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| Statistical Hypotheses

A statistical hypothesis: a claim about the value of a parameter,
population characteristic (could be a combination of parameters), or
about the form of an entire probability distribution.

Examples:

 H: u=75cents, where u is the true population average of daily
per-student candy+soda expenses in US high schools

« H:p <.10, where p is the population proportion of defective
helmets for a given manufacturer

« If u; and u, denote the true average breaking strengths of two
different types of twine, one hypothesis might be the assertion
that uy — u, = 0, and another is the statement u;— u, > 5



' Null vs Alternative Hypotheses

In any hypothesis-testing problem, there are always two competing
hypotheses under consideration:

1.  The status quo (null) hypothesis
2. The research (alternative) hypothesis

For example,
u=.75versus u# .75
p=.10 versus p < .10

The objective of hypothesis testing is to decide, based on sample
information, if the alternative hypotheses is actually supported by the

data.
We usually do new research to challenge the existing (accepted) beliefs.




| Burden of Proof

The burden of proof is placed on those who believe in the
alternative claim.

In testing statistical hypotheses, the problem will be formulated
so that one of the claims is initially favored.

This initially favored claim (H,) will not be rejected in favor of the
alternative claim (H, or H,) unless the sample evidence

contradicts it and provides strong support for the alternative
assertion.

If the sample does not strongly contradict H,, we will continue to
believe in the plausibility of the null hypothesis.

The two possible conclusions: 1) reject H,
2) fail to reject H,.



| No proof... only evidence

We can never prove that a hypothesis is true or not true.

We can only conclude that it Is or is not supported by the data.

A test of hypotheses is a method for using sample data to decide
whether the null hypothesis should be rejected in favor of the
alternative.

Thus we might test the null hypothesis H,: u = .75 against the

alternative H,. u# .75. Only if sample data strongly suggests that u is
something other than 0.75 should the null hypothesis be rejected.

In the absence of such evidence, H, should not be rejected, since it is
still considered plausible.




| Why favor the null so much?

Why be so committed to the null hypothesis?

« sometimes we do not want to accept a particular
assertion unless (or until) data can show strong support

* reluctance (cost, time) to change

Example: Suppose a company is considering putting a new
type of coating on bearings that it produces.

The true average wear life with the current coating is
known to be 1000 hours. With u denoting the true average
life for the new coating, the company would not want to
make any (costly) changes unless evidence strongly
suggested that u exceeds 1000.



| Hypotheses and Test Procedures

An appropriate problem formulation would involve testing
Ho: u = 1000 against H,: u > 1000.

The conclusion that a change is justified is identified with
H,, and it would take conclusive evidence to justify
rejecting Hy and switching to the new coating.

Scientific research often involves trying to decide whether a
current theory should be replaced, or “elaborated upon.”



| Hypotheses and Test Procedures

An appropriate problem formulation would involve testing
the hypothesis:

H,: « = 1000 against H.: u > 1000.

The conclusion that “a change is justified” is identified with
H,, and it would take conclusive evidence to justify
rejecting Hy and switching to the new coating.

Scientific research often involves trying to decide whether a
current theory should be replaced, or “elaborated upon”



| Hypotheses and Test Procedures

The word null means “of no value, effect, or
consequence,” which suggests that H, should be identified
with the hypothesis of no change (from current opinion), no
difference, no improvement, etc.

Example: 10% of all circuit boards produced by a certain
manufacturer during a recent period were defective.

An engineer has suggested a change in the production
process in the belief that it will result in a reduced defective
rate. Let p denote the true proportion of defective boards
resulting from the changed process. What does the
hypothesis look like?



| Hypotheses and Test Procedures

The alternative to the null hypothesis H,. 8 = 6, will look like
one of the following three assertions:

1. H,. 6% 6,
H_.: 8> 6, (in which case the null hypothesis is 6 < 6;)
3. H,: 68 < 6, (in which case the null hypothesisis 6=z 6,)

 The equality sign is always with the null hypothesis.

« |tis typically easier to determine the alternate hypothesis first then
the complementary statement is designated as the null hypothesis

« The alternate hypothesis is the claim for which we are seeking
statistical proof
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| Test Procedures

A test procedure is a rule, based on sample data, for
deciding whether to reject H,.

Example -- the circuit board problem:

A test of Hy: p = .10 versus H,. p < .10
We test this on a random sample of n = 200 boards.

How do we use the sample of 2007

11



| Test Procedures

Testing procedure has two constituents:

(1) a test statistic, or function of the sample data which will
be used to make a decision, and

(2) a rejection (or critical) region consisting of those test
statistic values for which H, will be rejected in favor of H..

So if we have decided we can reject H, if x < 15 — then the
rejection region consists of {0, 1, 2,..., 15}. Then H, will not
be rejected if x =16, 17,. .. ,199, or 200.
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| Errors in Hypothesis Testing

The basis for choosing a particular rejection region lies in
consideration of the errors that one might be faced with in
drawing a conclusion.

Consider the rejection region x < 15 in the circuit board
problem. Even when Hy. p = .10 is true, it might happen
that an unusual sample results in x = 13, so that H, is
erroneously rejected.

On the other hand, even when H_: p < .10 is true, an
unusual sample might yield x = 20, in which case H, would
not be rejected—again an incorrect conclusion.
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| Errors in Hypothesis Testing

Definition
« Atype |l error is when the null hypothesis is rejected,
but it is true.

« Atype ll error is not rejecting H, when H, is false.
This is very similar in spirit to our diagnostic test examples

» False negative test = type | error
« False positive test = type Il error

14



| Type | error in hypothesis testing

Usually: Specify the largest value of o that can be
tolerated, and then find a rejection region with that a.

The resulting value of « is often referred to as the
significance level of the test.

‘raditional levels of significance are .10, .05, and .01,
though the level in any particular problem will depend on
the seriousness of a type | error—

The more serious the type | error, the smaller the
significance level should be.
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| Example (Type | Error)

Let u denote the true average nicotine content of brand B
cigarettes. The objective is to test

H, u=15versus H: u>1.5

based on a random sample X, X,. . ., X5, of nicotine
content.

Suppose the distribution of nicotine content is known to be
normal with o = .20.

Then Xis normally distributed with mean value u; = u and
standard deviation o, = .20/ V32= .0354.
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| Example (Type | Error) o

Rather than use X itself as the test statistic, let’ s
standardize X, assuming that H, is true.

Test statistic; z= X — 15 _ X~ 15
o/Vn 0354

Z expresses the distance between X and its expected
value (when H, is true) as some number of standard
deviations of the sample mean.
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| Example (Type | Error)

cont’ d

As H_. u> 1.5, the form of the rejection regionis z = c.
What is ¢ so that a = 0.057

When H, is true, Z has a standard normal distribution. Thus
a = P(type | error) = P(rejecting Hy when H, is true)
= P(Z=cwhen Z~ N(0, 1))

The value ¢ must capture upper-tail area .05 under the z
curve. So, ¢ =z 5= 1.645.
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I Case |: Testing means of a normal population with known o

Null hypothesis: Hy: u= uy

Test statistic value : z = X~ Mo
' o/\N'n

Alternative Hypothesis Rejection Region for Level a Test

H: w > wu, z =z, (upper-tailed test)
H:p <, z= —z, (lower-tailed test)
H:p # p, either z = z,, or z = —z,, (two-tailed test)
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I Case |: Testing means of a normal population with known o

z curve (probability distribution of test statistic Z when Hy is true)

Total shaded area
= a = P(type I error)

Shaded area
= a = P(type I error)

Shaded
area = a/2

Shaded area
= a/2

e 1 | = . : = :
0 0 1 . O T Zajs Q) Zal? I
Rejection region: 2 = —z, Rejection region: either
Rejection region: z = z,, T2 Zp O 2= —=2,4p
(a) (b) (¢)

Rejection regions for z tests: (a) upper-tailed test; (b) lower-tailed test; (c) two-tailed test



| Type Il Error Example

A certain type of automobile is known to sustain no visible
damage 25% of the time in 10-mph crash tests. A modified

bumper design has been proposed in an effort to increase
this percentage.

Let p denote the proportion of all 10-mph crashes with this
new bumper that result in no visible damage.

How do we examine a hypothesis test for n = 20
independent crashes with the new bumper design?
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| Type Il Error Example 1

cont’ d

The accompanying table displays g for selected values of p
(each calculated for the rejection region Ry).

p 3 4 5 6 7 8

B(p) | J72 416 132 .021  .001  .000

Clearly, p decreases as the value of p moves farther to the
right of the null value .25.

Intuitively, the greater the departure from H,, the less likely
it is that such a departure will not be detected.

Thus, 1- Bis often called the “power of the test” )



| Errors in Hypothesis Testing

We can also obtain a smaller value of a -- the probability that
the null will be incorrectly rejected — by decreasing the size of
the rejection region.

However, this results in a larger value of g for all parameter
values consistent with H.,.

No rejection region that will simultaneously make both o
and all B’ s small. A region must be chosen to strike a
compromise between o and p.
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I Case Il: Large sample tests for means

When the sample size is large, the z tests for case | are
easily modified to yield valid test procedures without
requiring either a normal population distribution or
Known o.

Earlier we used the key result to justify large-sample
confidence intervals:

A large n (>40) implies that the standardized variable

X — My
S/Nn

/ =

has approximately a standard normal distribution.
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" Case llI: Testing means of a
Normal population with unknown ¢, and small n

The One-Sample t Test
Null hypothesis: Hy: u = uq

P C X = My
Test statistic value: ¢ N

Alternative Hypothesis Rejection Region for a Level «
Test
H: w>p, t =t,, , (upper-tailed)
H: w<u, t = —t,,_, (lower-tailed)
H: w# u, eitherr =1+¢,,, ,ort = —t,,,_, (two-tailed)
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| Cl and Hypotheses

cont’ d

Rejection regions have a lot in common with confidence intervals.

A

Confidence
interval:

x-E X+E

Hypothesis
testing:

Ho-E Hp = 10000 u+E

Source:
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| Proportions: Large-Sample Tests

The estimator p = X/n is unbiased (E(p) = p), has
approximately a normal distribution, and its standard
deviation is o; = Vp(1 — p)/n.

When H, is true, E(p) = p, and a5 = Vpy(1 — py)in, so o
does not involve any unknown parameters. It then follows
that when n is large and H, is true, the test statistic

7 - l3 — Do
Vp,(1 = py)in

has approximately a standard normal distribution.
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| Proportions: Large-Sample Tests

Alternative Hypothesis Rejection Region
H,: b > pg Z = z,, (upper-tailed)
H.: p < p, Z <—-Z, (lower-tailed)
H.. p # pg either z= z_,

or z s -z, (two-tailed)

These test procedures are valid provided that np, = 10 and
n(1 - py) = 10.
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| Example

Natural cork in wine bottles is subject to deterioration, and
as a result wine in such bottles may experience
contamination.

The article “Effects of Bottle Closure Type on Consumer
Perceptions of Wine Quality” (Amer. J. of Enology and

Viticulture, 2007: 182—-191) reported that, in a tasting of
commercial chardonnays, 16 of 91 bottles were considered

spoiled to some extent by cork-associated characteristics.

Does this data provide strong evidence for concluding that
more than 15% of all such bottles are contaminated in this
way? Use a significance level equal to 0.10.
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| P-Values

The P-value is a probability of observing values of the test
statistic that are as contradictory or even more

contradictory to Hyas the test statistic obtained in our
sample.

* This probability is calculated assuming that the null
hypothesis is true.

* Beware: The P-value is not the probabillity that H,
IS true, nor is it an error probability!

 The P-value is between 0 and 1.
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' Example

Urban storm water can be contaminated by many sources,
including discarded batteries. When ruptured, these batteries
release metals of environmental significance.

The article “Urban Battery Litter” (J. of Environ. Engr., 2009:
46-57) presented summary data for characteristics of a
variety of batteries found in urban areas around Cleveland.

A sample of 51 Panasonic AAA batteries gave a sample mean

zinc mass of 2.06g and a sample standard deviation of
0.141qg.

Does this data provide compelling evidence for
concluding that the population mean zinc mass exceeds

2.097
g 31



| P-Values

More generally, the smaller the P-value, the more
evidence there is in the sample data against the null
hypothesis and for the alternative hypothesis.

The p-value measures the “extremeness” of the sample.

That is, Hy should be rejected in favor of H, when the P-
value is sufficiently small (such large sample statistic is
unlikely if the null is true).

So what constitutes “sufficiently small™?
What is “extreme” enough?
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| Decision rule based on the P-value

Select a significance level a (as before, the desired type |
error probability), then o defines the rejection region.

Then the decision rule is:
reject H, if P-value =

do not reject H, if P-value > «

Thus if the P-value exceeds the chosen significance level,
the null hypothesis cannot be rejected at that level.

Note, the P-value can be thought of as the smallest
significance level at which H, can be rejected.
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| P-Values

In the previous example, we calculated the P-value =
.0012. Then using a significance level of .01, we would
reject the null hypothesis in favor of the alternative
hypothesis because .0012 < .01.

However, suppose we select a significance level of 0.001,
which requires far more substantial evidence from the data
before H,can be rejected. In that case we would not reject
H, because .0012 > .001.

This is why we cannot change significance level after we
see the data — NOT ALLOWED though tempting!
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| P-Values for z Tests

The calculation of the P-value depends on whether the test
IS upper-, lower-, or two-tailed.

(1 — d(2) for an upper-tailed z test
P-value: P = { ®(z) or an lower-tailed z test
2[1 — d(|z])] for a two-tailed z test

Each of these is the probability of getting a value at least as
extreme as what was obtained (assuming H, true).
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| P-Values for z Tests

The three cases are illustrated in Figure 8.9.

zcurve

P-value = area in upper tail
. Upper-tailed test =1- d(z)

H, contains the inequality >

Calculated z

z curve

P-value = area in lower tail

2. Lower-tailed test = ®(2)
H, contains the inequality <

Calculated z
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| P-Values for z Tests

cont’ d

P-value = sum of area in two tails = 2[1 — ®(Iz])]

3. Two-tailed test
H, contains the inequality #

Calculated z, —z
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| Example

The target thickness for silicon wafers used in a certain
type of integrated circuit is 245 um.

A sample of 50 wafers is obtained and the thickness of
each one is determined, resulting in a sample mean
thickness of 246.18 um and a sample standard deviation of
3.60 um.

Does this data suggest that true average wafer thickness is
something other than the target value? Use a significance
level of .01.

38



| P-Values for t Tests

Just as the P-value for a z test is the area under the z
curve, the P-value for a t test will be the area under the t-
curve.

The number of df for the one-sample ttestis n— 1.

t curve for relevant df

N\

P-value = area in upper tail
. Upper-tailed test

H, contains the inequality >

Calculated ¢
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| P-Values for t Tests

cont’ d

t curve for relevant df

P-value = area in lower tail
2. Lower-tailed test
H, contains the inequality <

Calculated 1

P-value = sum of area in two tails

t curve for relevant df

3. Two-tailed test /

H, contains the inequality #

Calculated 7, —t 40



| P-Values for t Tests

The table of t critical values used previously for confidence
and prediction intervals doesn’t contain enough information
about any particular t distribution to allow for accurate
determination of desired areas.

There another f table in Appendix Table A.8, one that
contains a tabulation of upper-tail t-curve areas. But we can
also use other tables to get an approximation of the p-value
(software is the best).

41



More on Interpreting P-values

42




| How are p-values distributed?

cont’ d

Figure below shows a histogram of the 10,000 P-values from a simulation
experiment undera null y = 20 (with n =4 and o = 2).

When H, is true, the probability distribution of the P-value is a uniform

distribution on the interval from 0O to 1.

Percent

0.00 0.15 0.30

0.45 0.60
P-value

0.75

0.90

Y
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| Example

cont’ d

About 4.5% of these P-values are in the first class interval
from O to .05.

Thus when using a significance level of .05, the null
hypothesis is rejected in roughly 4.5% of these 10,000
tests.

If we continued to generate samples and carry out the test
for each sample at significance level .05, in the long run 5%
of the P-values would be in the first class interval.
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| Example

cont’ d

A histogram of the P-values when we simulate under an alternative
hypothesis. There is a much greater tendency for the P-value to be
small (closerto 0) when u =21 than when u = 20.

A

20
15
g
5 10
<P]
=N
5 —
0 [ ™ 1 >
0.00 0.15 030 045 0.60 0.75 0.90

P-value

(b) =21 45



| Example

cont’ d

Again H, is rejected at significance level .05 whenever
the P-value is at most .05 (in the first bin).

Unfortunately, this is the case for only about 19% of the
P-values. So only about 19% of the 10,000 tests correctly

reject the null hypothesis; for the other 81%, a type Il error
IS committed.

The difficulty is that the sample size is quite small and 21 is
not very different from the value asserted by the null
hypothesis.
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| Example

cont’ d

Figure below illustrates what happens to the P-value when
H, is false because u = 22.

A

50 -
40 —
= 30
5]
2
& 20 -
10
0 S E— | | >
0.00 0.15 030 045 060 0.75 0.90
P-value
(c)u=22
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| Example

cont’ d

The histogram is even more concentrated toward values
close to 0 than was the case when u = 21.

In general, as u moves further to the right of the null value
20, the distribution of the P-value will become more and
more concentrated on values close to 0.

Even here a bit fewer than 50% of the P-values are smaller
than .05. So it is still slightly more likely than not that the
null hypothesis is incorrectly not rejected. Only for values of
u much larger than 20 (e.qg., at least 24 or 25) is it highly
likely that the P-value will be smaller than .05 and thus give

the correct conclusion.
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I Statistical Versus Practical Significance

When using
x — 245

Z p—
S/\/r_z

one must be especially careful — with large n, what
happens to z? How does this affect hypothesis testing?
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[ R code
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