for decision-making based on observations of their envi-
ronment, they may also use these principles to help determine how to use information
communicated to them by conspecifics. In addition to providing a novel perspective
on collective foraging decisions, our model is also convenient in its piecewise linear
formulation whereby it can be solved explicitly in a number of contexts to shed light
on the qualitative boundaries between recruitment and termination.

Through the resulting time series of recruited bees, spatial properties of the hive
also shape the foraging yield. Timely dissemination of information and hence recruit-
ment to a foraging site is crucial in optimizing the foraging yield of a colony (Seeley
and Visscher 1988). Slow recruitment delays the harvest of resources, leading to lost
time during which food sources may deteriorate or be consumed by competitors (See-
ley 1995; Edge et al. 2012; Raihan and Kawakubo 2014). Furthermore, the colony
should properly balance time spent foraging and recruiting uncommitted bees through
a division of labor process (Seeley 1983; Dreller 1998). We have demonstrated here
that a split and substantial proportion of pure foragers and recruiters, who spend some
time foraging, leads to the maximal foraging yield of a colony. Devoting all or most
committed individuals to purely foraging leads to a situation where too few wagglers
are available to recruit the remaining uncommitted individuals from the hive. In this
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case, while the recruited bees are making efficient use of their time, they are underuti-
lizing the foraging potential of the remaining uncommitted bees. On the other hand,
it is unnecessary to have every committed bee split their time between recruiting and
foraging, since at later times no recruiting is needed at all. In future instantiations of
our model, we could consider recruiters who are responsive to the need for waggling,
based on the fraction of bees left in the colony, so that somemay begin purely foraging
once most of the hive is recruited.

Our work demonstrates the importance of considering more detailed properties of
social insect movement within nests when initiating colony-wide events. The geom-
etry of the nest can distinctly impact the communication and movement strategy that
is most efficient for both rapid recruitment and the prevention of false alarms. The
modeling framework we have presented here is generalizable to other social animals
including social insects like ants (Sumpter and Pratt 2003), but also mammals that ini-
tiate group foraging from collective home sites like primates and bats (Janson 1990;
Wilkinson and Boughman 1998). Incorporating these additional details into models
of collective foraging will better help pin down the learned behavioral mechanisms
by which organisms forage efficiently in groups.
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org/10.1007/s00285-021-01644-9.
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