Program in Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION August 2009

Notice. Do four of the following five problems. Place an X on the line	1
opposite the number of the problem that you are NOT submitting for	2
grading. Please do not write your name anywhere on this exam. You	3
will be identified only by your student number, given below and on	4
each page submitted for grading.	5
Show all relevant work!	TOTAL.

STUDENT NUMBER:

- 1. Let X_1, \ldots, X_{100} be i.i.d. Exponential random variables with parameter $\lambda = 1$ i.e. $\mathbb{P}[X_i \leq t] = 1 \exp(-t)$, for all $t \geq 0$.
 - (a) For a given $k \ge 1$, what is approximately the probability of the event

$$\sum_{i=1}^{100} X_i \le 100 \cdot \left(1 + \frac{k}{10}\right)?$$

Leave your answer in terms of Φ , the cumulative distribution function of a standard Normal distribution.

(b) Use the Berry-Esseen inequality (see theorem below) to determine the smallest value of k for which the error in your approximation above can be guarantee to be less or equal to 1%. Simplify your answer!

THEOREM. (Berry-Esseen inequality.) If Y_1, \ldots, Y_n are i.i.d. random variables with finite mean μ and finite variance $\sigma^2 > 0$ then, for all $t \in \mathbb{R}$, one has that:

$$\left| \mathbb{P}\left[\sqrt{n} \cdot \frac{\bar{Y} - \mu}{\sigma} \le t \right] - \Phi(t) \right| \le \frac{32}{(1 + |t|)^3 \sqrt{n}} \cdot \mathbb{E} \left| \frac{Y_1 - \mu}{\sigma} \right|^3.$$

- 2. The first part in this problem may be useful for the second part.
 - (a) Let $U_1, U_2, \ldots, U_n, V_1, \ldots, V_{n-1}$, with $n \geq 2$, be a random sample of uniform random variables in the interval [0, 1]. In what follows $U_{(i)}$ and $V_{(j)}$ respectively denote the order statistics associated with the U- and V-sample. For instance:

$$U_{(n)} = \max\{U_1, \dots, U_n\};\$$

$$V_{(1)} = \min\{V_1, \dots, V_{n-1}\}.$$

For a given 0 < u < 1, show that the conditional distribution of $(U_{(1)}, \ldots, U_{(n-1)})$ given that $U_{(n)} = u$ is the same as the distribution of $(u \cdot V_{(1)}, \ldots, u \cdot V_{(n-1)})$.

(b) Now suppose that X_1, X_2, \ldots, X_n is a random sample from a distribution that has a continuous cumulative distribution function F. Find the probability density function of

$$\frac{1 - F(X_{(2)})}{1 - F(X_{(1)})}.$$

(THREE MORE PROBLEM ON THE BACK!)

3. Let $N \ge 0$ be an unknown integer and let X_1, \ldots, X_n be a random sample from the distribution with

$$P(X_i = k) = \begin{cases} \frac{1}{2N+1} & , k = 0, \pm 1, \pm 2, \dots, \pm N; \\ 0 & , \text{ otherwise.} \end{cases}$$

- (a) Show that $M = \max\{|X_1|, \dots, |X_n|\}$ is a sufficient statistic for N.
- (b) Show that M is a complete statistic for N.
- (c) Determine the uniformly minimum variance unbiased estimator (UMVUE) for N. Simplify your answer! HINT FOR PART (C). Determine constants a, b, c such that $a \cdot |X_1| + b \cdot [X_1 = 0] + c$ is unbiased for N, where $[X_1 = 0]$ is notation for the indicator function of the event $[X_1 = 0]$.
- 4. Suppose that X_1 is a random sample of size 1 from the distribution with probability density function

$$f(x;\theta) = \begin{cases} \frac{1}{2\theta} & , & \text{if } 0 < x \le \theta; \\\\ \frac{\theta}{2x^2} & , & \text{if } x \ge \theta; \\\\ 0 & , & \text{otherwise.} \end{cases}$$

For which values of $0 < \alpha < 1$ does $H_0: \theta = 1$ versus $H_1: \theta \ge 3$ admit a unique uniformly most powerful (UMP) test of size α ? Specify the rejection region associated with each of those tests.

- 5. Let $0 < \mu < \lambda$ be real constants and consider an M/M/1 queueing system with arrival rate μ and service rate λ , which is initially empty. Suppose that the server is turned ON and OFF according to the following rules:
 - it remains OFF as long as the number of customers in the system is less than 2,
 - it is turned ON as soon as the number of customers in the system becomes 2 and then remains ON until completely emptying the system of customers.

Based on the above, please respond:

- (a) Model the number of customer in the system as a continuous time Markov chain with state space $\{0, 1', 1, 2, 3, ...\}$, where 1' represents the configuration of having exactly one customer in the system while the server is OFF, and state 1 represents the same but while the server is ON. Represent the rate transition matrix of the chain as a directed graph with weighted edges.
- (b) Show that this system has a stationary distribution and determine it explicitly.
- (c) After a long time of operation, what is the probability that a new customer encounters the queue empty?