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MULTISCALE MOTION AND DEFORMATION OF BUMPS IN
STOCHASTIC NEURAL FIELDS WITH DYNAMIC

CONNECTIVITY\ast 

HEATHER L. CIHAK\dagger AND ZACHARY P. KILPATRICK\ddagger 

Abstract. The distinct timescales of synaptic plasticity and neural activity dynamics play an
important role in the brain's learning and memory systems. Activity-dependent plasticity reshapes
neural circuit architecture, determining spontaneous and stimulus-encoding spatiotemporal patterns
of neural activity. Neural activity bumps maintain short term memories of continuous parameter
values, emerging in spatially organized models with short-range excitation and long-range inhibi-
tion. Previously, we demonstrated nonlinear Langevin equations derived using an interface method
which accurately describe the dynamics of bumps in continuum neural fields with separate exci-
tatory/inhibitory populations. Here we extend this analysis to incorporate effects of short term
plasticity that dynamically modifies connectivity described by an integral kernel. Linear stability
analysis adapted to these piecewise smooth models with Heaviside firing rates further indicates how
plasticity shapes the bumps' local dynamics. Facilitation (depression), which strengthens (weakens)
synaptic connectivity originating from active neurons, tends to increase (decrease) stability of bumps
when acting on excitatory synapses. The relationship is inverted when plasticity acts on inhibitory
synapses. Multiscale approximations of the stochastic dynamics of bumps perturbed by weak noise
reveal that the plasticity variables evolve to slowly diffusing and blurred versions of their stationary
profiles. Nonlinear Langevin equations associated with bump positions or interfaces coupled to slowly
evolving projections of plasticity variables accurately describe how these smoothed synaptic efficacy
profiles can tether or repel wandering bumps.

Key words. neural field, short term plasticity, bump attractor, wave stability, stochastic differ-
ential equation, perturbation theory

MSC codes. 35Q92, 35B36, 60G07

DOI. 10.1137/23M1582655

1. Introduction. Maintaining information over brief periods of time is an essen-
tial component of working memory, a brain function paramount for the completion of
daily tasks [25] and learning. For example, parametric working memory is required to
maintain the representation of continuous object features (e.g., position, orientation,
color) observed a short time ago or estimated from accumulated evidence [23, 28, 47].
This form of working memory can utilize persistent and spatially localized neural ac-
tivity, often sustained by a combination of local and feature-specific excitation with
long-range or global inhibition [11, 25], and can also be distributed across multiple
brain areas [17]. Activity-dependent synaptic plasticity (dynamic connectivity be-
tween neural subpopulations) acting on the order of a few seconds has also been
proposed to play a role in the accuracy and robustness of maintained memories across
time [30, 43], but can also bias estimates across trials [2, 34].

Neural recordings from nonhuman primates performing visuospatial working mem-
ory tasks reveal persistent activity as bumps when organized according to neurons'
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WANDERING BUMPS IN PLASTIC NEURAL FIELDS 179

feature preference [11]. In the oculomotor delayed response task, subjects retain a
memory of an object's position after it is briefly flashed on a video screen. Cells
recorded during this maintenance (delay) period are tuned to object locations so the
preference of the most active neurons predicts the response [23, 24]. This activity
pattern wanders stochastically during the delay period as a time-dependent degrada-
tion of the memory consistent with response errors [57]. Moreover, response biases
across trials and resistance to distractors are consistent with physiological processes
acting on slow timescales [41]. For instance, short term facilitation, which strength-
ens synapses originating from active neurons on the order of a few seconds [53], can
attract and stabilize persistent activity to previously stimulated locations [34, 49].

Continuum neural field models support spatiotemporal patterns of neural activity
in the dynamics of integrodifferential equations in which the kernel of the integral
term describes the polarity and spatial dependence of synaptic interactions [6, 18].
Models with weight kernels that are excitatory (E) at short ranges and inhibitory (I)
at long ranges produce self-sustaining and marginally stable peaked activity bumps
[29, 46]. Bumps in both these and other (e.g., spiking) models have been adopted
as idealized descriptions of persistent neural activity encoding parametric working
memory [10]. Their translation symmetry and marginal stability are important linked
features which allow for the encoding of a continuum of stimulus feature values while
at the same time resulting in fragility to perturbation so that distracting stimuli and
dynamic fluctuations degrade memory over time in ways aligned with subject response
statistics [3, 8, 57].

Slow feedback processes have previously been incorporated into neural field mod-
els to account for a number of rich spatiotemporal patterns observed in imaging studies
[35, 45]. Traveling pulses, spiral waves, and self-sustained spatiotemporal oscillations
can be accounted for by a combination of synaptic excitation and slow negative feed-
back attributed to local processes like spike rate adaptation [14, 22, 27]. Some studies
have carefully identified the impacts of short term plasticity on spatiotemporal dy-
namics, but typically overlook the intricacies of interactions of distinct and plastic E/I
populations [19, 58]. In particular, short term facilitation acting on single population
models has been shown to stabilize bumps to perturbations [30, 34]. Here we extend
our recent analysis of stochastic bump wandering in a neural field model with dis-
tinct E and I populations [9] to incorporate the effects of activity dependent synaptic
plasticity, which operates on a slower timescale. Short term facilitation (depression)
on E synapses tends to attract (repel) bumps, leading to a decrease (increase) in the
bump's position variance, while imposing these processes on the I population yields
the opposite effect.

Our neural field model is introduced in section 2, incorporating presynaptic plas-
ticity mechanisms acting on a slower timescale. Stationary bump solutions and their
stability are then analyzed to determine how perturbations distort and shift the bump
solution, especially depending on the amplitude and polarity of plasticity (section 3).
Piecewise linear dynamics emerging from the stepped nature of stationary plasticity
profiles are treated by partitioning the space of bump perturbations depending on their
signs at the edges, extending prior work [7]. Stochastic dynamics of bumps subject
to weak noise are asymptotically approximated by considering how slowly evolving
plasticity profiles shift and deform in response to the rapid wandering of E and I
bumps (section 4). The dynamical blurring of plasticity profiles can be approximated
via a convolution of the initial profile with a slowly temporally evolving kernel. Our
derived nonlinear Langevin equation captures these features in the coupling between
neural activity and plasticity variables. Statistics of these reduced-dimension multi-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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180 HEATHER L. CIHAK AND ZACHARY P. KILPATRICK

scale equations are well-aligned with the results of full simulations across a broad range
of parameters, characterizing the short timescale relaxation of the variance to a linear
scaling at long times. Further approximations can be made at long timescales, lin-
earizing the Langevin equations to produce a multivariate Ornstein--Uhlenbeck process
whose covariance and long term diffusion can be calculated explicitly.

2. The model. To analyze the effect of short term presynaptic plasticity (STP)
(acting on the order of a few seconds) on separately evolving excitatory (E) and
inhibitory (I) neural subpopulation activity (acting on the order of 10 ms), we consider
a set of stochastic (integro-differential) neural field equations with auxiliary variables
evolving on slower timescales that modulate connectivity [4, 9, 46, 56]. Mean field
equations for STP variables model the depletion of synaptic resources due to use
(depression) and increase in the efficacy of release events (facilitation), for instance,
due to calcium signaling [31, 53]. Ultimately, the inclusion of this activity-dependent
modulation of network architecture introduces additional slow timescales, which can
alter the stability and dynamics of spatially structured solutions to the neural field.

Recurrent connectivity targeting neurons at position x from y at time t is de-
scribed as the synaptic kernel w(x - y), integrated against a nonlinearly filtered and
STP-rescaled version of the synaptic input (Figure 1(A)). Synapses originating from
recently activated neurons facilitate (strengthen) or depress (weaken) depending on
plasticity parameterization (Figure 1(B)). The dynamics of these synaptic variables
are governed by up to four additional differential equations describing facilitation and
depression on either the E or I neural subpopulations. We include spatially structured
noise in the E/I populations to account for neural activity fluctuations [5, 20]. The
governing equations are as follows,

\tau edue(x, t) = [ - ue(x, t) +\scrW ee(x, t) - \scrW ei(x, t)]dt+ \epsilon 
1
2 dWe,(2.1a)

\tau idui(x, t) = [ - ui(x, t) +\scrW ie(x, t) - \scrW ii(x, t)]dt+ \epsilon 
1
2 dWi,(2.1b)

\tau qe\partial tqe(x, t) = - qe(x, t) + \beta e(qe0  - qe(x, t))fe(ue(x, t)),(2.1c)

\tau qi\partial tqi(x, t) = - qi(x, t) + \beta i(qi0  - qi(x, t))fi(ui(x, t)),(2.1d)

\tau re\partial tre(x, t) =1 - re(x, t) - \alpha ere(x, t)(1 + qe(x, t))fe(ue(x, t)),(2.1e)

\tau ri\partial tri(x, t) =1 - ri(x, t) - \alpha iri(x, t)(1 + qi(x, t))fi(ui(x, t)),(2.1f)

Connectivity schematic
Inhibitory	(I) Excitatory	(E)

Facilitation

Short term plasticity

Depression

A B

Fig. 1. Activity dependent presynaptic short term plasticity on separate excitatory (E) and
inhibitory (I) neural subpopulations. (A) Model schematic with separate E and I populations and
the synaptic connections between them. (B) Schematic of the effects of activity dependent presynaptic
short term plasticity on connection strength between neural populations. Top (Bottom): depression
(facilitation) causes a decrease (increase) in the strength of synaptic connections originating from
active populations, denoted by the thinning (thickening) arrows. (Note: color appears only in the
online article.)
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WANDERING BUMPS IN PLASTIC NEURAL FIELDS 181

where ue(x, t) and ui(x, t) are the E and I synaptic input profiles at location x at time
t. We set \tau e,i = 1 and take time units to be 10 ms, on the order of typical membrane
and synaptic time constants [26]. Recurrent connectivity terms are time dependent,
shaped by facilitation qm and depression rm (m= e, i) dynamics

\scrW mn(x, t) =wmn(x) \ast [rn(x, t)(qn(x, t) + 1)fn(un(x, t))] m,n\in \{ e, i\} ,

where we define the spatial convolution F (x) \ast G(x) =
\int \infty 
 - \infty F (x - y)G(y)dy. Facili-

tation dynamically strengthens synapses, due to activity-induced signaling, at a rate,
\beta e,i, up to a bound on available resources qe0,i0. Depression depletes synaptic vesicle
availability, making connections weaker at a rate \alpha e,i (see Figure 1(B)). Considering
time units are 10 ms and STP evolves on the timescale of seconds [31, 53] implies \tau q
and \tau r are \scrO (102) (\tau q, \tau r \gg 1). Chosen parameter ranges are given in Table 1.

Sigmoidal firing rate functions, fn(u) =
1

1+e - \eta n(u - \theta n) with threshold \theta n and gain
\eta n, determine how synaptic input to neural population n \in \{ e, i\} is transferred to a
normalized firing rate output. Analytical results can be obtained in the high gain
limit (\eta n \rightarrow \infty ), corresponding to a Heaviside firing rate function [15, 29]:

fn(u) =H(u - \theta n) =

\Biggl\{ 
1, u - \theta n \geq 0,

0, u - \theta n < 0.
(2.2)

Solution dynamics can thus be tracked using interface equations associated with the
evolution of level sets ue = \theta e and ui = \theta i in space and time [16, 21].

Synaptic strength projecting from neurons at location y to x is described by the
distance-dependent weight functions wmn(x - y) (m,n\in \{ e, i\} ), taken to be symmetric
exponentials for explicit calculations,

wmn(x) =Amne
 - | x| 

\sigma mn , m,n\in \{ e, i\} ,

where ranges for the amplitude and spatial scale Amn, \sigma mn \in \BbbR \geq 0 (nonnegative con-
stants) are presented in Table 1. E to E parameters are fixed (setting Aee = 0.5 and
\sigma ee = 1) to nondimensionalize based on wee. Other profiles are weaker and broader
and determined by the commonly observed 80\% E and 20\% I neuron ratio [1].

Extending prior studies of deterministic E/I population models [4, 10, 46] and
those analyzing the impact of STP [7, 36], we can explicitly construct bump (stand-
ing pulse) solutions and stability equations. Generally, recurrent excitation sustains

Table 1
Model parameters for (2.1).

Parameter Definition Value

Aee E-E strength 0.5

Aei,Aie I-E strength 0.15
Aii I-I strength 0.01

\sigma ee E-E spatial scale 1

\sigma ei, \sigma ie, \sigma ii other spatial scales 2
\tau e,\tau i E and I time constant 1,1

\theta e, \theta i firing thresholds vary [0,0.5]
\tau qe, \tau qi facilitation time constant 250

\beta qe, \beta qi rate of facilitation 0.01

qe0, qi0 synaptic resources available [0,2]
\tau re, \tau ri depression time constant 150

\alpha e, \alpha i rate of depression [0,0.1]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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182 HEATHER L. CIHAK AND ZACHARY P. KILPATRICK

Depression on I
ri(x,t)

Depression on E
re(x,t)

Facilitation on E
qe(x,t)+1

Facilitation on I
qi(x,t)+1

x x xx

◼E with plas+city    ◼ I with plas+city ●◼E no plas+city   ●◼ I no plas+city

Plasticity 
profiles

Neural 
Activity 
profiles

Fig. 2. Effects of short term plasticity variables on stationary solutions. Facilitation on
E (depression on I) widens bumps and depression on E (facilitation on I) narrows bumps. See
section 3 for detailed analysis. (Note: color appears only in the online article.)

both the E and I populations and inhibition prevents the spread of the E popula-
tion activity. In the absence of noise, we obtain implicit formulas for the shape of
even and translation symmetric bump and plasticity profiles as well as those profiles'
dependence on STP parameters (see section 3; half-widths increase/decrease as in
Figure 2).

Each bump has an active region over which neural activity (ue or ui) is su-
perthreshold (above \theta e or \theta i) given by [xe - (t), x

e
+(t)] and [xi - (t), x

i
+(t)] and bounded

by the interfaces (threshold crossings), ue(x
e
\pm (t), t) = \theta e and ui(x

i
\pm (t), t) = \theta i [29].

Threshold crossing conditions are constant in time for stationary bump half-widths,
ae = (xe+  - xe - )/2 and ai = (xi+  - xi - )/2, but level set conditions become time-
dependent when studying dynamics of perturbations. Active regions could be split
into multiple disjoint segments for large perturbations, so we assume effects are weak
enough to retain connected regions (See [16, 21, 38] for elaborations on this problem).
Stationary bump profiles are deformed by including effects of plasticity (Figure 2).
Strengthening the effective excitation within bumps either by facilitating E synapses
or depressing I synapses widens bumps. Complementarily, weakening effective ex-
citation by depressing E or facilitating I synapses narrows bumps. Our subsequent
stability and asymptotic analysis will study how both neural activity and synaptic
efficacy variables respond to perturbation, and how their different timescales interact.

Stochastic motion of the bumps will be tracked by estimating the center of mass
\Delta e(t) (\Delta i(t)) of the active region of the E (I) bump

\Delta e(t) =
xe - (t) + xe+(t)

2
, \Delta i(t) =

xi - (t) + xi+(t)

2
.(2.3)

The noise terms dWn =
\sqrt{} 
| un(x, t)| dZn(x, t) (n \in \{ e, i\} ) are introduced with small

amplitude 0 < \epsilon \ll 1, which allows for asymptotic approximations of their effects.
Increments of a spatially extended Wiener processes have zero mean \langle dZn(x, t)\rangle = 0
(n \in \{ e, i\} ) and spatial correlations \langle dZn(x, t)dZn(y, s)\rangle = Cn(x - y)\delta (t - s)dtds. For
numerical simulations, we formulated the stochastic processes Zn by integrating spa-
tially white noise against a Gaussian spatial filter e - x2

, so the correlation functions
are defined as Cn(x) =

\sqrt{} 
\pi 
2 e

 - 1
2x

2

. Incorporating fluctuations causes bumps to ``wan-
der"" due to their neutral stability to small perturbations [37, 39], along with profile
deformation that tends to relax. We focus on how the polarity of STP on E and/or I
bumps shapes the long term dynamics of their wandering (Figure 3). See Appendix
A for details on numerical methods.

We begin the next section by analyzing bump stability, as a starting point for un-
derstanding their response to perturbations. Step discontinuities of the STP variables

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WANDERING BUMPS IN PLASTIC NEURAL FIELDS 183

Facilitation on E Depression on ENo plasticity on E
𝜎 ≈ 1.522 𝜎 ≈ 0.413 𝜎 ≈ 2.610

𝜎 ≈ 1.521 𝜎 ≈ 0.420 𝜎 ≈ 2.608

tim
e 

(s
ec

on
ds

)
-m

e 
(s

ec
on

ds
)

x x x

◼E interfaces      ◼ Center of mass      ◼ I interfaces

Bum
p am

plitude
Bum

p am
plitude

Fig. 3. Wandering bumps and the effects of plasticity. Numerical simulation of (2.1),
displaying excitatory and inhibitory bump activity over 10 seconds for the cases of (left) no STP with
qe0 = 0, \alpha e = 0; (middle) facilitation on the E population with qe0 = 2, \alpha e = 0; and (right) depression
on the E population with qe0 = 0, \alpha e = 0.006. Centroids (green lines) denote the average position of
E and I bump active regions as a function of time. Histograms show the final positions of centroids
from 1000 simulations to more clearly demonstrate the effects of STP on bump wandering. These
results show a decrease (increase) in wandering for facilitation (depression) on the E population, as
seen in [34, 49]. STP on the I population was not considered (hence, qi0 = 0 and \alpha i0 = 0). Other
parameters are Aii = 0, \theta e = 0.4, \theta i = 0.35, \epsilon = 0.001, dx= 0.005 (space step), and dt= 1 ms (time
step). Remaining parameters are as in Table 1. (Note: color appears only in the online article.)

(Figure 2) require taking care in linearizing about solutions and treating singularities
at bump interfaces.

3. Deterministic analysis. Stability calculations for bump solutions to (2.1)
in the absence of STP and noise are eased by using step nonlinear firing rate functions,
localizing the problem to the threshold crossing locations [29, 46]. However, including
plasticity then produces bump solutions with stepped STP variable profiles, compli-
cating the linear stability calculations. We will demonstrate how these singularities
can be mollified and a piecewise linear description of stability can be formalized by a
judicious change of variables [7, 15].

3.1. Stationary solutions. We assume that the solutions are stationary (un(x,
t) = Un(x) with n \in \{ e, i\} ) and use the Heaviside firing rate function (2.2). We
seek bumps with simply connected active regions (Un \geq \theta n) [ - an, an]. Exploiting the
solutions' translational invariance along \BbbR (opting for a center of mass at x= 0) and
expected evenness (i.e., Un( - x) =Un(x)) we obtain the system

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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184 HEATHER L. CIHAK AND ZACHARY P. KILPATRICK

Un(x) =wne(x) \ast (1 +Qe(x))Re(x)H(Ue(x) - \theta e)

 - wni(x) \ast (1 +Qi(x))Ri(x)H(Ui(x) - \theta i),
(3.1a)

Rn(x) =

\Biggl\{ 
1

1+\alpha n+
qn0\beta n
1+\beta n

\alpha n

, | x| \leq an,

1, | x| >an,
Qn(x) =

\Biggl\{ 
qn0\beta n

1+\beta n
, | x| \leq an,

0, | x| >an,
n\in \{ e, i\} .

(3.1b)

Thus, neural activity bumps are continuous functions formed by convolving the weight
kernels with scaled indicator functions for the active regions, and plasticity profiles
are scaled indicator functions with jumps at the bump edges. We find the explicit
formulas for the bump half-widths, ae and ai, by integrating the synaptic weight

functions wmn(x) =Amne
 - | x| 
\sigma mn (m,n\in \{ e, i\} ) over the active regions,

\int a

 - a

wmn(x - y)dy=

\left\{ 
 
 
2Amn\sigma mne

 - | x| 
\sigma mn sinh

\Bigl( 
a

\sigma mn

\Bigr) 
, | x| >a,

2Amn\sigma mn

\Bigl[ 
1 - e

 - a
\sigma mn cosh

\Bigl( 
x

\sigma mn

\Bigr) \Bigr] 
, | x| <a,

(3.2)

where a \in \{ ae, ai\} . Given that the terms (1 +Qn(x))Rn(x) are constant within the
intervals [ - an, an] (n \in \{ e, i\} ), substituting (3.2) into (3.1), the threshold crossing
conditions \theta n =Un(\pm an), yield a piecewise and implicit set of equations for the half-
widths, which depends on whether the E or I bump is wider, and assuming both E
and I bumps have nontrivial active regions:

\theta e = SeAee\sigma eee
 - ae
\sigma ee sinh

\biggl( 
ae
\sigma ee

\biggr) 
 - Si

\left\{ 
 
 
Aei\sigma eie

 - ae
\sigma ei sinh

\Bigl( 
ai

\sigma ei

\Bigr) 
, ae \geq ai,

Aei\sigma ei

\Bigl[ 
1 - e

 - ai
\sigma ei cosh

\Bigl( 
ae

\sigma ei

\Bigr) \Bigr] 
, ae <ai,

\theta i = - SiAii\sigma iie
 - ai
\sigma ii sinh

\biggl( 
ai
\sigma ii

\biggr) 
+ Se

\left\{ 
 
 
Aie\sigma iee

 - ai
\sigma ie sinh

\Bigl( 
ae

\sigma ie

\Bigr) 
, ai \geq ae,

Aie\sigma ie

\Bigl[ 
1 - e

 - ae
\sigma ie cosh

\Bigl( 
ai

\sigma ie

\Bigr) \Bigr] 
, ai <ae,

Sn = 2
1+ \beta n + qn0\beta n

(1 + \beta n)(1 + \alpha n) + qn0\beta n\alpha n
, n= e, i.

There is a second class of bump solutions where there is no active region in the
I population (so that Ui(x) < \theta i for all x \in \BbbR ), each of which tends to be linearly
unstable as there is no active inhibition to prevent the spread of excitation upon
perturbation. Applying this assumption to (3.1), we obtain the simplified system
with E bump half-width given by

\theta e = SeAee\sigma eee
 - ae
\sigma ee sinh

\biggl( 
ae
\sigma ee

\biggr) 

with Ui < \theta i for all x\in \BbbR , which for a unimodal bump occurs at x= 0, so we require

Ui(0) =

\int ae

 - ae

wie(y)dy= SiAie\sigma ie

\Bigl[ 
1 - e

 - ae
\sigma ie

\Bigr] 
< \theta i.

Thus, one branch of ``broad"" bumps has superthreshold active regions in both the
E and I populations (ae > 0 and ai > 0). For sufficiently high thresholds, these
solutions are often marginally stable solutions, but can destabilize into oscillations
for sufficiently low firing rate thresholds (see Figure 4(A) and subsequent stability
analysis). In contrast, when the I bump is subthreshold (Ui(0) < \theta i), we obtain
unstable ``narrow"" solutions that function akin to a separatrix (in the space of active
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Instability examples

◼E interfaces      ◼ Center of mass      ◼ I interfaces
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Form of eigenfunctions for unstable eigenvalues
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A

B

Fig. 4. Examples of destabilizing the broad bump. (A) Left: ``Oscillatory instabilities"" leading
to breathing of broad bumps with increasing amplitude resulting in bump collapse. An example of an
oscillatory instability is shown here with parameters as in Table 1 with \theta e = 0.2 and \theta i = 0.1, qe0 = 1,
qi0 = 1, \alpha e = 0.003, \alpha i = 0.1, dx = 0.005, and dt = 0.1 ms. The E bump was initially perturbed
via a slight contraction to its amplitude. Right: Sufficiently strong depression on E (facilitation
on I) can generate a `drift instability,' leading to traveling waves. Parameters here are qe0 = 0,
qi0 = 2, \alpha e = 0.01, \alpha i = 0, \theta e = 0.2, and \theta i = 0.25. The I population was initially perturbed via a
rightward shift. Other parameters are as in Table 1. (B) Examples of the eigenfunctions associated
with unstable eigenvalues in the corresponding oscillatory (even) and drift (odd) instability cases.
(Note: color appears only in the online article.)

region widths) between the broad solutions and the rest state. Narrow and broad
bumps annihilate in a discontinuous saddle-node bifurcation, due to the I narrow
bump grazing the threshold \theta i as in [9]. Including STP leads to solutions that can
destabilize via a drift instability. We now derive stability results in detail.

3.2. Eigenvalues and noiseless perturbations. Ignoring noise in (2.1) and
analyzing local stability of bumps to small perturbations, we first linearize in the
sense of distributions as in [4, 9, 46]. To treat jumps (and singularities) in plasticity
profiles, we extend methods developed in [7, 36], performing a change of variables via
integration to mollify bare delta distributions obtained from differentiating jumps.
The result is a piecewise defined linear stability problem so that the response of
bumps to perturbations depends on the direction they move the bump edges.
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186 HEATHER L. CIHAK AND ZACHARY P. KILPATRICK

To begin our analysis of the evolution of small perturbations, we let un(x, t) =
Un(x) + \epsilon \Psi n(x, t), rn(x, t) =Rn(x) + \epsilon \Theta n(x, t), and qn(x, t) =Qn(x) + \epsilon \Lambda n(x, t) (n \in 
\{ e, i\} ). Substituting into (2.1) (without noise), applying the stationary solutions, and
simplifying yields

\tau n
\partial \Psi n

\partial t
+\Psi n =

\sum 

m=e,i

\scrS m

\Biggl( 
wnm \ast [(\Lambda mRm +\Theta m(1 +Qm))H(Um + \epsilon \Psi m  - \theta m)]

+
1

\epsilon 
wnm \ast [Rm(1 +Qm)[H(Um + \epsilon \Psi m  - \theta m) - H(Um  - \theta m)]]

\Biggr) 
,

(3.3a)

\tau rn
\partial \Theta n

\partial t
= - \Theta n  - (\Lambda nRn +\Theta n(1 +Qn))\alpha nH(Un + \epsilon \Psi n  - \theta n)

 - 1

\epsilon 
\alpha nRn(1 +Qn)[H(Un + \epsilon \Psi n  - \theta n) - H(Un  - \theta n)],

(3.3b)

\tau qn
\partial \Lambda n

\partial t
= - \Lambda n  - \Lambda n\beta nH(Un + \epsilon \Psi n)

+
1

\epsilon 
\beta n(qn0  - Qn)[H(Un + \epsilon \Psi n  - \theta n) - H(Un  - \theta n)],

(3.3c)

where n \in \{ e, i\} and \scrS e = 1 (\scrS i =  - 1) is the polarity of E (I) connectivity. Per-
turbations to the bumps \Psi n can shift bump boundaries, described by the threshold
crossing points, as \pm an + \epsilon z\pm 

n so that

un(\pm an + \epsilon z\pm 
n , t) = \theta n,(3.4)

where applying self-consistency to a linearization of (3.4) implies

Un(\pm an) + \epsilon z\pm 
nU

\prime 
n(\pm an) + \epsilon \Psi (\pm an, t)\approx \theta n \Rightarrow z

\pm 
n \approx \pm \Psi n(\pm an, t)

| U \prime 
n(an)| 

.

Unperturbed STP profiles have jump discontinuities at bump edges, so the perturba-
tions \Theta n and \Lambda n could undergo \scrO (1/\epsilon ) changes. However, if the spatial neighborhood
is sufficiently small (\scrO (\epsilon )), we can shield our linearization from these large changes by
mollifying with a change of variables, introducing auxiliary fields of the form [7, 36]

Mmn(x, t) =wmn \ast [\Lambda nH(Un + \epsilon \Psi n  - \theta n)] =

\int an+\epsilon z+
n (t)

 - an+\epsilon z - 
b (t)

wmn(x - y)\Lambda n(y, t)dy,

Nmn(x, t) =wmn \ast [\Theta nH(Un + \epsilon \Psi n  - \theta n)] =

\int an+\epsilon z+
n (t)

 - an+\epsilon z - 
n (t)

wmn(x - y)\Theta n(y, t)dy

for m,n \in \{ e, i\} , which will remain \scrO (1) when \Theta n and \Lambda n are \scrO (1/\epsilon ) over an \scrO (\epsilon )
neighborhood. These auxiliary fields incorporate all the possible origin and target
neural populations, expanding the set of linearized equations from six to ten. Differ-
entiating with respect to t yields

\partial Mmn

\partial t
=wmn \ast 

\biggl[ 
\partial \Lambda n

\partial t
\cdot H(Un + \epsilon \Psi n  - \theta n)

\biggr] 
+\scrO (\epsilon ),

\partial Nmn

\partial t
=wmn \ast 

\biggl[ 
\partial \Theta n

\partial t
\cdot H(Un + \epsilon \Psi n  - \theta n)

\biggr] 
+\scrO (\epsilon ).
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WANDERING BUMPS IN PLASTIC NEURAL FIELDS 187

Note, our leading order approximations must respect the sign of the perturbation
at the bump edges determined by the sign of z\pm 

n , resolved by piecewise-defining the
limiting integrals [7, 36]

\int an+\epsilon z+
n (t)

an

wmn(x - y)Rn(y)(1 +Qn(y))dy

\approx \epsilon z+
n lim

\epsilon \rightarrow 0+
wmn(x - an  - \epsilon z+

n (t))Rn(an + \epsilon z+
n (t))(1 +Qn(an + \epsilon z+

n (t)))

= \epsilon z+
n (t)wmn(x - an)Gn(z

+
n (t)),\int  - an

 - an+\epsilon z - 
n (t)

wmn(x - y)Rn(y)(1 +Qn(y))dy

\approx  - \epsilon z - 
n lim

\epsilon \rightarrow 0+
wmn(x+ an  - \epsilon z - 

n (t))Rn( - an + \epsilon z - 
n (t))(1 +Qn( - an + \epsilon z - 

n (t)))

= - \epsilon z - 
n (t)w(x+ an)Gn( - z - 

n (t)),

where we define the piecewise constant function to have the sign of the associated
bump edge perturbation as its argument:

Gn(z) =

\Biggl\{ 
1, z> 0,

1+\beta n(1+qn0)
(1+\alpha n)(1+\beta n)+qn0\beta n\alpha n

, z< 0.

Thus, when a bump edge is perturbed outward (\pm z\pm 
n > 0), the local dynamics are

determined by a synaptic efficacy undisturbed by plasticity (Gn = 1) whereas when a
bump edge is perturbed inward (\pm z\pm 

n < 0), the local dynamics are determined by the
plasticity-affected region. Substituting into (3.3b) and (3.3c) for \partial \Theta 

\partial t and \partial \Lambda 
\partial t , expand-

ing in powers of \epsilon , collecting \scrO (1) terms, approximating integrals, and simplifying
yields a system of ten equations which we write in compact notation:

\tau n
\partial \Psi n

\partial t
+\Psi n =

\sum 

m=e,i

\scrS m

\biggl( 
(1 + \beta m)Mnm

(1 + \alpha m)(1 + \beta m) + qm0\beta m\alpha m
+

1+ \beta m(1 + qm0)

1 + \beta m
Nnm

+z+
m \cdot wnm(x - aum)Gm(z+

m) - z
 - 
m \cdot wnm(x+ aum)Gm( - z - 

m)
\bigr) 
,

\tau qn
\partial Mmn

\partial t
= - (1 + \beta n)Mmn

+ \beta nqn0[z
+
n \cdot wmn(x - an)H(z+

n ) - z
 - 
n \cdot wmn(x+ an)H( - z - 

n )],

\tau rn
\partial Nmn

\partial t
= - 

\biggl( 
1 + \beta n + \alpha n + \beta n\alpha n(1 + qn0)

1 + \beta n

\biggr) 
Nmn

 - \alpha n[z
+
n \cdot wmn(x - an)H(z+

n ) - z
 - 
n \cdot wmn(x+ an)H( - z - 

n )]

for m,n \in \{ e, i\} . The stability of bumps can be determined by the exponential
rate of growth of the separable solutions, e\lambda t(\Psi n(x),Mmn(x),Nmn(x)) for m,n \in 
\{ e, i\} . Different classes of perturbations are determined according to their con-
stituent functions' signs at the bump edges, each generating distinct linear opera-
tors under the requirement that perturbations do not change sign for t > 0. Since
the step nonlinearity localizes the stability problem to the bump edges [15], we
can restrict our attention to the function values and associated growth rates there,
x = \pm ae and x = \pm ai, determining eigenvalues/vectors for all (sixteen) cases of
\{ sign[\Psi e(ae)], sign[\Psi e( - ae)], sign[\Psi i(ai)], sign[\Psi i( - ai)]\} .

Our analysis confirms narrow bumps are unstable. A saddle-node bifurcation oc-
curs where the broad and narrow solutions annihilate one another. Plasticity can also
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188 HEATHER L. CIHAK AND ZACHARY P. KILPATRICK

destabilize broad bumps via drift bifurcations, generating traveling waves (Figure 4,
right column). Drift instabilities are associated with real unstable eigenvalues. Broad
bumps can also destabilize via oscillatory perturbations, resembling the Hopf bifur-
cation of pure linear stability problems, which occurs as firing thresholds are reduced
(Figure 4, left column). Note, such oscillatory perturbations break our assumptions
on the fixed sign of perturbations throughout their evolution. However, we speculate
that as long as a complex eigenvalue with positive real part is associated with each
bump edge perturbation sign combination, then the instability will persist past each
crossing. See Appendix B and Figure A.1 for more details on this approach.

To examine how the plasticity parameters affect the stability of solutions, we
varied the strength of facilitation and depression of the E and I populations along
with firing rate thresholds while fixing other parameters (Figure 5). We found that as
facilitation on I or depression on E increased, the drift instabilities arose and regions
in which they were defined expanded. Alternatively, increases in facilitation on E or
depression on I reduced the size of the region in which drift instabilities occurred and
could shift the region of bump solution existence.

To summarize, in this section we examined the local stability of bump solutions
to small perturbations. Given the discontinuous nature of plasticity profiles, via
our approach, we obtained piecewise smooth solutions for determining the stability
of solutions. In the process we discovered the same trends in stability as in [9] in
addition to a new type of instability we call the drift instability, which behaves like a
traveling wave causing the bumps to continuously drift in one direction dependent on
the perturbation. Furthermore, with the addition of plasticity we found that solution
existent regions could shift or destabilize due to changes in plasticity variables.

4. Low-dimensional descriptions of stochastic bump motion. The sto-
chastic wandering of bumps is a well validated mechanistic model associated with
subject recall errors in delayed estimation tasks [10, 44, 57]. Incorporating dynamic
fluctuations into the neural field model (2.1) (taking \epsilon > 0) causes bumps to wander
as a Brownian particle due to their marginal stability. Moving beyond the stabilizing
effect of short term facilitation on a single neural population model observed in [34],
here we discriminate effects of short term plasticity as they depend on the polarity
of synapses and their adaptive dynamics. Low-dimensional descriptions of stochastic
bump motion are derived by exploiting the separation of timescales between neural
activity and plasticity variables considering both a strongly coupled limit (which as-
sumes the E and I bump remain close) and an interface method (which tracks distinct
movements of bump edges). In our current work, we build on our analysis of the
network with no plasticity [9] by exploiting the slow timescale of plasticity variables
to develop weak asymptotic approximations that are valid on both short and long
timescales.

Our asymptotic equations are derived by weakly perturbing the position of sta-
tionary bumps (Un(x - \Delta n(t)) with n\in \{ e, i\} ) with the addition of small and slow plas-
ticity variables, qn(x, t) and rn(x, t) and weak multiplicative noise, Wn(x, t) (| qn| \ll 1,
| rn  - 1| \ll 1, | dWn| \ll 1, \tau qn, \tau rn \gg \tau n for n \in \{ e, i\} ). Neural activity un(x, t) will
rapidly equilibrate to a quasi-steady-state determined by the slowly evolving plasticity
profiles. Thus we have

un(x, t) =Un(x - \Delta n(t)) +\psi n(x - \Delta n(t), t) + \cdot \cdot \cdot , n\in \{ e, i\} ,

where | \Delta n(t)| \ll 1 (with | d\Delta n| \ll 1) is the perturbation of the position of the bump
with stationary profile Un, and \psi n are profile perturbations with | \psi n| \ll 1. Before
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Fig. 5. Effects of short term plasticity variables on stability of bump solutions. Para-
metric maps of stability as a function of firing thresholds \theta e,i, determined via the largest eigenvalue
and (for instabilities) the corresponding eigenfunction. See the legend for color coding of stabil-
ity/instability. Depression on E (facilitation on I) shrinks bumps and leads to an expansion of
unstable regions in solution space. The widening of bumps' active regions due to facilitation on E
(depression on I) stabilizes the solution and tends to shrink the unstable regions. Additionally, we
observe a slight expansion of the region where solutions exist. Plasticity parameters are varied along
the grid of panels as shown in the small tables, all other parameters are as in Table 1. (Note: color
appears only in the online article.)
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190 HEATHER L. CIHAK AND ZACHARY P. KILPATRICK

deriving the full asymptotic equations for stochastic bump motion, we will develop a
low-dimensional model for the slowly evolving plasticity profiles.

4.1. Plasticity profile evolution. Given \Delta n(t) is the centroid of bump n \in 
\{ e, i\} at time t, we expect that qn(x, t) (rn(x, t)) will resemble Qn(x - \Delta qn) (Rn(x - 
\Delta rn)), where \Delta qn (\Delta rn) is the slow evolution of the centroids of qn (rn) for n\in \{ e, i\} .
To estimate each plasticity profile centroid we take the weighted average of qn or
1  - rn, n \in \{ e, i\} . To model the evolution of \Delta qn(t) and \Delta rn(t) we linearize the
system about un(x, t) = Un(x - \Delta n(t)), so that qn(x, t) = Qn(x - \Delta n(t)) + \Lambda n(x, t),
rn(x, t) =Rn(x - \Delta n(t)) +\Theta n(x, t), finding for fn(u) =H(u - \theta n) that

 - U \prime 
n(x)d\Delta n(t) = [wne(x) \ast (Re(x) +\Theta e(x, t) - 1 + (Qe(x) + \Lambda e(x, t)))H(Ue(x) - \theta e)

 - wni(x) \ast (Ri(x) +\Theta i(x, t) - 1 + (Qi(x) + \Lambda i(x, t)))H(Ui(x) - \theta i)]dt+ dWn,

\tau qn
\partial \Lambda n

\partial t
= - \Lambda n  - \Lambda n\beta nH(Un  - \theta n),

\tau rn
\partial \Theta n

\partial t
= - \Theta n  - (\Theta n(1 +Qn))\alpha nH(Un  - \theta n).

To mollify the piecewise smooth dynamics emerging in the perturbative equations
due to the step nonlinearity, eight auxiliary fields are constructed by convolving step
and perturbation products with weight functions [7], four of the form Mmn(x, t) =
wmn(x) \ast \Lambda nH(Un  - \theta n) and four of the form Nmn(x, t) = wmn(x) \ast \Theta nH(Un  - \theta n)
whose evolution equations can be derived as

\tau qn\partial tMmn = - (1 + \beta n)Mmn, \tau rn\partial tNmn = - 
\biggl( 
1 +

1+ \beta n(1 + qn0)

1 + \beta n
\alpha n

\biggr) 
Nmn.

We now assume a separation of variables (Mnm(x, t) =Mnm(x)e\lambda at and Nnm(x, t) =
Nnm(x)e\lambda bt), allowing us to compute

\lambda a = - 1 + \beta qn
\tau qn

and \lambda b = - 1

\tau rn
+

1+ \beta n(1 + qn0)

1 + \beta n
\cdot \alpha n

\tau rn
,

the rates of decay of the perturbations of plasticity centroids from the activity centers
\Delta n(t). Hence, the plasticity variables' centroids, \Delta qn and \Delta rn, evolve according to
the equations

\tau qnd\Delta qn = - (1 + \beta qn)(\Delta qn  - \Delta n)dt,

\tau rnd\Delta rn = - 
\biggl( 
1 +

1+ \beta n(1 + qn0)

1 + \beta n
\alpha n

\biggr) 
(\Delta rn  - \Delta n)dt.

Furthermore, over time the stochastic motion of neural activity bumps un(x, t) will
smooth the initially sharp stepped edges of the plasticity profiles as shown in stochastic
simulations (Figure 6).

This effect is similar to the blurring of sharp edges during image degradation (see
Appendix C and [32, 50, 51]). Plasticity profiles act as the image of an object (neural
activity), blurring over time (see also Figure A.2), which we can describe using an
ansatz given by the convolution

s(x, t) =

\int \infty 

 - \infty 
b(x - y, t)z(y)dy,

where s(x, t) is the blurred profile due to the evolution of the bump, b(x, t) is the blur-
ring kernel (or point spread function), and z(x) is the input image (initial profile of
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Fig. 6. Synaptic plasticity profile deformation in a single simulation. Heat maps represent the
evolution of neural activity and synaptic plasticity profiles over time. Colorbars denote amplitudes.
Below each heat map is the initial profile. Observe that the slower reacting synaptic plasticity profiles
wander less and experience profile deformation, namely, smoothing at the edges. Parameters are as
in Table 1 with \theta e = 0.3 and \theta i = 0.25, qe0 = 1, qi0 = 1, \alpha e = 0.003, \alpha i = 0.1, dx= 0.005, and dt= 0.1
ms. (Note: color appears only in the online article.)

the plasticity variable). The blurring kernel is assumed Gaussian, due to the Brown-
ian motion typical of noise-driven bump wandering [37], but the standard deviation
relaxes over long timescales, due to the slow kinetics of plasticity

\sigma (t) =
\sqrt{} 
\epsilon (| Ue(x)| + | Ui(x)| )\tau plast(1 - e - t/\tau plast),

where \tau plast may be \tau qn or \tau rn, n \in \{ e, i\} , so \sigma (t) \rightarrow 
\sqrt{} 
\epsilon (| Ue(x)| + | Ui(x)| )\tau plast as

t\rightarrow \infty . Convolving the top hat-shaped initial profiles of qn(x, t) and 1 - rn(x, t) (the
images) with the Gaussian blurring kernel, and including the center of mass shifts
\Delta qn and \Delta rn we approximate evolution of the plasticity variables as

qn(x - \Delta qn, t)\approx 
qn0\beta n
1 + \beta n

\cdot E(x - \Delta qn; - an, an, \sigma (t)),(4.1a)

1 - rn(x - \Delta rn, t)\approx 
\alpha n(1 + \beta n(1 + qn0))

(1 + \beta n)(1 + \alpha n) + qn0\beta n\alpha n
\cdot E(x - \Delta rn; - an, an, \sigma (t)),(4.1b)

where profiles are now described using the scaled error function [51],

E(x;x1, x2, \sigma ) =
1

2

\biggl( 
erf

\biggl( 
x2  - x\surd 

2\sigma 2

\biggr) 
 - erf

\biggl( 
x1  - x\surd 

2\sigma 2

\biggr) \biggr) 
.
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Fig. 7. Plasticity profile deformation theory compared with simulation. Performing 10,000
Monte Carlo simulations of four seconds each, we compute the final profiles, recentered to zero,
and superimpose them with low transparency. Theoretical approximation for profile deformation
matches fairly well at the average of these simulations. Parameters are as in Table 1 and Figure 6.
(Note: color appears only in the online article.)

As time t \rightarrow 0+, \sigma (t) \rightarrow 0, so E(x;x1, x2, \sigma ) \rightarrow 1
2 [H(x2  - x) - H(x1  - x)], so

we recover the initial profiles at t = 0. Note, this theory also accurately captures
the evolution and long term profile shape of the plasticity variables across many
simulations (Figure 7).

4.2. Strongly coupled limit approximation. Our first approach to deriving
stochastic evolution equations for bumps assumes that profiles of E and I activity stay
close as they move [9], i.e., the strongly coupled limit, \Delta (t)\equiv \Delta e(t) =\Delta i(t), so that

un(x, t) =Un(x - \Delta (t)) +\psi n(x - \Delta (t), t) + \cdot \cdot \cdot , n\in \{ e, i\} .

Plugging in this ansatz into the neural activity equations in (2.1) yields

 - \tau nU \prime 
nd\Delta + \tau nd\psi n = [ - Un  - \psi n

+wne \ast [re(x+\Delta , t)(1 + qe(x+\Delta , t))H(Ue +\psi e  - \theta e)]

 - wni \ast [ri(x+\Delta , t)(1 + qi(x+\Delta , t))H(Ui +\psi i  - \theta i)]]dt+ dWn

for n\in \{ e, i\} . Canceling the implicit equation for the stationary solution and collecting
\scrO (1) terms yields the system

\tau nd\psi n +\psi n  - wne \ast [H \prime (Ue  - \theta e)\psi e]dt+wni \ast [H \prime (Ui  - \theta i)\psi i]dt

= \tau nU
\prime 
nd\Delta + [wne \ast (re(x+\Delta , t) - 1 + qe(x+\Delta , t))H(Ue  - \theta e)

 - wni \ast (ri(x+\Delta , t) - 1 + qi(x+\Delta , t))H(Ui  - \theta i)]dt+ dWn

with n\in \{ e, i\} . Thus the system describing bump profile perturbations evolution is

\biggl( 
\tau ed\psi e

\tau id\psi i

\biggr) 
 - \scrL 

\biggl( 
\psi e

\psi i

\biggr) 
dt=

\biggl( 
\tau eU

\prime 
e

\tau iU
\prime 
i

\biggr) 
d\Delta +

\biggl( 
dWe

dWi

\biggr) 

+

\biggl( 
wee \ast (qe(x+\Delta , t))H(Ue  - \theta e) - wei \ast (qi(x+\Delta , t))H(Ui  - \theta i)
wie \ast (qe(x+\Delta , t))H(Ue  - \theta e) - wii \ast (qi(x+\Delta , t))H(Ui  - \theta i)

\biggr) 
dt

+

\biggl( 
wee \ast (re(x+\Delta , t) - 1)H(Ue  - \theta e) - wei \ast (ri(x+\Delta , t) - 1)H(Ui  - \theta i)
wie \ast (re(x+\Delta , t) - 1)H(Ue  - \theta e) - wii \ast (ri(x+\Delta , t) - 1)H(Ui  - \theta i)

\biggr) 
dt,

(4.2)
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where the linear operator \scrL is as described in [9],

\scrL 
\biggl( 
r
s

\biggr) 
=

\biggl( 
 - r+wee \ast [H \prime (Ue  - \theta e)r] - wei \ast [H \prime (Ui  - \theta i)s]
 - s+wie \ast [H \prime (Ue  - \theta e)r] - wii \ast [H \prime (Ui  - \theta i)s]

\biggr) 
,

where we can define H \prime (Un(x) - \theta n) = | U \prime 
n(an)|  - 1

\sum 
y=\pm an

\delta (x - y), since

\delta (x+ an) - \delta (x - an) =
d

dx
H(Un(x) - \theta n) =U \prime 

n(x)H
\prime (Un(x) - \theta n).

We enforce a bounded solution of (4.2) by requiring that the inhomogeneous part is
orthogonal to the nullspace of the adjoint operator,

\scrL \ast 
\biggl( 
a
b

\biggr) 
=

\biggl( 
 - a+H \prime (Ue  - \theta e) [wee \ast a+wie \ast b]
 - b - H \prime (Ui  - \theta i) [wei \ast a+wii \ast b]

\biggr) 
.

The nullspace is spanned by a single vector [9],
\biggl( 
\phi 1(x)
\phi 2(x)

\biggr) 
=

\biggl( 
\delta (x+ ae) - \delta (x - ae)

\scrB [\delta (x+ ai) - \delta (x - ai)]

\biggr) 

with \scrB =  - wei(ae - ai) - wei(ae+ai)
wie(ae - ai) - wie(ae+ai)

. The inner product \langle u,v\rangle =
\int \infty 
 - \infty v\ast (x)u(x)dx of

the nullspace with the inhomogeneous part (the right-half) of (4.2) is computed and
rearranged to find

d\Delta =\scrK (\Delta , qn, rn, t)dt+\Sigma d\xi (t), n\in \{ e, i\} ,(4.3)

where

\Sigma 2/2 = \epsilon 
ue + u0 +\scrB 2ui

2 [\tau e| U \prime 
e(ae)| +\scrB \tau i| U \prime 

i(ai)| ]
2 ,

un = \theta n[Cn(0) - Cn(2an)], u0 = 2\scrB 
\sqrt{} 
\theta e\theta i[Cc(ae  - ai) - Cc(ae + ai)],

and

\scrK = - 
\sum 

n=e,i \scrS m\langle pn(x), (qn(x+\Delta (t), t) + rn(x+\Delta , t) - 1)H(Un(x) - \theta n)\rangle 
2 [\tau e| U \prime 

e(ae)| +\scrB \tau i| U \prime 
i(ai)| ]

,

pn(x) =[wen( - ae  - x) - wen(ae  - x) +\scrB (win( - ai  - x) - win(ai  - x))].

Note, the plasticity profiles qn and rn may take any form as long as they are weak
perturbations from 0 and 1, respectively. Subsequently, applying the plasticity pro-
file approximation developed in subsection 4.1, we can precisely approximate how
the plasticity profile deforms and shifts over time, allowing us to write a system of
evolution equations of simply the activity and plasticity profiles center of mass,

d\Delta =\scrK (\Delta ,\Delta qe,\Delta qi,\Delta re,\Delta ri, t)dt+\Sigma d\xi (t),

\tau qnd\Delta qn = - (1 + \beta qn)(\Delta qn  - \Delta )dt,

\tau rnd\Delta rn = - 
\biggl( 
1 +

1+ \beta n(1 + qn0)

1 + \beta n
\alpha n

\biggr) 
(\Delta rn  - \Delta )dt,

where n\in \{ e, i\} with \scrK defined in (4.3) and qn and rn are as approximated in (4.1).
This approximation now only relies on the initial profiles and the evolution of the

centers of mass of each profile, yielding a set of five differential equations over the
six of the original system. Furthermore, this system is less computationally intensive
and can be readily implemented numerically to approximate variances of the centers
of mass. Effectively, bump centroids are assumed to be strongly coupled and so colo-
cated, moving rapidly compared to the slowly evolving plasticity profiles, given only
by initial profiles shifted by their centroid resulting in a closed and finite dimensional
stochastic system of differential equations for the activity-plasticity evolution.
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194 HEATHER L. CIHAK AND ZACHARY P. KILPATRICK

4.3. Interface based approximation theory. The strong coupling approx-
imation assumes E/I bumps remain close together, but of course, the independent
fluctuations in each population may cause activity profiles to stray from one another.
We previously found simultaneous perturbations moving E and I bumps in opposite
directions tended to be momentarily enhanced, due to both bumps transiently stray-
ing from each other before settling at a new position [9]. Such effects can only be
described with a theory that tracks E and I bumps as separate but coupled. Moving
beyond standard linearization, interface methods can be used to account for interac-
tions between bumps and other nonlinear effects arising in the transient response of
bumps to perturbations. Originally applied to weakly perturbed bumps in neural fields
with step nonlinearities [29], these methods focus on the evolution of dynamics at the
edges of patterns, more recently used to track the phase of traveling front onset [21]
or propagation in inhomogeneous neural fields [13] and complex (even labyrinthine)
patterns in planar neural fields [16]. Notably, it is possible to obtain fully consistent
and exact representations of pattern dynamics by tracking edge positions and the gra-
dient at those edges over time. Stochastic motion of multiple interacting bumps [38]
or bumps in E/I neural populations [9] can be approximated by a low-dimensional set
of nonlinear Langevin equations by truncating the full theory. Here, we further this
theory to incorporate effects of short term plasticity.

Interfaces enclose active regions of E/I bumps: [xe - (t), x
e
+(t)] and [xi - (t), x

i
+(t)],

respectively. Tracking stochastic dynamics of the level set conditions ue(x
e
\pm (t), t) = \theta e

and ui(x
i
\pm (t), t) = \theta i allows us to determine the effects of noise on bump positions

over time. We differentiate and immediately approximate by dropping \scrO (\epsilon ) terms,
yielding consistency equations for the interfaces xe,i\pm (t):

\partial xun(x
n
\pm (t), t)dx

n
\pm + dun(x

n
\pm (t), t) = 0, n\in \{ e, i\} .(4.4)

To first order, we assume the spatial gradients at the interfaces remain constant and
odd symmetric throughout the evolution:

WANDERING BUMPS IN PLASTIC NEURAL FIELDS 17

the plasticity profile deforms and shifts over time, allowing us to write a system of
evolution equations of simply the activity and plasticity profiles center of mass:

d\Delta = \scrK (\Delta ,\Delta qe,\Delta qi,\Delta re,\Delta ri, t)dt+\Sigma d\xi (t),

\tau qnd\Delta qn =  - (1 + \beta qn)(\Delta qn  - \Delta )dt,

\tau rnd\Delta rn =  - 
\biggl( 
1 +

1 + \beta n(1 + qn0)

1 + \beta n
\alpha n

\biggr) 
(\Delta rn  - \Delta )dt,

where n \in \{ e, i\} with \scrK defined in (4.3) and qn and rn are as approximated in
Eq. (4.1).

This approximation now only relies on the initial profiles and the evolution of the
centers of mass of each profile, yielding a set of five differential equations over the
six of the original system. Furthermore, this system is less computationally intensive
and can be readily implemented numerically to approximate variances of the centers
of mass. Effectively, bump centroids are assumed to be strongly coupled and so co-
located, moving rapidly compared to the slowly evolving plasticity profiles, given only
by initial profiles shifted by their centroid resulting in a closed and finite dimensional
stochastic system of differential equations for the activity-plasticity evolution.

4.3. Interface based approximation theory. The strong coupling approximation
assumes E/I bumps remain close together, but of course, the independent fluctua-
tions in each population may cause activity profiles to stray from one another. We
previously found simultaneous perturbations moving E and I bumps in the opposite
direction tended to be momentarily enhanced, due to both bumps transiently straying
from each other before settling at a new position [9]. Such effects can only be described
with a theory that tracks E and I bumps as separate but coupled. Moving beyond
standard linearization, interface methods can be used to account for interactions be-
tween bumps and other nonlinear effects arising in the transient response of bumps
to perturbations. Originally applied to weakly perturbed bumps in neural fields with
step nonlinearities [29], these methods focus on the evolution of dynamics at the edges
of patterns, more recently used to track the phase of traveling front onset [21] or prop-
agation in inhomogeneous neural fields [13] and complex (even labyrinthine) patterns
in planar neural fields [16]. Notably, it is possible to obtain fully consistent and exact
representations of pattern dynamics by tracking edge positions and the gradient at
those edges over time. Stochastic motion of multiple interacting bumps [38] or bumps
in E/I neural populations [9] can be approximated by a low-dimensional set of non-
linear Langevin equations by truncating the full theory. Here, we further this theory
to incorporate effects of short term plasticity.

Interfaces enclose active regions of E/I bumps: [xe - (t), x
e
+(t)] and [xi - (t), x

i
+(t)]

respectively. Tracking stochastic dynamics of the level set conditions ue(x
e
\pm (t), t) = \theta e

and ui(x
i
\pm (t), t) = \theta i allows us to determine the effects of noise on bump positions

over time. We differentiate and immediately approximate by dropping \scrO (\epsilon ) terms,
yielding consistency equations for the interfaces xe,i\pm (t):

\partial xun(x
n
\pm (t), t)dx

n
\pm + dun(x

n
\pm (t), t) = 0, n \in \{ e, i\} .(4.4)

To first order, we assume the spatial gradients at the interfaces remain constant and
odd symmetric throughout the evolution:

Pn = | U \prime 
n(an)| \approx \partial xun(x

n
 - (t), t) =  - \partial xun(xn+(t), t), n \in \{ e, i\} .

Substituting this approximation into (4.4) and in the model (2.1) with a step nonlin-
earity, and truncating, yields the following multiscale system of nonlinear Langevin
equations describing the stochastic evolution of the interfaces subject to short term
synaptic plasticity:

(4.5a)

18 HEATHER L. CIHAK AND ZACHARY P. KILPATRICK

Substituting this approximation into Eq. (4.4) and in the model Eq. (2.1) with a
step nonlinearity, and truncating, yields the following multiscale system of nonlinear
Langevin equations describing the stochastic evolution of the interfaces subject to
short term synaptic plasticity:

\tau ndx
n
\pm =  - 1

Pn

\Bigl( \bigl[ 
 - \theta n + ăne(x

n
\pm ;x

e
 - , x

e
+) - ăni(x

n
\pm ;x

i
 - , x

i
+)
\bigr] 
dt+ \epsilon 

1
2 dWe(x

n
\pm , t)

\Bigr) 
,

(4.5a)

\tau qn\partial tqn(x, t) =  - qn(x, t) + \beta n(qn0  - qn(x, t))I[xn
 - (t),xn

+(t)](x),(4.5b)

\tau rn\partial trn(x, t) = 1 - rn(x, t) - \alpha nrn(x, t)(1 + qn(x, t))I[xn
 - (t),xn

+(t)](x),(4.5c)

where n \in \{ e, i\} and the coupling between interfaces is given by integrals of the
dynamically scaled weight functions over the active regions

ănm(x;xm - , x
m
+ ) =

\int xm
+

xm
 - 

rm(y, t)(qm(y, t) + 1)wnm(x - y)dy,

with m,n \in \{ e, i\} and we define the indicator function IA(x) = 1 if x \in A and
0 otherwise. Interface equations are collapsed to describe the evolution of bump
and plasticity profile centroids by applying the definitions Eq. (2.3) to Eq. (4.5) and
approximating interfaces as xn\pm (t) \approx \pm an +\Delta n(t), n \in \{ e, i\} .

Expanding about the stationary solution and applying the blurring ansatz for qn
and rn (and the evolution of \Delta qn,rn) developed in Section 4.1 we obtain:

d\Delta n =
 - 2(\Delta e  - \Delta i)\scrW  - 

nm(ae, ai) + \scrP ne(\Delta e,\Delta re,\Delta qe) - \scrP ni(\Delta i,\Delta ri,\Delta qi)

2\tau nPn

dt

+
\sqrt{} 
\epsilon \theta nd\Xi 

 - 
n (\Delta n, an, t),(4.6)

where m,n \in \{ e, i\} with m \not = n and

\scrW  - 
nm(x, y) = wnm(x+ y) - wnm(x - y),

\scrP nm(\Delta ,\Delta 1,\Delta 2) = \langle rm(x+\Delta  - \Delta 1, t) - 1 + qm(x+\Delta  - \Delta 2, t),\scrW  - 
nm( - an, x)\rangle aum

\Xi  - 
n (\Delta n, an, t) =Wn(\Delta n + an, t) - Wn(\Delta  - an, t),

where we have defined the inner product over the subdomain [ - a, a] as

\langle g(x), h(x)\rangle a =

\int a

 - a

g(x)h(x)dx,

and

\tau qnd\Delta qn =  - (1 + \beta qn)(\Delta qn  - \Delta n)dt,

\tau rnd\Delta rn =  - 
\biggl( 
1 +

1 + \beta n(1 + qn0)

1 + \beta n
\alpha n

\biggr) 
(\Delta rn  - \Delta n)dt.

We validate this reduced nonlinear system describing the coupling between neural
and plasticity bump centroids via numerical simulations including uncorrelated noise
(Figure 8). The slow dynamics of coupling modulated by STP lead to initially non-
linear scalings in variance with time, asymptoting to linear in long time. Facilitation

\tau qn\partial tqn(x, t) = - qn(x, t) + \beta n(qn0  - qn(x, t))I[xn
 - (t),xn

+(t)](x),(4.5b)

\tau rn\partial trn(x, t) = 1 - rn(x, t) - \alpha nrn(x, t)(1 + qn(x, t))I[xn
 - (t),xn

+(t)](x),(4.5c)

where n \in \{ e, i\} and the coupling between interfaces is given by integrals of the
dynamically scaled weight functions over the active regions

nm(x;xm
− , xm

+ ) =
xm
+

xm

rm(y, t)(qm(y, t) + 1)wnm(x− y)dy

with m,n \in \{ e, i\} and we define the indicator function IA(x) = 1 if x \in A and 0
otherwise. Interface equations are collapsed to describe the evolution of bump and
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WANDERING BUMPS IN PLASTIC NEURAL FIELDS 195

plasticity profile centroids by applying the definitions (2.3) to (4.5) and approximating
interfaces as xn\pm (t)\approx \pm an +\Delta n(t), n\in \{ e, i\} .

Expanding about the stationary solution and applying the blurring ansatz for qn
and rn (and the evolution of \Delta qn,rn) developed in section 4.1 we obtain
(4.6)

18 HEATHER L. CIHAK AND ZACHARY P. KILPATRICK

Substituting this approximation into Eq. (4.4) and in the model Eq. (2.1) with a
step nonlinearity, and truncating, yields the following multiscale system of nonlinear
Langevin equations describing the stochastic evolution of the interfaces subject to
short term synaptic plasticity:

\tau ndx
n
\pm =  - 1

Pn

\Bigl( \bigl[ 
 - \theta n + ăne(x

n
\pm ;x

e
 - , x

e
+) - ăni(x

n
\pm ;x

i
 - , x

i
+)
\bigr] 
dt+ \epsilon 

1
2 dWe(x

n
\pm , t)

\Bigr) 
,

(4.5a)

\tau qn\partial tqn(x, t) =  - qn(x, t) + \beta n(qn0  - qn(x, t))I[xn
 - (t),xn

+(t)](x),(4.5b)

\tau rn\partial trn(x, t) = 1 - rn(x, t) - \alpha nrn(x, t)(1 + qn(x, t))I[xn
 - (t),xn

+(t)](x),(4.5c)

where n \in \{ e, i\} and the coupling between interfaces is given by integrals of the
dynamically scaled weight functions over the active regions

ănm(x;xm - , x
m
+ ) =

\int xm
+

xm
 - 

rm(y, t)(qm(y, t) + 1)wnm(x - y)dy,

with m,n \in \{ e, i\} and we define the indicator function IA(x) = 1 if x \in A and
0 otherwise. Interface equations are collapsed to describe the evolution of bump
and plasticity profile centroids by applying the definitions Eq. (2.3) to Eq. (4.5) and
approximating interfaces as xn\pm (t) \approx \pm an +\Delta n(t), n \in \{ e, i\} .

Expanding about the stationary solution and applying the blurring ansatz for qn
and rn (and the evolution of \Delta qn,rn) developed in Section 4.1 we obtain:

d\Delta n =
 - 2(\Delta e  - \Delta i)\scrW  - 

nm(ae, ai) + \scrP ne(\Delta e,\Delta re,\Delta qe) - \scrP ni(\Delta i,\Delta ri,\Delta qi)

2\tau nPn

dt

+
\sqrt{} 
\epsilon \theta nd\Xi 

 - 
n (\Delta n, an, t),     

where m,n \in \{ e, i\} with m \not = n and

\scrW  - 
nm(x, y) = wnm(x+ y) - wnm(x - y),

\scrP nm(\Delta ,\Delta 1,\Delta 2) = \langle rm(x+\Delta  - \Delta 1, t) - 1 + qm(x+\Delta  - \Delta 2, t),\scrW  - 
nm( - an, x)\rangle aum

\Xi  - 
n (\Delta n, an, t) =Wn(\Delta n + an, t) - Wn(\Delta  - an, t),

where we have defined the inner product over the subdomain [ - a, a] as

\langle g(x), h(x)\rangle a =

\int a

 - a

g(x)h(x)dx,

and

\tau qnd\Delta qn =  - (1 + \beta qn)(\Delta qn  - \Delta n)dt,

\tau rnd\Delta rn =  - 
\biggl( 
1 +

1 + \beta n(1 + qn0)

1 + \beta n
\alpha n

\biggr) 
(\Delta rn  - \Delta n)dt.

We validate this reduced nonlinear system describing the coupling between neural
and plasticity bump centroids via numerical simulations including uncorrelated noise
(Figure 8). The slow dynamics of coupling modulated by STP lead to initially non-
linear scalings in variance with time, asymptoting to linear in long time. Facilitation

where m,n\in \{ e, i\} with m \not = n and

\scrW  - 
nm(x, y) =wnm(x+ y) - wnm(x - y),

\scrP nm(\Delta ,\Delta 1,\Delta 2) = \langle rm(x+\Delta  - \Delta 1, t) - 1 + qm(x+\Delta  - \Delta 2, t),\scrW  - 
nm( - an, x)\rangle am

,

\Xi  - 
n (\Delta n, an, t) =Wn(\Delta n + an, t) - Wn(\Delta  - an, t),

where we have defined the inner product over the subdomain [ - a,a] as

\langle g(x), h(x)\rangle a =
\int a

 - a

g(x)h(x)dx,

and

\tau qnd\Delta qn = - (1 + \beta qn)(\Delta qn  - \Delta n)dt,(4.7a)

\tau rnd\Delta rn = - 
\biggl( 
1 +

1+ \beta n(1 + qn0)

1 + \beta n
\alpha n

\biggr) 
(\Delta rn  - \Delta n)dt.(4.7b)

We validate this reduced nonlinear system describing the coupling between neural
and plasticity bump centroids via numerical simulations including uncorrelated noise
(Figure 8). The slow dynamics of coupling modulated by STP lead to initially non-
linear scalings in variance with time, asymptoting to linear in long time. Facilitation
on E (depression on I) reduces overall variance and depression on E (facilitation on
I) increases variance.

Linear approximations can be used to reduce this nonlinear Langevin equation
to a multivariate Ornstein--Uhlenbeck process, allowing us to compute covariance and
long term diffusion scaling as in [33]. Taking the long time (t \rightarrow \infty ) limit of the
standard deviation (4.1) of the profile deformation, we also have continuity of the
blurred plasticity variables for t > 0, (4.1), so we can linearize in space:

qn(x+\Delta )\approx qn(x) + (\Delta )\partial x(qn(x)) + \cdot \cdot \cdot ,
rn(x+\Delta ) - 1\approx rn(x) - 1 + (\Delta )\partial x(rn(x)) + \cdot \cdot \cdot .

To leading order in the weak noise perturbation, we then have the following pair of
linear SDEs with the bump centroids
(4.8)
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on E (depression on I) reduces overall variance and depression on E (facilitation on
I) increases variance.

Linear approximations can be used to reduce this nonlinear Langevin equation
to a multivariate Ornstein-Uhlenbeck process, allowing us to compute covariance and
long term diffusion scaling as in [33]. Taking the long time (t \rightarrow \infty ) limit of the
standard deviation Eq. (4.1) of the profile deformation, we also have continuity of the
blurred plasticity variables for t > 0, Eq. (4.1), so we can linearize in space:

qn(x+\Delta ) \approx qn(x) + (\Delta )\partial x(qn(x)) + . . .

rn(x+\Delta ) - 1 \approx rn(x) - 1 + (\Delta )\partial x(rn(x)) + . . .

To leading order in the weak noise perturbation, we then have the following pair of
linear SDEs with the bump centroids

d\Delta n =
1

2\tau nPn

(2(\Delta i  - \Delta e) \cdot \scrW nm(ae, ai) + (\Delta qe  - \Delta e)\scrQ n
e (an)

+(\Delta re  - \Delta e)\scrR n
e (an) - (\Delta qi  - \Delta i)\scrQ n

i (an) - (\Delta ri  - \Delta i)\scrR n
i (an)) dt

+
\sqrt{} 
\epsilon \theta n [dWn(\Delta n + ant) - dWn(\Delta n  - an, t)]     

for n,m \in \{ e, i\} with m \not = n, where

\scrW nm(x, y) = wnm(x+ y) - wnm(x - y),

\scrQ n
m(x) =

\int aum

 - aum

(\partial yqm(y, t))\scrW nm(x, y)dy,

\scrR n
m(x) =

\int aum

 - aum

(\partial yrm(y, t))\scrW nm(x, y)dy,

along with these linear SDEs for the plasticity variable centroids

\tau qnd\Delta qn(t) =  - (1 + \beta qn)(\Delta qn(t) - \Delta n(t))dt,(4.8a)

\tau rnd\Delta rn(t) =  - 
\biggl( 
1 +

1 + \beta n(1 + qn0)

1 + \beta n
\alpha n

\biggr) 
(\Delta rn(t) - \Delta n(t))dt.(4.8b)

for n \in \{ e, i\} . Together, this set of SDEs comprises a closed multivariate Ornstein-
Uhlenbeck process:

d\bfDelta (t) = \bfM \bfDelta dt+ \bfd \bfW ,

where \bfM is a 6\times 6 constant matrix consisting of the the coefficients from Eqs. (4.7),
(4.8a), \& (4.8b). The covariance matrix can be calculated from the formula

\langle \bfDelta (t)\bfDelta T (t)\rangle =
\int t

0

exp (\bfM (t - s))\bfD \bfM exp (\bfM T (t - s))ds

where the diffusion matrix has a block structure \bfD \bfM =

\biggl( 
\bfD \bfzero 
\bfzero \bfzero 

\biggr) 
such that the only

nonzero entries are those of the upper left block \bfitD =

\biggl( 
De Dc

Dc Di

\biggr) 
with

Dn =
\epsilon \theta n

2\tau 2nP
2
n

[Cn(0) - Cn(2an)], n \in \{ e, i\} ,

Dc =
\epsilon 
\surd 
\theta e\theta i

4\tau e\tau iPePi

[Cc(\Delta e  - \Delta i + ae  - ai) - Cc(\Delta e  - \Delta i + ae + ai)

 - Cc(\Delta e  - \Delta i  - ae  - ai) + Cc(\Delta e  - \Delta i  - ae + ai)].
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Fig. 8. Center of mass variance can increase sub- or super-linearly depending on the
polarity of STP. (Top): Centroid variances of the neural activity bumps and plasticity profiles
as predicted by full simulations (dots) using (2.1) and reduced system (lines) using (4.6) and (4.7).
Parameters are as in Table 1 with \theta e = 0.4 and \theta i = 0.4, \tau qe = 250, \tau qi = 200, \tau re = 150, \tau ri = 100,
qe0 = 1, qi0 = 0.8, \alpha e = 0.003, \alpha i = 0.1. (Bottom): Variance trends change as the level of each
type of STP is changed according to large gray/white axes (middle black hash mark means zero),
growing more slowly (quickly) than an STP-free model given facilitation on E or depression on
I (depression on E or facilitation on I). The Milstein method with timestep dt = 0.25 ms, noise
amplitude \epsilon = 0.001, and truncated spatial interval x \in [ - 10,10] with steps dx = 0.005 (for full
model) was used to run 104 Monte Carlo simulations for full and reduced systems. (Note: color
appears only in the online article.)
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for n,m\in \{ e, i\} with m \not = n, where

\scrW nm(x, y) =wnm(x+ y) - wnm(x - y),

\scrQ n
m(x) =

\int aum

 - aum

(\partial yqm(y, t))\scrW nm(x, y)dy,

\scrR n
m(x) =

\int aum

 - aum

(\partial yrm(y, t))\scrW nm(x, y)dy,

along with these linear SDEs for the plasticity variable centroids,

\tau qnd\Delta qn(t) = - (1 + \beta qn)(\Delta qn(t) - \Delta n(t))dt,(4.9a)

\tau rnd\Delta rn(t) = - 
\biggl( 
1 +

1+ \beta n(1 + qn0)

1 + \beta n
\alpha n

\biggr) 
(\Delta rn(t) - \Delta n(t))dt(4.9b)

for n \in \{ e, i\} . Together, this set of SDEs comprises a closed multivariate Ornstein--
Uhlenbeck process,

d\Delta (t) =M\Delta dt+ dW,

where M is a 6\times 6 constant matrix consisting of the coefficients from (4.7), (4.8a),
and (4.8b). The covariance matrix can be calculated from the formula

\langle \Delta (t)\Delta T (t)\rangle =
\int t

0

exp (M(t - s))DM exp (MT (t - s))ds,

where the diffusion matrix has a block structure DM = (D 0
0 0 ) such that the only

nonzero entries are those of the upper left block \bfitD = (De Dc

Dc Di
) with
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on E (depression on I) reduces overall variance and depression on E (facilitation on
I) increases variance.

Linear approximations can be used to reduce this nonlinear Langevin equation
to a multivariate Ornstein-Uhlenbeck process, allowing us to compute covariance and
long term diffusion scaling as in [33]. Taking the long time (t \rightarrow \infty ) limit of the
standard deviation Eq. (4.1) of the profile deformation, we also have continuity of the
blurred plasticity variables for t > 0, Eq. (4.1), so we can linearize in space:

qn(x+\Delta ) \approx qn(x) + (\Delta )\partial x(qn(x)) + . . .

rn(x+\Delta ) - 1 \approx rn(x) - 1 + (\Delta )\partial x(rn(x)) + . . .

To leading order in the weak noise perturbation, we then have the following pair of
linear SDEs with the bump centroids

d\Delta n =
1

2\tau nPn

(2(\Delta i  - \Delta e) \cdot \scrW nm(ae, ai) + (\Delta qe  - \Delta e)\scrQ n
e (an)

+(\Delta re  - \Delta e)\scrR n
e (an) - (\Delta qi  - \Delta i)\scrQ n

i (an) - (\Delta ri  - \Delta i)\scrR n
i (an)) dt

+
\sqrt{} 
\epsilon \theta n [dWn(\Delta n + ant) - dWn(\Delta n  - an, t)](4.7)

for n,m \in \{ e, i\} with m \not = n, where

\scrW nm(x, y) = wnm(x+ y) - wnm(x - y),

\scrQ n
m(x) =

\int aum

 - aum

(\partial yqm(y, t))\scrW nm(x, y)dy,

\scrR n
m(x) =

\int aum

 - aum

(\partial yrm(y, t))\scrW nm(x, y)dy,

along with these linear SDEs for the plasticity variable centroids

\tau qnd\Delta qn(t) =  - (1 + \beta qn)(\Delta qn(t) - \Delta n(t))dt,(4.8a)

\tau rnd\Delta rn(t) =  - 
\biggl( 
1 +

1 + \beta n(1 + qn0)

1 + \beta n
\alpha n

\biggr) 
(\Delta rn(t) - \Delta n(t))dt.(4.8b)

for n \in \{ e, i\} . Together, this set of SDEs comprises a closed multivariate Ornstein-
Uhlenbeck process:

d\bfDelta (t) = \bfM \bfDelta dt+ \bfd \bfW ,

where \bfM is a 6\times 6 constant matrix consisting of the the coefficients from Eqs. (4.7),
(4.8a), \& (4.8b). The covariance matrix can be calculated from the formula

\langle \bfDelta (t)\bfDelta T (t)\rangle =
\int t

0

exp (\bfM (t - s))\bfD \bfM exp (\bfM T (t - s))ds

where the diffusion matrix has a block structure \bfD \bfM =

\biggl( 
\bfD \bfzero 
\bfzero \bfzero 

\biggr) 
such that the only

nonzero entries are those of the upper left block \bfitD =

\biggl( 
De Dc

Dc Di

\biggr) 
with

Dn =
\epsilon \theta n

2\tau 2nP
2
n

[Cn(0) - Cn(2an)], n \in \{ e, i\} ,

Dc =
\epsilon 
\surd 
\theta e\theta i

4\tau e\tau iPePi

[Cc(\Delta e  - \Delta i + ae  - ai) - Cc(\Delta e  - \Delta i + ae + ai)

 - Cc(\Delta e  - \Delta i  - ae  - ai) + Cc(\Delta e  - \Delta i  - ae + ai)].

The long time effective diffusion coefficient can be estimated by averaging the main
diagonal elements of the covariance after a fixed time tend:

Deff =
diag(\langle \Delta (tend)\Delta 

T (tend)\rangle 
tend

= lim
t\rightarrow \infty 

diag(\langle \Delta (t)\Delta T (t)\rangle 
t

.(4.10)

The first entry, Deff
1 , describes the effective diffusion coefficient of the excitatory neural

bump's centroid in long time. Note however, that this effective diffusion approxima-
tion typically underestimates the variance of bumps subject to STP since they do
not incorporate the initial saturating effects of coupling between centroids. Heatmaps
of (4.9) plotted in Figure 9 exhibit similar trends to our previous results, but ex-
clude the typical sublinear scaling of variance emerging from coupling: depression on
E (facilitation on I) increases the diffusion coefficient and widens unstable regions,
whereas depression on I (facilitation on E) lowers the diffusion coefficient and shrinks
unstable regions. Interestingly depression on I seems to stabilize bumps at lower firing
thresholds and has less effect on higher thresholds.
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Fig. 9. Heatmaps of long time diffusion coefficients, numerically calculated utilizing (4.9) eval-

uated at D\mathrm{e}ff
1 for the long term variance estimated on stable excitatory bump profiles. White areas

denote locations of no solutions or unstable solutions. STP parameters are varied according to the
large white/gray gradient axes and firing rate thresholds are modified along subaxes (\theta e, \theta i). Other
parameters are as described in Table 1 with tend = 20 seconds. (Note: color appears only in the
online article.)

5. Discussion. Working memory is a crucial aspect of cognition in humans and
other animals [42]. Indeed even simple decisions made from prolonged evidence ac-
cumulation may require working memory to retain a running belief formed from in-
formation accumulated so far [48, 55]. Continuous attractor models in the form of
neural field equations provide an ideal balance of biological realism and mathematical
tractability for identifying the mechanisms underlying robustness and limitations of
working memory [30, 37, 40]. Such approaches therefore define a mathematically and
biologically principled link between behavioral observations and the spatiotemporal
neural patterns of activity that determine them.
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Asymptotic methods for estimating the motion and deformation of wave and pat-
tern solutions to neural field equations are strongly problem dependent due to their
nonlinear nature [6]. One useful approach has been to consider piecewise constant
nonlinearities for the firing rate transfer functions [15]. However, if jumps in these
piecewise smooth functions are exposed, standard linear approximations do not hold
[7]. Mollifying jumps using convolutions can rescue this analysis [36], but then re-
quires that the sign of perturbations be considered when determining the stability of
solutions. We thus aimed to not only resolve how to properly treat jump disconti-
nuities in determining stability of bumps in neural fields with STP, but also in the
stochastic dynamics of bumps evolving in response to neural activity fluctuations.
This added the interesting feature of nontrivial deformation of STP variables away
from their stationary profiles in response to noise and the motion of neural activity
variables, requiring an asymptotic theory that could account for blurring.

Our approach has thus extended standard weak noise approximations to con-
sider the multiple timescale interactions of excitatory/inhibitory neural subpopula-
tions along with synaptic plasticity variables evolving in space-time. The result is a
set of nonlinear Langevin equations that not only accounts for the evolution of neural
activity and plasticity profiles but also the blurring of plasticity profiles due to the
more rapid dynamics of neural activity. This allows us to make accurate approxi-
mations of the effect of STP on the variance in bumps over time, which has strong
relevance for behavioral predictions in delayed estimation tasks.

An interesting problem that arose here, sidestepped in prior analyses [7, 36], was
the emergence of eigensolutions with complex eigenvalues in the context of our piece-
wise linear stability analysis. In this case, oscillations will cause the perturbation
to change sign at the bump boundaries over time, breaking the fixed sign assump-
tion used to derive the piecewise linear operator. A simple spectral analysis may not
be sufficient to identify bump stability, and the transient dynamics may need to be
tracked across the sign threshold crossing points. A more thorough analysis along
these lines could employ switching manifolds that divide the space of perturbation
amplitudes for all of the state variables, akin to that recently developed for piecewise
linear neural mass models [12]. Such an approach would much more thoroughly char-
acterize the interaction between the different partitions of the local linearized space
as bumps evolve in response to small perturbations.

Another form of perturbation we could consider is weak deterministic stimulation
reminiscent of distractors often employed in delayed estimation tasks [54]. Our results
here suggest that facilitation on E or depression on I could help to stabilize bumps
in response to such stimulation, so they will not be moved away from their initial
position. The detailed perturbation analysis developed here would likely translate,
allowing us to insert a spatiotemporal input like I(x, t) in place of the fluctuation
terms. Ultimately, using the various forms of asymptotic approximations developed
here, we could make behavioral predictions about the level of STP at work in human
subjects as a function of their response errors due to distractors [49], which could help
with joint psychophysics-modeling approaches to noninvasively identify neuroatypical
subjects based on cognitive task performance [52].

Appendix A. Numerical methods. Numerical simulations and calculations
were performed in python. Convolution integrals and the spatially filtered noise were
computed via the fast Fourier transform convolution method. Time stepping in full
model simulations of (2.1) was implemented via the Milstein method with initial
conditions set to the stationary bumps centered at x = 0. The integrals for the
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lower-dimensional interface predictions (4.7) and long time diffusion coefficients (4.9)
were approximated as Riemann sums with the spatial step described in corresponding
figures. Time and spatial steps are given in corresponding figure captions.

Appendix B. Classifying unstable solutions. Our stability analysis relies
on an approach originally developed in [7, 36] which first mollifies jumps and exposed
singularities emerging from linearizing steps in plasticity profiles. Thereafter, a stan-
dard spectral theory of stability is not possible, but must be modified to account
for the sign of perturbations at bump boundaries. Eigensolutions are then found by
considering all possible sign combinations and solving for eigenfunctions and eigenval-
ues. If any real eigenvalues are positive, then the underlying solution being linearized
around is unstable, implying either a drift or collapse/expansion instability. If not,
but there are complex eigenvalues with positive real part, we conjecture solutions will
also be unstable. The eagle-eyed reader may note that perturbation signs will change
given an oscillatory instability, but if each perturbation sign case has associated pos-
itive real part complex eigenvalues pairs, the perturbation will not decay and indeed
the bump will be unstable (e.g., long region protruding from the lower left corner of
phase space in Figure A.1). There can also be cases where both drift and oscillatory
instabilities can be present.

Appendix C. Motion Blur. Shifts in the neural E/I active region cause re-
laxations in the plasticity variables so they evolve as an image of the active regions,
generating smearing analogous to visual phenomena emergent from cameras with slow

Total Unstable Perturba/on Cases

𝜽𝒊

𝜽𝒆

(𝛼! = 0) (𝛼! = 0.005) (𝛼! = 0.005, 𝑞" = 0.8)

Fig. A.1. Number of sign cases for which there are unstable perturbations and relation to clas-
sifying instabilities. There are sixteen possible cases of perturbation signs (four total edge crossings
and two signs each: 24 = 16). We predict bumps undergo an unstable oscillatory instability if there
is a complex eigenpair for each case (off-white region). Drift instabilities account for the remaining
cases of unstable eigenvalues, requiring at least a single positive real eigenvalue in one of the sign re-
gions (purple regions in center and right panel). The large gray/white gradient axis denotes strength
of short term depression \alpha e and/or facilitation qi. For no plasticity, oscillatory instabilities emerge
as in [9]. Overlapping regions with drift and oscillatory instabilities are classified by examining the
class of the dominant eigenvalue. (Note: color appears only in the online article.)
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Fig. A.2. Motion blur. Pictures of moving objects taken with cameras at slow shutter speed
would result in blurred images. Illustration made by HLC. (Note: color appears only in the online
article.)

shutter speed (Figure A.2). Plasticity profiles therefore reflect probabilities of where
active regions may be. Such image motion blur provides a rough estimate of the
most likely locations of the active region. Motivated by models of motion blur from
image processing [32, 50, 51], we inferred an ansatz for the blurring kernel, applied
to generate the observed diffusion of the initial plasticity profiles. Our heuristically
estimated blurring kernel provides accurate descriptions across a broad parametric
range of simulation.

Acknowledgments. HLC would like to thank both (a) Sage Shaw for assistance
in code development and (b) the noble platypus, whose image inspired her formulation
of the blurring kernel approximation and for being the most magnificent monotreme;
they never cease to amaze and inspire her.
Code availability: The python code used to generate all results and figures can be
found here: https://github.com/cihakh/STP Multiscale.
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