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Solutions to Review Problems for Final Exam

1. The pdf is

f(x;α, β) =
1

Γ(α)
βαxα−1e−βx I(0,∞)(x).

The joint pdf is

f(~x;α, β) =
1

[Γ(α)]n
βnα[

∏
xi]

α−1e−β
∑

xi
∏

I(0,∞)(xi)

=
1

[Γ(α)]n
βnα︸ ︷︷ ︸

a(θ)

∏
I(0,∞)(xi)︸ ︷︷ ︸
b(~x)

exp

(α− 1)︸ ︷︷ ︸
c1(θ)

∑
lnxi︸ ︷︷ ︸

d1(~x)

− β︸︷︷︸
c2(θ)

∑
xi︸ ︷︷ ︸

d2(~x)

 .

So, by “two-parameter exponential family”

S = (d1( ~X), d2( ~X)) = (
∑

lnXi,
∑

Xi)

is complete and sufficient for this model.

2. Since σ2 is fixed and known, we can use the one-parameter exponential family factorization
to show that S =

∑
Xi is complete and sufficient for µ.

Since X1 is an unbiased estimator of µ, the Rao-Blackwell Theorem gives us that E[X1|
∑
Xi]

is still unbiased for µ. Also, because it is a function of the complete and sufficient statistic
S =

∑
Xi, it is the UMVUE.

We know that the UMVUE here is X. Since UMVUEs are unique, we have that

E[X1|
∑

Xi] = X.

3. Informally, a minimal sufficient statistics is a sufficient statistic of lowest dimension. So,
we will try to use the Factorization Criterion to find a low dimensional sufficient statistic.
However, we will then have to prove that this really is minimal sufficient.

The joint pdf is

f(~x; θ) = e−
∑n

i=1
(xi−θ)∏n

i=1 I(θ,∞)(xi)

= e−
∑

xi︸ ︷︷ ︸
h(~x)

enθI(θ,∞)(x(1))︸ ︷︷ ︸
g(s(~x;θ))

By the Factorization Criterion for sufficiency, we see that S = X(1) is a sufficient statistic for
this model.



To show that X(1) is minimal sufficient, you might try using our result that says, if we have

f(~x; θ)

f(~y; θ)
is θ-free ⇔ s(~x) = s(~y) (1)

then S = s( ~X) is minimal sufficient.

However, if you try this you will see that we do not have (1) holding for this model!

Instead, we will use the fact that a complete and sufficient statistic is minimal sufficient.
That is, we will show completeness of S = X(1).

We will need the pdf of S = X(1). The cdf is

FS(s) = P (S ≤ s) = P (X(1) ≤ s)

= 1− P (X(1) > s)

iid
= 1− [P (X1 > s)]n

= 1− [e−(s−θ)]n

= 1− e−n(s−θ)

So, the pdf for S = X(1) is

fS(s) =
d

ds
FS(s) =

d

ds
[1− e−n(s−θ)] = ne−n(s−θ).

Since the minimum lives on (θ,∞), we can complete this with an indicator:

fS(s) = ne−n(s−θ) I(θ,∞)(s).

So, the minimum of n shifted rate 1 exponentials is a shifted exponential with rate n. (This
is not surprising and you could have just said that from the begining without showing it.)

We are ready to show completeness. Take any function g such that

E[g(S)] = 0 ∀θ.

Then
0 = E[g(S)] =

∫∞
−∞ g(s)fS(s) ds

=
∫∞
θ g(s)ne−n(s−θ) ds

= nenθ
∫∞
θ g(s)e−ns ds

This implies that ∫ ∞
θ

g(s)e−ns ds = 0 ∀θ

and therefore that ∫ θ

∞
g(s)e−ns ds = −

∫ ∞
θ

g(s)e−ns ds = 0 ∀θ



Taking the derivative of both sides with respect to θ gives us

g(θ)e−nθ = 0 ∀θ

Since e to a power is never 0, this implies that

g(θ) = 0 ∀θ.

θ is just acting as a variable, to be clear, we have that

g(x) = 0 ∀x.

Thus, g(S) = g(X(1)) = 0 with probability 1 and we have shown that S = X(1) is complete
for this model.

4. Since the indicator is 1 everywhere, we don’t need it. I just wanted to be clear about the
domain of the problem.

The joint pdf is

f(~x; θ) =
1

2n
e−
∑
|xi−θ|.

There are many ways to rewrite this sum, for example, putting in indicators indicating
whether each xi is below of above θ. However, to show sufficiency of the order statistics
S = (X(1), X(2), . . . , X(n)), it is enough to note that∑

|xi − θ| =
∑
|X(i) − θ|.

Thus, we may write

f(~x; θ) =
1

2n
e−
∑
|x(i)−θ|

and use the Factorization Criterion for sufficiency. You can take h(~x) to be 1/2n or even
identically 1. Either way, the data does not appear in “a single clump” (or 2 or 3). In

order to evaluate e−
∑
|x(i)−θ|, we need all of X(1), X(2), . . . , X(n). Thus, by the Factorization

Criterion, S = (X(1), X(2), . . . , X(n)) is sufficient for this model.

Because of the high-dimensional nature of S, showing minimal sufficiency by showing com-
pleteness is hard. Instead, we will appeal to our result that if

f(~x; θ)

f(~y; θ)
is θ-free ⇔ s(~x) = s(~y) (2)

then S = s( ~X) is minimal sufficient.

For this part, it will help to rewrite the exponent as

−
∑
|x(i) − θ| = −

∑
{i:x(i)<θ}

|x(i) − θ| −
∑

{i:x(i)≥θ}
|x(i) − θ|

= −
∑

{i:x(i)<θ}
[−(x(i) − θ)]−

∑
{i:x(i)≥θ}

(x(i) − θ)

=
∑

{i:x(i)<θ}
x(i) −

∑
{i:x(i)≥θ}

x(i) + θ[(#xi ≥ θ)− (#xi < θ)]



Note that
f(~x; θ)

f(~y; θ)
=
e−
∑
|x(i)−θ|

e−
∑
|y(i)−θ|

= exp[−
∑
|x(i) − θ|+

∑
|y(i) − θ|]

and that the exponent is∑
{i:x(i)<θ}

x(i)−
∑

{i:x(i)≥θ}
x(i)−

∑
{i:y(i)<θ}

y(i)+
∑

{i:y(i)≥θ}
y(i)+θ[(#xi ≥ θ)−(#xi < θ)−(#yi ≥ θ)+(#yi < θ)]

For notational simplicity, let α(θ) := (#xi ≥ θ) and β(θ) := (#yi ≥ θ). Note that (#xi <
θ) = n− α(θ) and (#yi < θ) = n− β(θ).

The exponent is now ∑
{i:x(i)<θ}

x(i) −
∑

{i:x(i)≥θ}
x(i) −

∑
{i:y(i)<θ}

y(i) +
∑

{i:y(i)≥θ}
y(i)

+ 2θ(α(θ)− β(θ)) (3)

We want to show that this is “θ-free”, or constant in θ, if and only if (x(1), x2, . . . , x(n)) =
(y(1), y(2), . . . , y(n)). This is clearly true if (x(1), x2, . . . , x(n)) = (y(1), y(2), . . . , y(n)). So, let’s
assume that (3) is constant in θ and try to show that this forces equality of the order statistics.

Consider evaluating (3) over an interval of θ’s that does not contain any of the xi or yi. The
first term (in the square brackets) will remain constant over this interval. The second term
will be constant on this interval if and only if α(θ) = β(θ) for all θ in the interval.

Now, this will be true for all such intervals if and only if the order statistics for the x’s are
the same as the order statistics for the y’s.

Thus, we have (2) holding when s(~x) = (x(1), x(2), . . . , x(n)). By our result, this gives us that

S = s( ~X) = (X(1), X(2), . . . , X(n))

is minimal sufficient.

5. Note that, for the N(θ, 1) distribution, θ is a location parameter. Also note that Y =
X(2)−X(1) is a location invariant statistic since adding a constant c to all data points would
produce order statistics X(1)+c, X(2)+c, . . ., X(n)+c and (X(2)+c)−(X(1)−c) = X(2)−X(1).
Thus, Y is an ancillary statistic.

On the other hand, it is easy to show, by one-parameter exponential family, that
∑
Xi is

complete and sufficient for this model which implies that the one-to-one transformation to X
is complete and sufficient.

Thus, by Basu’s Theorem, we have that X is independent of X(2) −X(1).

6. (a) For the exponential distribution, λ is a scale parameter. The statistic S is scale-invariant
since

cXn∑n
i=1 cXi

=
cXn

c
∑n
i=1Xi

=
Xn∑n
i=1Xi

= S.

So, S in ancillary for this model.



By the exponential family factorization, it is easy to see that T =
∑n
i=1Xi is complete

and sufficient for the model.

By Basu’s Theorem, we then have that S and T are independent.

(b) Note that S times T is Xn. So, E[ST ] = E[Xn] = 1/λ.

On the other hand, E[T ] = nE[X1] = n/λ.

By part (a), we know that S and T are independent, so we have E[ST ] = E[S]E[T ] and
therefore

E[S] =
E[ST ]

E[T ]
=

1/λ

n/λ
=

1

n
.

7. We already know that S = X(n) is complete and sufficient for this model. We want to find a
function of X(n) that is unbiased for θp.

We can show that the pdf for X(n) is

fX(n)
(x) =

n

θn
xn−1 I(0,θ)(x).

Let’s try

E[X(n)] =
∫ θ
0 x ·

n
θnx

n−1 dx

= n
n+1θ

From that integral, we can see that we will get θp if we compute

E[Xp
(n)] =

∫ θ

0
xp · n

θn
xn−1 dx =

n

n+ p
θp.

Therefore, the UMVUE for τ(θ) = θp is

τ̂(θ) =
n+ p

n
Xp

(n).

8. (a) First note that, when the parameter is in the indicator like this, the exponential family
factorization for find a complete and sufficient statistic will never work. That factoriza-
tion is about complete separation of the x’s and θ (a(θ), b(~x), c(θ), d(~x)) but they are
stuck together in the indicator.

First, we need to find a sufficient statistic. We’ll use the Factorization Criterion:

f(~x; θ) =
n∏
i=1

f(xi; θ) = · · · = e−
∑

xi+nθI(θ,∞)(x(1)) = e−
∑

xi︸ ︷︷ ︸
h(~x)

enθI(θ,∞)(x(1))︸ ︷︷ ︸
g(s(~x);θ)

Thus, we see that S = X(1) is sufficient for θ.

To show that S is complete, we need to find the pdf for the minimum. I am running out
of time and need to get these solutions posted, so I am omitting the details, but the pdf
for the minimum is

fX(1)
(x) = ne−n(x−θ)I(θ,∞)(x)



To show completeness, assume that g is any function such that E[g(X(1))] = 0 for all θ.
Then

0 = E[g(X(1))] =
∫∞
θ g(x)n e−n(x−θ) dx = nenθ

∫∞
θ g(x) e−nx dx

for all θ. This implies that ∫ ∞
θ

g(x) e−nx dx = 0

or, equivalently,

−
∫ θ

∞
g(x) e−nx dx = 0

and thus ∫ θ

∞
g(x) e−nx dx = 0

for all θ.

Taking the derivative of both sides with respect to θ gives

g(θ)e−nθ = 0

for all θ. Since e−nθ 6= 0, we get that g(θ) must be zero for all θ. Thus, g(X(1)) = 0 and
we have that S = X(1) is complete for θ.

(b) We need to find a function of X(1) that is unbiased for θ. We consider X(1) itself.

E[X(1)] =
∫∞
−∞ xfX(1)

(x) dx

=
∫∞
θ xne−n(x−θ) dx

= nenθ
∫∞
θ xe−nx dx

= enθ[θe−nθ + 1
ne
−nθ]

= θ + 1
n

So, θ̂ = X(1) − 1/n.

9. (a) We first consider the simple versus simple hypotheses

H0 : σ2 = σ20 H1 : σ2 = σ21

for some fixed σ21 > σ20.

The joint pdf is

f(~x;σ2) = (2πσ2)−n/2e−
1

2σ2

∑
x2i .

The likelihood ratio is

λ(~x;σ20, σ
2
1) =

f(~x;σ2
0)

f(~x;σ2
1)

=
(2πσ2

0)
−n/2e

− 1
2σ2

0

∑
x2
i

(2πσ2
1)

−n/2e
− 1

2σ2
1

∑
x2
i

= (σ21/σ
2
0)n/2 · e

− 1
2

(
1

σ2
0

− 1

σ2
1

)∑
x2i



Setting this less than or equal to k and starting to move things, we get

e
− 1

2

(
1

σ2
0

− 1

σ2
1

)∑
x2i ≤ (σ20/σ

2
1)n/2k

−1

2

(
1

σ20
− 1

σ21

)∑
x2i ≤ ln

[
(σ20/σ

2
1)n/2k

]
∑

x2i ≥
ln
[
(σ20/σ

2
1)n/2k

]
−1

2

(
1
σ2
0
− 1

σ2
1

)
since σ21 > σ20.

So, the best test of
H0 : σ2 = σ20 H1 : σ2 = σ21

for some fixed σ21 > σ20 will be to reject H0 if∑
X2
i ≥ k1

where k1 is chosen to give a size α test.

Now let’s find k1.

α = P
(∑

X2
i ≥ k1;H0

)
Since, under H0, Xi ∼ N(0, σ20) so Xi/σ

2
0 ∼ N(0, 1). Squaring a N(0, 1) gives a χ2

random variable. Adding independent χ2-random variables gives another χ2 with all
the degrees of freedom added up.

So, ∑n
i=1X

2
i

σ20
=

n∑
i=1

X2
i

σ20
=

n∑
i=1

(
Xi

σ0

)2

∼ χ2(n)

So,
α = P

(∑
X2
i ≥ k1;H0

)
= P

(∑
X2
i

σ2
0
≥ k1/σ20;H0

)

= P (W > k1/σ
2
0)

where W ∼ χ2(n).

So, we have that k1/σ
2
0 is the χ2(n) critical value that cuts off area α to the right. Our

notation for this is χ2
α(2n). So

k1 = σ20 χ
2
α(n).

So, the best test of size α of

H0 : σ2 = σ20 H1 : σ2 = σ21

for some fixed σ21 > σ20 will be to reject H0 if∑
X2
i ≥ σ20 χ2

α(n).



This test does not depend on the specific chosen value of σ21 (with the exception that
the form of the test depends on the fact that σ21 > σ20). So, this is a UMP test of size α
for

H0 : σ2 = σ20 versus H1 : σ2 > σ20.

(b) The power function is

γ(σ2) = P ( Reject H0 ;σ2)

= P (
∑
X2
i ≥ σ20 χ2

α(n);σ2)

10. (a) The ratio for the Neyman-Pearson test is

λ(~x; θ0, θ1) =

1
θn0
I(0,θ0)(x(n)) · I(0,x(n))(x(1))

1
θn1
I(0,θ1)(x(n)) · I(0,x(n))(x(1))

=

(
θ1
θ0

)n I(0,θ0)(x(n))

I(0,θ1)(x(n))

set
≤ k

The k should be something non-negative since λ is a ratio of pdfs and therefore is always
non-negative. Note that if the indicator in the numerator is zero if x(n) > θ0. In this
case, we absolutely know that H0 is not true since it states that all values in the sample
will be between 0 and θ0. This is reflected in the fact that x(n) > θ0 ⇒ λ = 0 which is
less than or equal to any valid k, so we will always reject.

On the other hand, if the indicator in the denominator is zero, this means that x(n) > θ1.
The N-P ratio λ becomes infinite (in a sense) which makes it NOT less than or equal to
any cut-off k, so we would never reject H0. This makes sense because x(n) > θ1 implies
that H1 could not possibly be true since it says that all values in the sample are between
0 and θ1.

All of these comments aside, this test is garbage if x(n) is greater than both θ0 and
θ1 since, in hypothesis testing, the assumption is that one of the two hypotheses is
true. Since θ1 < θ0, and the sample came from either the unif(0, θ0) or unif(0, θ1)
distribution, we must have that x(n) < θ0, and so the indicator in the numerator is one.
Thus, we have (

θ1
θ0

)n 1

I(0,θ1)(x(n))
≤ k

⇒ 1

I(0,θ1)(x(n))
≤
(
θ0
θ1

)n
k

⇒ I(0,θ1)(x(n)) ≥ k1

Now the indictor will be “large” (ie: 1) if x(n) is small, so this is equivalent to

X(n) ≤ k2

for some k2 such that
P (X(n) ≤ k2; θ0) = α

ie: (
k2
θ0

)n
= α



⇒ k2 = θ0α
1/n

So, the best test of
H0 : θ = θ0 versus H1 : θ = θ1

is to reject H0 if X(n) ≤ θ0α1/n.

(b) Since the test from part (a) does not involve θ1 (only that θ1 < θ0), it is UMP for

H0 : θ = θ0 versus H1 : θ < θ0.

(c) The composite null hypothesis will only change the way the level of significance is defined

α = maxθ≥θ0 P (X(n) ≤ k2; θ)

= maxθ≥θ0

(
k2
θ

)n
=
(
k2
θ0

)n
⇒ k2 = θ0α

1/n

So, a UMP test of size α of

H0 : θ ≤ θ0 versus H1 : θ < θ0

is to reject H0 if X(n) ≤ θ0α1/n.

11. The pdf is
f(x; θ) = θe−θx I(0,∞)(x).

This is also the “joint” pdf for our sample of size 1.

A likelihood is
L(θ) = θe−θx.

The log-likelihood is
`(θ) = lnL(θ) = ln θ − θx.

Maximizing this with respect to θ gives the MLE

θ̂ = 1/X1.

As for the restricted MLE (a rough sketch would be helpful here),

• If θ0 ≤ 1/X1, then θ̂0 = 1/X1.

• If θ0 > 1/X1, then θ̂0 = θ0.

So, the GLR is

λ(X1) = L(θ̂0)

L(θ̂)

=

 1 , if θ0 ≤ 1/X1
θ0e−θ0X1

1
X1

e−(1/X1)X1
, if θ0 > 1/X1

=

{
1 , if X1 ≤ 1/θ0
θ0X1e

−θ0X1+1 , if X1 > 1/θ0



As for the actual GLRT, it turned out waaaay harder than intended if you do it “directly”
(Even for this sample of size 1!) For the record, here’s how you might proceed if you want to
do it “directly”. (Alternatively, skip down to “***”.)

Set
α = max

θ≥θ0
P (λ(X1) ≤ k; θ).

In order to compute this, we would first need to compute the probability. (i.e. Ignore the
max for now.) Because writing that end “semicolon θ” will be cumbersome, I’ll leave it out.

P (λ(X1) ≤ k) = P (λ(X1) ≤ k,X1 ≤ 1/θ0) + P (λ(X1) ≤ k,X1 > 1/θ0)

= P (λ(X1) ≤ k|X1 ≤ 1/θ0)P (X1 ≤ 1/θ0) + P (λ(X1) ≤ k|X1 > 1/θ0)P (X1 > 1/θ0)

P (1 ≤ k|X1 ≤ 1/θ0)P (X1 ≤ 1/θ0) + P (θ0X1e
−θ0X1+1 ≤ k|X1 > 1/θ0)P (X1 > 1/θ0)

We can easily compute P (X1 ≤ 1/θ0) and P (X1 > 1/θ0) for the exponential rate θ distribu-
tion.

The first term, P (1 ≤ k|X1 ≤ 1/θ0) is either 0 or 1, depending on the value of k.

The term P (θ0X1e
−θ0X1+1 ≤ k|X1 > 1/θ0) can be thought of a little more simply as

P (θ0Y e
−θ0Y+1 ≤ k) where Y is en exponential rate θ random variable with pdf restricted to

y > 1/θ0 and renormalized so that it integrates to 1.

However, even for a “usual” exponential distribution starting at 0, this probability is hard to
compute. I would suggest moving the extraneous terms to the other side of the inequality,
taking the log of both sides, and looking into the “Lambert W” function. Yuck!

*** A much simpler alternative is to look at the GLR on the bottom of the previous
page and note that it is a non-increasing function of X1. So, having λ(X1) ≤ k is equivalent
to having X1 ≥ k1 for some k1. (!)

Thus, we have to solve
α = maxθ≥θ0 P (λ(X1) ≤ k; θ)

= maxθ≥θ0 P (X1 ≥ k1; θ)

= maxθ≥θ0 e
−θk1e−θ0k1

which implies that k1 = (−1/θ0) lnα.

Thus, the GRLT of size α is to

Reject H0 if X1 ≥ (−1/θ0) lnα.

12. The joint pdf for X and Y is

fX,Y (x, y) =

(
n1
x

)
px1(1− p1)n1−x ·

(
n2
y

)
py2(1− p2)n2−y



(a) The resctricted MLE:

We assume that p1 = p2 and denote the common value denoted simply by p. Then

fX,Y (x, y) =

(
n1
x

)(
n2
y

)
px+y(1− p)n1+n2−(x+y)

⇒ L(p) = px+y(1− p)n1+n2−(x+y)

lnL(p) = (x+ y) ln p+ (n1 + n2 − (x+ y)) ln(1− p)

∂

∂p
lnL(p) =

x+ y

p
− n1 + n2 − (x+ y)

1− p
set
= 0

⇒ p̂0 =
x+ y

n1 + n2

where p̂0 denotes the restricted MLE for p.

The unrestricted MLE’s for p1 and p2:

Recall that the joint pdf for X and Y is

fX,Y (x, y) =

(
n1
x

)
px1(1− p1)n1−x ·

(
n2
y

)
py2(1− p2)n2−y

So, a likelihood function is

L(p1, p2) = px1(1− p1)n1−x · py2(1− p2)n2−y

and the log is

lnL(p1, p2) = x ln p1 + (n1 − x) ln(1− p1) + y · ln p2 + (n2 − y) ln(1− p2)

∂
∂p1

lnL(p1, p2) = x
p1
− n1−x

1−p1
set
= 0

∂
∂p2

lnL(p1, p2) = y
p2
− n2−y

1−p2
set
= 0

⇒ p̂1 =
x

n1
, p̂2 =

y

n2

So, the GLR is

λ(~x) =

(
x+y
n1+n2

)x+y (
1− x+y

n1+n2

)n1+n2−(x+y)(
x
n1

)x
(1−

(
x
n1

)
)n1−x ·

(
y
n2

)y
(1−

(
y
n2

)
)n2−y

(b) The approximate large sample GLRT of size α is to reject H0 if

−2 lnλ( ~X) ≥ χ2
α(2)

since the parameter space is {(p1, p2) : 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1} is two-dimensional
and the point {(p, p)} is zero-dimensional. (The degrees of freedom for the χ2 is then
2− 0 = 2.



13. (a) The pdf for Yi is

fYi(yi;m) =
1√

2πσ2
e−

1
2σ2 (yi −mxi)2.

The joint pdf is

f(~y;m)
indep
= fYi(yi;m) = (2πσ2)−n/2e−

1
2σ2

∑n

i=1
(yi−mxi)2 .

A likelihood is
L(m) = e−

1
2σ2

∑n

i=1
(yi−mxi)2 .

The log-likelihood is

ln(m) = − 1

2σ2

n∑
i=1

(yi −mxi)2.

Now,
d
dm ln(m) = − 1

2σ2

∑n
i=1 2(yi −mxi)(−xi)

= 1
σ2

∑n
i=1 xi(yi −mxi)

set
= 0

Solving for m, we get the MLE

m̂ =

∑
xiYi∑
x2i

.

The restricted MLE is m̂0 = m0, so the GLR is

λ(~Y ) =
L(m̂0)

L(m̂)
=

∑n
i=1(Yi −m0xi)

2∑n
i=1(Yi − [(

∑
j xjYj)/(

∑
j x

2
j )]xi)

2

(b) We will use Wilks’ Theorem which says that −2 lnλ(~Y )
d→ (1). (Althought it was not

explicitly given, the slope m is assumed to be any real number. Since IR is a one-
dimensional space and the singleton point {m0} is considered a zero dimensional space,
the degrees of freedom in Wilks’ chi-squared is 1− 0 = 1.)

So, we have
α = P ( Reject H0 when true )

= P (λ(~Y ) ≤ k;m0)

= P (−2 lnλ(~Y ) ≥ k1;m0)

≈ P (W ≥ k1;m0)

where W ∼ χ2(1). Thus, k1 = χ2
α,1 and the approximate large sample GLRT is to reject

H0 if
−2 lnλ(~Y ) ≥ χ2

α,1.


