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Turbulent Boussinesq convection under the influence of rapid rotation (i.e. with com- 
parable characteristic rotation and convection timescales) is studied. The transition 
to turbulence proceeds through a relatively simple bifurcation sequence, starting with 
unstable convection rolls at moderate Rayleigh (Ra)  and Taylor numbers (Ta) and 
culminating in a state dominated by coherent plume structures at high Ra and Ta. 
Like non-rotating turbulent convection, the rapidly rotating state exhibits a simple 
power-law dependence on Ra for all statistical properties of the flow. When the fluid 
layer is bounded by no-slip surfaces, the convective heat transport (Nu - 1, where Nu 
is the Nusselt number) exhibits scaling with Ra'17 similar to non-rotating laboratory 
experiments. When the boundaries are stress free, the heat transport obeys 'classical' 
scaling (Ra'13) for a limited range in Ra, then appears to undergo a transition to 
a different law at Ra = 4 x lo7. Important dynamical differences between rotating 
and non-rotating convection are observed: aside from the (expected) differences in 
the boundary layers due to Ekman pumping effects, angular momentum conservation 
forces all plume structures created at flow-convergent sites of the heated and cooled 
boundaries to spin-up cyclonically; the resulting plume/cyclones undergo strong 
vortex-vortex interactions which dramatically alter the mean state of the flow and 
result in a finite background temperature gradient as Ra -+ 00, holding Ra/Ta fixed. 

1. Introduction 
Turbulent convective motion under the influence of rotation is an important fea- 

ture of many astrophysical and geophysical flows, from solar and giant planetary 
convection to oceanic deep convection. Each configuration possesses its own dis- 
tinguishing features. For our Sun, for example, the convectively unstable layer (or 
convection zone) is deep, encompassing roughly the outer 25% of the sphere by 
radius, the inner 75% being convectively stable. Convective motions are driven by 
the continual heat generation in the solar interior, forcing the turbulent motions in 
the convecting layer in a statistically steady manner (Spiegel 1971, 1972). The great 
depth of the solar convection zone makes both fluid compressibility and the Sun's 
spherical geometry important ingredients in the fluid dynamics. Like the sun, the 
giant planets (Jupiter, Saturn, and Neptune) possess deeply convecting outer layers, 
also driven by (much weaker) internal radiative heat generation. Unlike the Sun, 
however, the giant planets rotate rapidly, resulting in the strong, alternating zonal jets 

t Present address: University of California, Los Angeles, CA 90007, USA. 



244 K .  Julien, S. Legg, J. MeWilliams and J .  Werne 

present in their atmospheres (Ingersoll 1990); the more weakly rotating Sun possesses 
just one zonal jet, i.e. the solar differential rotation.? Oceanic convection differs from 
these examples in its shallow depth and modest geographical extent; hence, incom- 
pressibility and a Cartesian-layer geometry can adequately approximate oceanic fluid 
dynamics. As opposed to the internal heat generation in the Sun and giant planets, 
the driving force for convection in the ocean results from temporally and spatially 
varying surface cooling instigated by seasonal changes in atmospheric conditions; 
therefore, ocean convection is inherently time-dependent, proceeding through the 
progressive erosion of the underlying stable fluid, and does not permit a statistically 
steady flow configuration (Stommel 1972; Schott, Visbeck & Fischer 1993). All of 
these flows are complicated in one way or another by details of the fluids involved: 
magnetic fields and ionization effects significantly influence solar convection, while 
salinity (in addition to temperature) is an active scalar field participating in ocean 
convection. Nevertheless, all the above phenomena share high Reynolds R e  = Ud/v  
and low Rossby numbers Ro = U / (  ff ), implying rotationally constrained turbulent 
convection. Here U and d are characteristic flow velocities and lengthscales, v is 
the fluid’s kinematic viscosity and f = 2Q is the Coriolis parameter where Q is the 
external rotation rate. In contrast, convection in the Earth’s atmosphere is associated 
with large Ro, and rotation can be ignored on the scale of the convecting elements 
(Deardorff 1970a, b ;  Klinger & Marshall 1995). 

In order to investigate some of the general features of convection under the 
influence of strong rotation, we consider the paradigm of rotating Rayleigh-Benard 
convection in which a uniformly rotating Boussinesq fluid (for which the effect of 
density variations is important only in fluid buoyancy) is bounded from above and 
below by horizontal planes held at fixed temperatures. We consider only the simplest 
case in which the direction of rotation is aligned with gravity. Such an arrangement 
avoids complicating features of the specific examples mentioned above, but maintains 
the essential ingredients shared by all of those flows: buoyancy and rotation. Also, 
for such a simple arrangement, the state of the flow is completely determined by 
specification of the boundary conditions and only four parameters: Ra, Ta, o (the 
Prandtl number), and A (the domain aspect ratio). These parameters are defined as 
follows : 

L 2 
V 

and A = 2 
V t i  T a = ( $ ) ,  o = - ,  ti L ’  

gciAL3 
R a = - ,  

where L and L, are the depth and breadth of the layer, A is the imposed temperature 
difference between the bottom and top boundaries, and g is the local acceleration due 
to gravity; c1 and K are the fluid’s thermal expansion coefficient and thermal diffusivity, 
respectively. The non-dimensional numbers Ra and Ta measure the strength of the 
buoyancy force and external rotation applied to the fluid layer, while CT and A are 
properties of the fluid and the domain geometry. 

In recent years, non-rotating Rayleigh-Benard convection has received much at- 
tention as a model problem for transitions to turbulence. A thorough discussion of 
the linear stabiIity problem is provided by Chandrasekhar (1961), while studies of 
transition to nonlinear chaotic flows abound (see Busse 1978 and references therein). 

t Though mean flows are implicitly associated with rotating convection, the formation of zonal 
jet flows which match observations for the giant planets and the Sun remains a theoretical and 
numerical challenge (Busse 1983). In particular, the sustained energetic maintanence of jets and 
mean flows from turbulent convective sources is yet to be demonstrated. 
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At sufficiently high Ra (e.g. Ra 2 4 x lo7 in unit aspect ratio (Heslot, Castaing & 
Libchaber 1987)), convective turbulence prevails, but with a character quite differ- 
ent from early theoretical perceptions (Priestley 1959; Malkus 1963; Howard 1966); 
this so-called 'hard-turbulent' state of convection is defined by its heat-transport law 
( N u  - Ru"~) ,  exponential temperature probability distributions at midlayer, and the 
thermal plumes responsible for the general character of the flow regime (Heslot et al. 
1987). Though Rayleigh-Bknard convection has seen a resurgence in recent years, 
with intense experimental (Heslot et at. 1987; Castaing et at. 1989; Sano, Wu & 
Libchaber 1989; Zocchi, Moses & Libchaber 1990; Wu & Libchaber 1992; Tong & 
Shen 1992; Belmonte, Tilgner & Libchaber 1993; Tilgner, Belmonte & Libchaber 
1993), theoretical (Castaing et al. 1989; She 1989; Shraiman & Siggia 1990; Yakhot 
1992), and numerical work (DeLuca et at. 1990; Werne et al. 1991; Werne 1993; 
Christie & Domaradzki 1993, 1994; Cortese & Balachandar 1993; Kerr 1996), evi- 
dence for the existence of the hard-turbulent state can be found in the literature as 
early as 1969 (Rossby 1969). 

Previous studies of rotating convection include the onset of convection at Ra = 
Ra,., (Chandrasekhar 1953, 1961; Nagakawa & Frenzen 1955; Rossby 1969), and 
the convective dynamics at low supercriticality S = (Ra - Ra,)/Ra, > 0. As S 
increases, the transition to chaotic time-dependent behaviour proceeds from steady roll 
convection through the Kiippers-Lortz instability (Kuppers & Lortz 1969; Kiippers 
1970; Busse & Clever 1979), to convection dominated by complex spatial patterns and 
interacting vertical vortices (Li & Ecke 1993; Zhong, Ecke & Steinberg 1993; Rossby 
1969; Boubnov & Golitsyn 1986, 1990). The chaotic cellular convection which results 
at moderate S has been studied numerically with a variety of vertical boundary 
conditions (Somerville & Lipps 1973; Raasch & Etling 1991; Cabot et al. 1990; 
Klinger & Marshall 1995); however no attempt has been made to systematically 
study the influence of these boundary conditions on the development of the flow. 
The experiments of Rossby (1969) and Zhong et al. (1993) indicate that at higher S 
the Nusselt number Nu is slightly increased compared to non-rotating values; they 
propose Ekman pumping as a possible cause. Recent experiments and simulations 
of unsteady turbulent convection forced by buoyancy loss at only one surface and 
influenced by strong rotation (Fernando, Chen & Boyer 1991; Jones & Marshall 
1993; Maxworthy & Narimousa 1994; Helfrich 1994) have demonstrated the role of 
rotation in determining the characteristic length- and velocity scales for convection; 
however, similar questions have not yet been answered for the analogous problem 
of statistically steady plume-dominated rotating Rayleigh-Benard convection. Here 
we complement previous studies by concentrating on higher-Re turbulent rotating 
Rayleigh-Benard convection, providing a detailed examination of the influence of 
vertical boundary conditions on the dynamics of the statistically steady turbulent 
convecting state. 

2. Numerical model 
Before presenting our numerical solutions, we briefly discuss the numerical model 

with which the solutions are computed. The model problem incorporates the Boussi- 
nesq approximation (see Chandrasekhar 1961) for a rotating incompressible fluid : 

Ra @ + ( m  + 0 (g) 1'22) x v = OV'U - V P  + g-TTẑ  16 , 
d t  
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dT 
d t  

~ + v .VT  = V ~ T ,  (2.2) 

v . v = o .  (2 .3 )  
The unit-vector I is directed vertically upward. The units of length, time and 
temperature used to express (2.1)-(2.3) in their non-dimensional form are L/2, L2/(4x) 
and A / ? .  The variables v ,  T and P are the velocity, temperature and dynamic pressure 
head.? o is the curl of the velocity field (i.e. the vorticity). Solutions to (2.1)-(2.3) are 
computed in a rectilinear domain of dimensions AL x AL x L using a pseudospectral 
Fourier-Chebyshev ‘tau’ method ; see Appendix A. 

The conditions imposed on the top and bottom boundaries are either no slip 

v(x,y.+1) = 0 ,  (2.4) 

d,u(x,y, f 1 )  = 0 ,  &v(x,y,+l) = 0 ,  w(x,y, f l )  = 0 ,  (2.5) 

or stress free 

with the temperature fixed 

All flows computed are periodic in the horizontal directions : 

T ( x , y , f l )  = f l  . (2.6) 

v ( x + L , / L , y + L , / L , z )  = v ( x , y , = ) ,  (2.7) 

T(x+L,/L,y + L , / L , z )  = T(x ,y , z ) .  (2.8) 

Here (x,y,z) and ( u , z ~ , w )  are the spatial components of the coordinates and the 
velocity, respectively; z labels the vertical direction. The intent in using side boundaries 
which are periodic is to approximate an infinite horizontal extent (i.e. A = GO) ;  

the degree to which this approximation succeeds is determined by the smallness 
(compared to AL)  of the characteristic horizontal lengthscales appearing naturally 
in the solutions. Generally, the stronger the influence of rotation on convection, the 
smaller will be the horizontal lengthscales (Chandrasekhar 1961). All of our turbulent 
solutions exhibit AL/P > 6 where P is the largest characteristic horizontal lengthscale; 
a few comparisons with different A show no significant effects. 

A general study of rotating Rayleigh-Benard convection requires the independent 
variation of the four parameters Ra,  Ta, o, and A as well as a determination 
of the influence of different boundary conditions (e.g. no slip or stress free) on 
the top and bottom surfaces. A reasonably complete survey of parameter space 
might include 10 data points for each of the four parameters listed above. This 
alone, i.e. without considering different boundary conditions, amounts to lo4 separate 
simulations, clearly an unrealistic undertaking for a single numerical study. Therefore, 
to focus the present work, we have chosen to restrict our solutions to B = 1 and 
A = 2 (unless otherwise noted) and to vary R a  and Ta such that the influence of 
rotation remains important and comparable for all values of the buoyancy forcing 
( R a ) .  We do this by equating a fraction of the rotation time t R  = f-’ with the vertical 
advection time tw = h / W ,  where h is the characteristic vertical lengthscale of the 
convective motion, and W is the vertical velocity scale. This results in the constraint 

t The temperature and pressure in (2.1) and (2.2) are related to their more conventional definitions 
(T’,  P ’ )  by the following: T = (T‘  - T,)/(4/2) and P = ( P ’ / p  + u 2 / 2  + gz’)L2/(4x2), where To is 
the average of the temperatures at which the top and bottom boundaries of the fluid are held, p 
is the mean density of the fluid, and z’ is the vertical distance measured from the middle of the 
domain. 
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t R / t W  = W / ( f h )  = constant, implying that a fluid parcel undergoes a fixed number of 
revolutions due to the external rotation L2 as it traverses the distance h. Holding this 
ratio of timescales constant as Ru is increased is equivalent to fixing the conriectizie 
Rossby number: 

W 

R o = f h .  
Estimating W from the classic 'free-fall' relation (Prandtl 1932) : 

gwA-rh, (2.9) 1 W ' =  
2 

where A T  is the thermal contrast of a fluid element, we obtain W FZ (gwAh)'/' 
(presuming intensely buoyant fluid elements to possess characteristic temperatures 
A T  = A/2) .  With the choice of h = L (the depth of the layer), we obtain an 
expression for Ro : 

1 / 2  

R o = ( g )  . (2.10) 

This form of Ro was first used by Gilman (1977) and then later by Hathaway, 
Toomre & Gilman (1980), Cabot et ul. (1990), Cabot & Pollack (1992), and Brum- 
mell, Toomre & Hurlbert (1996). Other definitions for Ro result from different 
choices of W and h. For example, penetrative convection in a semi-infinite domain 
(appropriate to the ocean surface or the base of the solar convection zone) has 
no externally imposed lengthscale; therefore one appearing naturally in the flow 
should be chosen, e.g. the depth of the penetrative zone or mixed layer. A rea- 
sonable choice for the velocity scale W for penetrative convection is the turbulent 
convective velocity scale W, = ( B  rP,)1/3 of Deardorff (1970u,b). Here B is the 
buoyancy flux and /, is the depth of the mixed layer. This results in Ro defined by 
[ R u f / ( d  T u ~ / ' ) ] ' / ~  (Maxworthy & Narimousa 1994), where the flux Rayleigh number 
is Ra, = B / i / ( v t i 2 ) .  For deep convection for which rotation may constrain the ver- 
tical transport, W - ( B / f ) ' / '  has been suggested as appropriate to define a 'natural' 
Rossby number Ro, = [ R q / ( o '  Tu3/')] '/', differing from the previous definition in 
exponent onlyt (Raasch & Etling 1991; Fernando et ul. 1991; Jones & Marshall 
1993; Maxworthy & Narimousa 1994). Regardless of the particular definition of the 
convective Rossby number, smaller values indicate a greater influence of rotation on 
the dynamics, while larger values indicate the dominance of buoyancy over rotation. 
Note, all forms presented are independent of molecular properties v and ti. For our 
study we have chosen an intermediate value, Ro = 3/4 (per (2.10)), for which both 
buoyancy and rotation are important. 

The parameters used for the simulations reported here are presented in table 1. 
Almost all of the calculations are conducted with A = 2, though we expand A to be 
as large as A NN 5 when computing weakly nonlinear solutions, and we reduce A to 1 
for our highest-Tu calculations (Tu  = 3.2 x 10'). The characteristic horizontal scale 
/ decreases with increasing Tu (Chandrasekhar 1961). At Tu = 3.2 x lox, the mean 
'cell-size' is L/5 and calculation with A = 2 simply becomes unnecessarily exorbitant. 
We have checked that a reduction of A from 2 to 1 does not alter the time-averaged 
solutions for the lower Tu = 1.0 x lox, whose fluid structures are larger than those 
observed at Tu = 3.2 x lo8. 

The choice of the number of spectral modes in each spatial direction ( N X ,  Ny,  N z )  

t The analogous rotationally constrained velocity for the rotating Rayleigh-Benard problem is 
gctd/f, resulting in Ro. = Ra/(aTa).  
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Ra 
3.09 x 104 
7.03 104 
2.81 x 105 
5.91 x 105 

2.81 x 107 

5.63 104 
1.97 x 105 
5.63 x 105 

1.97 x 107 
5.63 x 107 

2.53 x lo6 
8.44 x lo6 

1.13 x 10' 

1.97 x lo6 
5.63 x lo6 

1.78 x 10' 

Ta 
5.50 x 104 
1.25 x 105 
5.00 x 105 

1.50 x 107 
5.00 x 107 

1.00 x 105 
3.50 x 105 

1.00 x 107 
3.50 107 

1.05 x lo6 
4.50 x lo6 

2.00 x 108 

1.00 x 106 
3.50 x lo6 

1.00 x 108 
3.16 x 10' 

Racrrr kOL 
1.17 x 104 6.5 
1.91 x 104 7.5 
4.55 104 9.6 
7.34 x 104 10.9 
1.91 x 105 14.2 
4.53 x 105 17.6 
9.56 x lo5 21.8 
2.44 x lo6 27.9 

2.13 104 8.6 
4.70 104 10.7 
9.22 104 12.9 
2.08 105 15.9 
4.15 x 105 19.0 

1.90 x lo6 28.0 
4.07 x lo6 34.0 

9.47 x 105 23.5 

Spectral modes 
64 x 64 x 33 
96 x 96 x 49 
96 x 96 x 49 
96 x 96 x 49 

128 x 128 x 65 
128 x 128 x 65 
192 x 192 x 97 
384 x 384 x 193 

96 x 96 x 49 
9 6 x  9 6 x  49 

128 x 128 x 65 
192 x 192 x 97 
192 x 192 x 97 

256 x 256 x 129 
256 x 256 x 129 
256 x 256 x 257 

Boundaries 
no slip 
no slip 
no slip 
no slip 
no slip 
no slip 
no slip 
no slip 

stress free 
stress free 
stress free 
stress free 
stress free 
stress free 
stress free 
stress free 

TABLE 1. Parameters for the simulations. Racrir is the 'critical' Rayleigh number for the onset of 
convection. koL is the magnitude of the normalized horizontal wavevector for the most unstable 
linear mode at onset. 'Spectral modes' refers to the number of Fourier or Chebyshev polynomials 
used in each spatial direction (x x y x z ) .  All simulations are conducted with a domain aspect ratio 
of A = 2 (i.e. 2 x 2 x l),  except for the highest-Ta stress-free calculation, which has A = 1. At this 
highest value of T a  = 1.8 x lo8, koL is sufficiently high for A = 2 to be unnecessary. 

is guided by the magnitude of the Kolmogorov lengthscale for the flow: 

where c = v (diDjdiDj + diB,d,Di) is the time-averaged kinetic energy dissipation rate 
for the velocity fluctuations Di. All of our calculations are performed with a ratio 
of the grid spacing 6 r  to the Kolmogorov scale of 6r /PK < 1.5 in each spatial 
direction. We should point out that our choice of Nz, in addition to adequately 
resolving the Kolmogorov scale of the turbulence, also resolves the thin thermal 
boundary layers attached to the top and bottom boundaries of the domain with 
at least 12 collocation (grid) points. In this respect, the non-uniform distribution 
of Chebyshev collocation points (Canuto et al. 1988) is advantageous. Though 
convection between no-slip boundaries has previously been handled with algorithms 
similar to ours (see Canuto et al. 1988 and references therein), we are unaware of 
the use of Chebyshev methods for convection between stress-free boundaries. Typical 
spectral algorithms for stress-free boundaries employ Fourier methods which use 
uniformly spaced collocation points (e.g. Riley, Metcalfe & Orszag 1986). In the 
case of convection, however, uniform grids typically provide only very few grid 
points to resolve the thermal boundary layers (e.g. Cortese & Balachandar 1993 use 
sine-expansions for the temperature field and allow less than two grid spacings in 
the thermal boundary layer), resulting in erroneous computation of the heat flux 
through the layer. We are confident that the solutions we present here are the most 
accurate and highest-Ria direct numerical simulations of Rayleigh-Benard convection 
conducted to date. 
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I 
100 104 108 

1 00 104 10s 

Taylor number, Tu 

FIGURE 1. ( a )  Ra, versus Tu for both no-slip and stress-free boundary conditions. ( b )  The most 
unstable linear wavevector koL as a function of Ta. The parameter space we explore numerically is 
also shown: Ro = [ R U / ( ~ T ~ ) ] ' / ~  = 0.75, where 0 = 1. 

3. Numerical results 
3.1. Transition to turbulence 

As Ra is increased, the flow undergoes a succession of transitions before reaching a 
turbulent state. The first transition is from the static, conducting state ( u  = 0, Nu = 1) 
to a convecting flow. Since the critical Rayleigh number Ra, for this transition 
depends not only on the choice of vertical boundary conditions (stress free or no slip) 
but also upon Ta (see figure 1; see also Chandrasekhar 1961), the value of Ra, that 
we observe is fixed by our choice of R o  = 3/4. Of course to reproduce the linear 
stability prediction of Ra, = 4050 (Ra,  = 5074) for no-slip (stress-free) bounding 
planes extending infinitely in the horizontal directions, we must be careful to choose 
the aspect ratio A commensurate with the most unstable horizontal mode. Therefore, 
to partially validate our computer program, we have relaxed the constraint A = 2 for 
these low-Ra solutions and selected A = 5A,/L, where the wavelength of the most 
unstable linear mode is A, = 1.39~5 (A, = 1.12L) for no-slip (stress-free) boundaries. 
In this way we observe a transition from the static state between Ra, = 4049 and 
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4051 (Ra,  = 5073 and 5075) for no-slip (stress-free) boundaries, consistent with the 
linear stability predictions. 

The nature of the resulting convecting state is similar for the no-slip and stress-free 
boundaries. For Ra > Ra,, we find that two-dimensional rolls are always Kuppers- 
Lortz unstable, the loss of stability being to oblique rolls oriented at finite angles. 
These results are consistent with finite-amplitude predictions (Busse & Clever 1979; 
Clune & Knobloch 1993; Goldstein et al. 1994). Note that the stress-free solutions 
also possess an additional instability to inznitesimal angles (Swift 1984; Clune 1993), 
though this is difficult to observe numerically given that this instability possesses a 
smaller growth rate than that for finite angles. 

As Ra is increased further, the aperiodic convection-roll patterns associated with 
the Kuppers-Lortz instability (figure 2a for Ra = 3.1 x lo4; also Clever & Busse 1979; 
Li & Ecke 1993) gradually give way to a state dominated by the chaotic interaction 
between vertical vortices associated with convection cells (figure 2a for Ra = 2.8 x lo5 ; 
also Zhong et al. 1993; Boubnov & Golitsyn 1986). The general features of this space- 
filling pattern of chaotic cellular convection persist with increasing Ra until Ra = 
6 x lo5 when coherent structures, i.e. thin thermal plumes, first appear spontaneously 
in the flow field (figure 2a for Ra > 6 x lo5). The plumes develop out of a buoyant 
instability of the thermal boundary layers and are most prevalent near the junctions 
of convection cells where cell boundaries merge with the thermal boundary layers 
attached to the heated and cooled (top and bottom) surfaces of the fluid layer 
(Adrian, Ferreira & Boberg 1986). Once Ra > 2 x lo6, the dynamics of the flow 
field are dominated by coherent plumes and the cellular convection itself becomes 
more difficult to discern, other than to simply note a mean distance between plumes; 
compare Ra = 2.8 x lo5 with 2.5 x lo6, 2.8 x lo7 and 1.1 x 10’ in figure 2(a,b). 

3.2. Cyclonic plumes 
It is well known, especially for non-rotating fluids, that convection with strongly 
coherent thermal plume structures differs markedly from convective flows without 
plumes; for example, the transition between ‘soft’ and ‘hard turbulence’, two convective 
regimes existing at high Ra, is apparently heralded by the appearance of thermal 
plumes (Heslot et al. 1987;-Castaing et al. 1989). Though there has been a good deal 
of work on the influence of rotation on convection, surprisingly little addresses the 
importance of thermal plumes to mean statistical properties of rotating convection 
and even fewer make clear the effects of rotation on the thermal plumes and their 
transport properties. For this reason we concentrate our discussion on the properties 
we observe for rotating convection dominated by thermal plumes. 

The most striking property of thermal plumes in a rotating environment is their 
relative cyclonic vorticity, i.e. vorticity in the rotating reference frame with the same 
sign as the externally applied rotation Q; see figure 3. This cyclonicity arises naturally 
as the boundary-layer fluid, which is initially stationary in the rotating frame (i.e. 
rotating at Q with respect to an inertial frame), is drawn away from the boundary 
by buoyancy at plume formation sites. The vorticity in the plume intensifies as the 
horizontally convergent flow feeding it approximately conserves angular momentum, 
which is required during the formation of all plumes developing in a time short 
compared to their viscous diffusion time. This is not to say that anticyclonic plumes 
are forbidden; for example, in the limit l2 4 0, we expect plumes possessing both signs 
of vorticity. Nevertheless, when rotational effects are (even moderately) important, i.e. 
when Q is greater than the root-mean-squared (RMS) vorticity which would occur 
naturally for non-rotating convection, anticyclonic plumes are unlikely. In addition, 
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FIGURE 3. Skewness and PDFs of vertical vorticity 0.13 at different depths: z = -0.999 (within 
thermal boundary layer), z = -0.952 (just outside thermal boundary layer), z = 0 (mid-depth); 
Ra = 1.125 x lo8, and boundary conditions are no slip; results for stress-free boundaries are 
qualitatively similar. Normalized exponential PDFs are also included for comparison (dotted 
curve). 

in the event that generation of strongly anticyclonic vorticity were to occur, vortices 
with w < -0(Ta/16)l/~ (or, with its usual dimensions, cc)’ < -f) are inertially unstable 
(Ooyama 1966) and therefore would not remain coherent for long. 

At this point it is important to note that even a requirement that all plumes 
be cyclonic does not exclude the occurrence of anticyclonic vorticity somewhere in 
the fluid layer; in fact, for periodic (or no-slip) horizontal boundary conditions the 
average vertical vorticity on horizontal planes must be zero. Hence, intense cyclonic 
vorticity is concentrated in thin thermal plumes while weak anticyclonic vorticity is 
spread throughout the remainder of the fluid layer, skewing the angular momentum 
distribution towards cyclonic, especially near the boundaries where plume formation 
is prevalent; see figure 3. Near midlayer, the vertical vorticity is nearly symmetric (i.e. 
skewness = 0), indicating a dramatic reduction in the number of intense, isolated, 
cyclonic vortices as one moves away from the boundaries into the interior of the 
layer where turbulent motions mix the cyclonic vortices with ambient anticyclonic 
fluid. 

3.3. Ekman pumping 

In a rapidly rotating fluid layer, the cyclonic nature of plumes imposes important 
constraints on the dynamics of the flow near the boundaries, and as a result, many 
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FIGURE 4. Intense Ekman pumping over no-slip boundaries; 0 = 1.0, [Ra / (c~Tu)] ' /~  = 0.75. (a) RMS 
temperature fluctuations at mid-depth A ,  versus RMS vertical velocity fluctuations at mid-depth 
Wc. ( b )  Temperature skewness just outside the bottom thermal boundary layer where plumes 
develop. For high Ra, the skewness exhibits a local maximum at this location. Note that this 
particular plot is on a log-linear scale for which straight lines depict logarithmic dependence on Ra. 
(c) Maximum vertical vorticity skewness in the boundary layer versus Ra. ( d )  Profile of the vertical 
velocity skewness with height for no-slip (Ra = 1.1 x lo8) and stress-free (Ra = 1.8 x 10') solutions. 

statistical differences exist between the no-slip and stress-free solutions; see figure 4. 
The RMS temperature fluctuations at a given Reynolds number (figure 4a) are 
smaller for no-slip than for stress-free conditions, indicating that plumes are emitted 
with lower thermal contrast in the no-slip solutions. The temperature and vertical 
vorticity fields near the edge of the boundary layer (figures 4b and 4c) are much more 
strongly skewed in favour of the emitting plumes in the no-slip solutions, indicating 
that the presence of the no-slip boundary allows increased convergence of fluid in the 
boundary layer, and hence more strongly localized plume structures. In addition the 
vertical velocity field in the boundary layer is strongly skewed in the direction away 
from the boundary in the no-slip solutions, in contrast to the stress-free solutions 
which exhibit negligible velocity skewness (figure 4d ). The difference indicates the 
presence of narrow jets associated with the emitting plumes for the no-slip case. These 
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differences are due to the existence of an intense shear-driven Ekman layer in the 
presence of the no-slip boundary. (While no-slip boundaries develop Ekman layers 
as a direct result of surface stress, stress-free boundaries only possess Ekman layers 
in the presence of horizontal thermal gradients; see Appendix B and Hide 1964.) 

Classical linear Ekman-layer analysis (Ekman 1905; Gill 1982) shows that a cyclonic 
vortical flow (e.g. a tornado) in contact with a rotating no-slip boundary leads to 
ejection of fluid in a narrow jet in the centre of the vortex. In this linear hydrostatic 
theory, the vortex field far from the boundary is presumed to be in geostrophic 
balance with the radial pressure gradient, while close to the no-slip boundary, the 
azimuthal flow is reduced by friction. A radially spiralling inflow results from the 
excess pressure gradient; hence by continuity (2.3) there must be a flow away from the 
boundary at the centre of the vortex. This transport of mass away from the boundary 
is known as Ekman pumping. The analytic solution for the classic linear Ekman layer 
has the form X = q-ldzX0( 1 - e-q'), where X is the horizontal velocity in complex 
notation X = u + iv and q-' is the complex Ekman layer thickness q = l/'i?(-T~)'/~. 
SzXo is the surface stress. 

Our solutions are considerably more complicated than this idealized vortex : the 
flows are strongly nonlinear, non-hydrostatic, occur in connection with significant 
buoyancy, and are far from stationary and axisymmetric. In order to obtain a 
qualitative understanding of the effect of buoyancy on the Ekman velocities, we have 
performed a linear hydrostatic analysis of an Ekman layer in association with a 
thermal boundary layer; see Appendix B. We find that the classical Ekman solutions 
combine with a thermal-wind-type solution. Interestingly, the leading-order (i.e. 
linear) contribution of a raised bump on the thermal boundary layer (intended to 
model a developing plume) is to inhibit the growth of the bump through Ekman 
suction (as opposed to pumping) at the centre of the bump. Figure 5 shows a 
comparison of the temperature, horizontal divergence, and vertical vorticity predicted 
by the analysis with our numerical solutions. Lighter shades depict more intense 
temperature (e.g. hot just above the bottom boundary), horizontal convergence, and 
cyclonic flow. The horizontal divergence shows convergent flow (related to Ekman 
pumping) in a ring at the 'edge' of a plume, while divergent flow is apparent in 
the core region of a plume. Also, the linear analysis predicts that the convergent 
rings should be strongly cyclonic, which is indeed the case. In contrast, the core 
region of a plume is intensely anticyclonic for the linear analysis, while the same 
region is only less cyclonic in the numerical solutions. The discrepancy lies in the 
assumed bump-like shape of a plume in the linear analysis, while plumes are more 
ring-like in the simulations. The Gaussian-bump geometry assumed in the illustrative 
example concentrates too great a pressure in the plume core; see Appendix B. Also, 
it should be noted that the lack of the classic shear contribution to the Ekman layer 
for the stress-free solutions makes these boundaries more suitable for comparison 
with the linear thermal-Ekman solutions than no-slip boundaries. Intense plumes will 
of course be strongly nonlinear, reducing the applicability of the analysis discussed 
here; nevertheless, as figure 5 demonstrates, within the boundary layers some of the 
qualitative features of the linear analysis are apparent. 

We can obtain a qualitative understanding of nonlinear effects by considering 
vortices in contact with a no-slip boundary. For example Carrier (1971) and 
McWilliams ( 197 1 ) examine the nonlinear Ekman-layer problem for several radial 
profiles of vorticity, assuming in all cases hydrostatic balance, axisymmetric flow, 
and stationarity. All show that the nonlinearity of the flow causes the velocity spiral 
[(~(z), o(z)] to curve inward more tightly as the surface stresses are increased relative 
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FIGURE 5. Temperature, horizontal divergence, and vertical vorticity on a horizontal plane through 
developing plumes. The top row depicts fields for the thermal Ekman layer resulting from a 
Gaussian-shaped ‘plume’ on the thermal boundary layer: see Appendix B. The middle (bottom) 
row displays fields for numerical simulations with stress-free (no-slip) boundaries within (slightly 
above) the mean hot thermal boundary layer. The shading is lighter for more intense temperatures 
(e.g. hot just above the bottom boundary), horizontal convergence, and cyclonic flow. 

to the far-field flow. Furthermore, the vertical flow at the centre of the vortex tends to 
be concentrated in a narrower, more intense jet. Several non-hydrostatic simulations 
of an axisymmetric vortex attached to a no-slip boundary have been conducted in 
the study of tornado dynamics (Wilson & Rotunno 1986; Howells, Rotunno & Smith 
1988). While these studies do not include external rotation, they indicate that a suc- 
tion effect due to a pressure deficit in the vortex core is an important contribution in 
the fully non-hydrostatic case. Furthermore, the large radial inflow forces the vortex 
itself to become more strongly localized than would be possible in the absence of the 
frictional boundary layer; see figure 4(c). 

Figure 6 shows several examples of ‘Ekman spirals’ ( ~ ( z )  versus u ( z ) )  obtained for 
individual plumes in our numerical solutions. The solutions X are normalized by 
4 /azX0  so that comparison with the classic Ekman solution, as well as with solutions 
at different R a ,  may be facilitated. While the linear theory appears to predict the shape 
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FIGURE 6. (a,  b) Velocity hodographs ( u ( x i , y , , z )  versus u(s,, y , , z )  at a single horizontal location 
(x,, y,)) associated with plumes over no-slip boundaries. Hodographs are normalized by q/iizXo 
and rotated 45" so they may be easily compared with the classic linear Ekman solution (dotted 
curve). X is the horizontal velocity in complex notation A' = u + io. q is the inverse of the complex 
Ekman layer thickness q = : ( - T U ) ' / ~ .  ( a )  Hodographs within the 'core' of a plume, in the 'ring' 
region at the edge of a plume, and just 'outside' a plume for Ra = 1.1 i( 10'. The solid dot 
on the classic solution marks the height to which the simulations are plotted, roughly twice the 
thermal-boundary-layer thickness. Note that the numerical solutions spiral in more tightly than the 
linear solution, indicating the importance of nonlinear effects. ( b )  Hodographs in the ring region of 
plumes for high Ra (Ra = 2.5 x lo6, 8.4 x lo6, 2.8 x 10' and 1.1 x 10'). Note that all these solutions 
coincide, indicating a saturation of the nonlinear contribution within plume rings to a unique spiral 
structure. (c) Temperature on a plane just above the hot thermal boundary layer for Ra = 1.1 A 10'. 
Hotter fluid is depicted with lighter shades. Crosses indicate the locations of the hodographs in 
(a) .  ( d )  Temperature just above the hot boundary layer for the four values of Ra depicted in ( b ) .  
Crosses mark the locations of hodographs plotted in ( b ) .  Ra increases from left to right with the 
highest Ra shown in the upper right corner and the lowest in the lower left. 
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of the profiles well, the numerical solutions spiral in more tightly and have lower 
interior velocities than the predicted geostrophic velocities, in qualitative agreement 
with the nonlinear and non-hydrostatic work quoted above. Figure 6(a) shows 
profiles at three distinct locations associated with a plume near a no-slip boundary 
for Ra = 1.1 x lo8: one in the core region, one in the ring region at the edge of the 
plume, and one just outside the plume; each region is depicted in figure 6(c) on a 
plane positioned just above the mean thermal boundary layer. While the core and 
outside regions exhibit substantial variability from plume to plume (due to different 
plume ‘ages’ and different instantaneous flow conditions external to the plume), the 
ring region appears better defined with similar Ekman spirals for different plumes. 
In fact, for sufficiently high Ra (Ra 2 2.5 x lo6), the tightness of the Ekman spiral 
(i.e. the nonlinearity) in the ring region appears to saturate, producing spirals of 
nearly identical shape for plumes at different Ra; see figures 6 ( b )  and 6 ( d ) .  Solutions 
with Ra < 2.5 x lo6 exhibit weaker Ekman spirals, tending towards the classic linear 
solution as Ra (and hence, the nonlinearity) is decreased. 

In summary, the observed (u, u )  spirals give conclusive evidence for Ekman pumping 
in the no-slip rotating boundary layer. By contrast, the stress-free (u, u )  fields show no 
such strong spiral shape, but instead exhibit maxima in both vortical and convergent 
flow at the boundary. The presence of a no-slip boundary, by allowing the angular 
momentum constraints to be partially overcome, allows greater convergence of fluid, 
and hence enables plumes to be more localized. In addition the narrow jet associated 
with Ekman pumping facilitates the emission of the plumes. The nature of the 
momentum boundary conditions is therefore crucial in determining the detailed 
dynamics of the flow. 

3.4. Scaling in the turbulent regime 

Despite these important differences arising directly from the nature of the top and 
bottom boundaries, the flow in the interior of the domain possesses some general 
features which are independent of the boundary details. For example, the classic 
description of a ‘freely falling’ fluid parcel is appropriate for our solutions. A freely 
falling fluid element is one which gains kinetic energy at the expense of buoyancy 
work, which is appropriate if the buoyancy time for the parcel is much less than either 
its thermal or viscous diffusion timescales. Figure 7 depicts the scaling of W, and 
A ,  (non-dimensional RMS vertical velocity and temperature fluctuations at midlayer) 
with Ra for simulations with both no-slip and stress-free boundaries. The scaling 
behaviour for these variables turns out to be 

0.140 f 0.008 no slip 
P = {  0.107 f 0.004 ’ stress free ’ 

1.25 f 0.17 
1.16 & 0.06 ’ A ,  = CIRa-8 : C1 = { 

(3.1) 

0.15 & 0.01 0.431 f 0.005 no slip 
c2 = { 0.17 kO.01 ’ = { 0.435 f 0.004 ’ stress free W, = C2Ra : 

(3.2) 
For the free-fall description to be correct, the exponents p and y must obey 

(substituting A ,  and W, above for 2 A T / 4  and WL/(2k-) in (2.9)) 

2 y = l - P ,  (3.3) 

which appears to be the case for both sets of boundary conditions. The stress- 
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RCURE 7. ( a )  W, (RMS vertical velocity fluctuations at mid-depth) and ( b )  A ,  (RMS temperature 
fluctuations at mid-depth) are shown for both no-slip and stress-free boundary conditions as a 
function of Ra. cr = 1, [Ra/(oTa)]'/* = 0.75. 

free solutions satisfy ( 3 . 3 )  only to within two standard deviations, while the no-slip 
solutions obey ( 3 . 3 )  within one standard deviation. Alternatively, this may indicate 
a slight deviation from free fall for the stress-free solutions; however, the effect is 
small. The occurrence of free-fall behaviour indicates that Ra is sufficiently high 
such that the dynamics of plumes in the interior are no longer controlled by details 
associated with the boundaries. This interpretation is further supported by probability 
density functions (PDFs) for various fields (velocity, vorticity, temperature) : whereas 
the PDFs near the boundaries differ markedly for the two boundary conditions, near 
midlayer the PDFs are much more similar (figure 8). 

We emphasize here that the scaling presented in (3.1)-(3.2) is measured with 
respect to Ra,  not the supercriticality S .  The distinction is unnecessary for non- 
rotating flows for which Ra, = constant; however, since Ta differs for each of our 
runs, Ra, also differs. The fact that the A,-  and W,-scaling with Ra obeys (3.3), 
and furthermore that the exponents for the case with no-slip boundaries is consistent 
with p = 1/7 = 0.1429 and y = 3/7 = 0.4286 (values associated with non-rotating 
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FIGURE 8. PDFs for temperature T ,  vertical velocity W ,  and vertical vorticity w3 are shown for 
no-slip boundaries at Ra = 1.1 x 10' (solid curve) and stress-free boundaries at Ra = 1.8 x 10' 
(dashed curve). Dotted Gaussian or exponential PDFs are also shown for comparison. The nature 
of the boundary conditions (no slip or stress free) greatly influences the shape of the PDFs within 
the boundary layer; however, at mid-layer, turbulent motions produce PDFs which are much more 
similar. Note that both W and 0 3  are strongly skewed towards ejected and cyclonic plumes in 
the boundary layer for the no-slip solutions, while T favours fluctuations from the bulk. T is 
skewed towards bulk temperature fluctuations because deep in the boundary layer the magnitude 
of potential hot fluctuations (= A/4 at boundary-layer mid-height) is less than potential cold 
fluctuations from the bulk (= 3A/4 at boundary-layer mid-height). Boundary-layer PDFs are 
shown at a depth equal to OSNu-'. The temperature has been shifted by its horizontal average 
before constructing the boundary-layer PDF. 

turbulent convection between no-slip boundaries, i.e. 'hard turbulence', Castaing et al. 
1989), implies a relative unimportance of rotation for the vertical motions of the 
largest plumes near midplane. As we have already seen, rotation certainly does 
provide important and new dynamics to Rayleigh-Benard convection; however, at 
midlayer these effects are most profound in the plane perpendicular to f2 (which is 
parallel to g for our solutions) and are not competitive with buoyancy in determining 
vertical motions at midlevel for Ro = 3/4. This does not imply that A ,  and W, are 
independent of Ro; indeed, the coefficient C1 for the no-slip solutions differs from that 
obtained in non-rotating laboratory flows (e.g. Wu & Libchaber 1992 obtain C1 = 1.9 
for a cylindrical cell with a diameter-to-height ratio of 6.7). The central turbulence 
dynamics certainly inherits a Ro-dependence from the near-boundary motions, which 
are strongly influenced by rotation. We examine the Ro-dependence of the dynamical 
quantities A ,  and W, in greater detail elsewhere (Julien et al. 1996b). 

Because the scaling exponents, p and y, are identical to the values for non-rotating 
high-Ra laboratory convection, the non-dimensional heat transport Nu = A ,  W, for 
our rotating solutions obeys the same relation observed for non-rotating fluid layers, 
namely Nu - Ra'l7. Figure 9 demonstrates this law for our solutions between 
no-slip boundaries. A fit to Nu versus Ra for Ra 2 2.53 x lo6 yields Nu - 1 = 
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FIGURE 9. Convective heat transport ( N u  - 1 ) versus Ra for both no-slip and stress-free boundaries; 
CT = 1.0, [Ra/(crTa)]'/' = 0.75. The uncertainty in Nu results from the finite numerical integration 
times used and is less than or equal to the size of the plotting symbols. 

(0.144 & 0.006)Ra0.288'0~003.t Zhong et al. (1993) and Veronis (1968) find that rotation 
slightly enhances the total heat transfer in Rayleigh-Benard convection. Also, Wu 
& Libchaber (1992) report a general enhancement of the heat flux in non-rotating 
convection when the aspect ratio A of the fluid container is decreased; this trend is 
superposed with a local maximum in the heat transport near A = 1 (Wu & Libchaber 
1992). Both effects (increased heat transport with increased rotation or decreased 
aspect ratio) may be related, given the decrease in the natural horizontal scale of 
convection cells as Ta is increased (see figures 1 and 2). It  is difficult for us to make 
a direct comparison with the experiments (Zhong et al. 1993; Wu & Libchaber 1992) 
both because of the additional drag imposed by their physical no-slip side boundaries 
and because of the a-dependence of the heat transfer; while we have used a = 1 here, 
experiments of Zhong et al. employ water (a = 7) and those of Wu & Libchaber 
use helium gas (a = 0.7). Shriaman & Siggia (1990) suggest Nu K a-'I7, but this 
prediction is most appropriate when a is asymptotically large, while here we discuss 

t There is some inconsistency in the literature with regard to power-law fits of Nu to Rub. Whereas 
the initial experiments that reported hard-turbulent behaviour included fits of the convective flux 
or Nu - 1 (Heslot et a/. 1987; Wu et al. 1988), later work by the same group employed fits of the 
total flux, i.e. Nu without the -1 (e.g. Wu & Libchaber 1992). While the distinction can prove 
merely academic for large values of Nu - like those attainable in helium gas (Heslot et a1. 1987) - 
for Nu = O( lo), such as those presented here, the fit parameters are affected by the exclusion of 
the -1. A more informative fit would be Nu = N I  + C(RaB - Rf) ,  or equivalently, Nu = B + CRab, 
with B varied so as to minimize the x' of the fit. Of course, with the very few data  points we 
can afford with numerical simulations, three-parameter fits are suspect. Nevertheless, in order to 
offer a bases of comparison for future work, a fit of this form to our numerical 'data' produces 
Nu = -0.071 + (0.205 _+ 0 . 0 0 8 ) R ~ " ~ ~ ' * ~ . " ~ .  
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a w 1. The stress-free solutions are also included in figure 9. They do not exhibit 
2/7-scaling; rather they obey the ‘classical’ relation Nu cc Ra’l3 of Priestley (1959), 
Malkus (1963), and Howard (1966) in the range lo6 < Ra < 4 x lo7, then appear 
to undergo a transition to a less-efficient heat-transfer rate at higher Ra. Of course 
with such a limited range of possible scaling with Ra ( lo6 -4 x lo7), it is difficult to 
distinguish two power laws from a different functional form; however, it is clear that 
the initial behaviour of Nu for Ra > lo6 differs between the no-slip and stress-free 
cases. 

It is remarkable that the heat transport between no-slip boundaries for these 
strongly rotating solutions exhibits the same scaling as do experiments on non- 
rotating convection, especially given the additional influence of Ekman pumping for 
the rotating solutions. The early and excellent work of Rossby (1969) indicates the 
possibility of similar scaling behaviour for water (a NN 7) for which Nu was found to 
be only very weakly dependent on Ta when Ra >> Ra,. Why is the Nu-Ra scaling not 
modified by rotation for these turbulent solutions? The answer may lie in the fact that 
the stress-free solutions at least initially exhibit 1/3-scaling for the range in Ra where 
the no-slip solutions obey the 2/7-law (Julien et al. 1996~).  Indeed, one theory for the 
heat-transport scaling in hard turbulence stresses the importance of strongly sheared 
thermal layers to establishing 2/7-scaling (Shraiman & Siggia 1990). This theory 
has detailed support from numerical simulations of non-rotating two-dimensional 
convection (Werne 1993) in which the sheared regions between plume sites are 
explicitly demonstrated to dominate the heat transport. Therefore, the heat transport 
would not be dominated by the enhanced ejection of plumes due to Ekman pumping, 
but rather by the sheared boundary-layer regions between plumes (resulting from 
cell-scale horizontal thermal winds, or alternatively, horizontal mixing motions due 
to vortical interactions between neighbouring plume/cyclones; see below). The lack 
of 2/7-scaling for the stress-free solutions in the range lo6 < Ra < 4 x lo7 supports 
this interpretation since stress-free boundaries do not support shears. However, the 
behaviour of Nu for Ra > 4 x lo7 is intriguing. Does rapidly rotating turbulent 
convection between stress-free boundaries obey Nu cc Ru”~ for sufficiently high Ra? 
Unfortunately we cannot assess this for the solutions we compute because our highest 
Ra is only Ra = 1.8 x lo8, i.e. not sufficiently large to allow a substantial range 
of exploration above Ra = 4 x lo7. It is interesting to note, however, that the 
apparent Nu-transition at Ra = 4 x lo7 occurs when the mean thermal-boundary- 
layer thickness R = Nu-’ (expressed here in its non-dimensional form) equals the 
Ekman-layer thickness JE = 2 (Convection over stress-free boundaries can 
possess Ekman layers if R is not horizontally uniform; see Appendix B and Hide 
1964.) Perhaps an argument similar to that of Shraiman & Siggia (1990) can predict 
the Nu-Ra relationship for turbulent rotating convection over stress-free boundaries. 
In addition, making use of the scaling behaviour of JE and 1, we expect a similar 
cross-over for the no-slip (Ro = 0.75) solutions at Ra NN 10l6. We should note that 
the expression we employ for aE is an estimate and is not a lengthscale we observe 
directly in our solutions; therefore, we have not witnessed the cross-over of 1 and 6~ 
for the stress-free solutions, but only hypothesize its existence. 

3.5. Lateral mixing and mean temperature gradients 
An example of the important role rotation can play in convection is demonstrated 
by figure 10, which depicts the mean temperature profile for increasing values of Ra. 
A striking difference between figure 10 and the analogous profiles for non-rotating 
convection is the finite value of the mean temperature gradient (az TI in the interior of 
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FIGURE 10. Profiles of mean temperature with height z ; a  = 1.0; [Ra/(aTa)]'/' = 0.75. All solutions 
shown possess no-slip boundaries. Higher-Ra solutions are distinguishable by their thinner boundary 
layers (with thickness R = Nu-') at z = fl. A mean negative thermal gradient persists in the interior 
at the highest Ra when Ro = [Ra/(oTa)]'/' is held fixed. 

the layer which persists at large Ra; non-rotating convection does not support a mean 
negative temperature gradient (Tilgner et al. 1993; Belmonte et al. 1993). Figure 11 
shows the magnitude of the gradient at mid-layer as a function of Ra. The negative 
gradient in the interior appears to asymptote to a finite value with increasing Ra for 
both no-slip and stress-free solutions (within the uncertainty resulting from the finite 
integration time for which we compute our solutions). Though the stress-free solutions 
may exhibit a slight trend in the gradient with Ra for high Ra, the uncertainty is 
larger than the gradient itself, and Idz TI independent of Ra at high Ra is consistent 
with the stress-free solutions. Hence in the high-Ra turbulent-plume regime, the value 
of the negative temperature gradient in the interior appears to depend only on the 
boundary conditions, Ro, and ot (Julien et al. 1996b). These results are consistent 
with those of Fernando et al. (1991) who suggest the negative temperature gradient in 
rotating water-tank experiments is dependent on f 2 / ( g a )  (or (Q/ti)Ta o / R a f ) .  Their 
experiments involve the time-evolution of a rotating fluid layer subjected to bottom 
heating Q switched on at t = 0. In contrast, Boubnov & Golitsyn (1990), conducting 
laboratory experiments of fixed-heat-flux rotating Rayleigh-BCnard convection, and 
Klinger & Marshall (1995), performing numerical simulations of rotating flux-driven 
ocean convection, both propose that the magnitude of the temperature gradient 
decreases substantially as Ra is increased, even when Ro is held constant. 

The existence of a mean gradient for rotating turbulent convection is fairly easily 
understood, though the explanation involves two distinct steps. The first step is 
found in the discussion presented in detail above and requires only that plumes 

7 Preliminary rotating convection experiments in silicone oil (a = 8.4) with Ro = 0.75 by Ohlsen, 
Hart & Kittelman (1995) demonstrate a a-dependence of the mean thermal gradient when compared 
to our numerical solutions. 
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FIGURE 11. Mean negative thermal gradient at mid-layer versus Ra for both stress-free and no-slip 
boundary conditions; [ R a / ( ~ T a ) l ’ / ~  = 0.75. Within experimental uncertainty, both series exhibit 
gradients which asymptote to a finite value at high Ra, though a slight trend in the stress-free 
solutions may be apparent. 

be vortical (see $3.2 above). The second step involves the dynamics of interacting 
vortices. For the simplest example of line vortices (two-dimensional flow), oppositely 
signed vortices propagate together on a curved path, the curvature depending on the 
relative strengths of the two vortex lines, while like-signed filaments circulate about 
each other (Thompson 1867; Lamb 1932). Because rotating convection between plane 
boundaries is made up of predominantly cyclonic plumes, the predominant vortex 
dynamics is the co-rotation of like-signed vortex filaments. Of course three- and 
more-vortex interactions also occur; see figure 12. 

McWilliams ( 1984) discusses the tendency of decaying two-dimensional and geo- 
strophic turbulence to clump regions of like-signed vorticity. Melander, Zabusky 
& McWilliams ( 1988) quantify the conditions required for two symmetric like-signed 
vortex patches to merge in two dimensions via a Hamiltonian moment model, demon- 
strating that vortices which are sufficiently close merge. In order to conserve energy, 
the merger is necessarily accompanied by the shedding of vorticity filaments from the 
patches. Because all plumes are cyclonic, i.e. have the same sign of vorticity, plumes 
attract other plumes as they co-rotate (though the merger dynamics of a multi-vortex 
system with vortices of different sizes and intensities is inherently richer than that 
of two symmetric isolated vortex patches, as is studied in Melander et al.). This is 
demonstrated graphically in figure 12 which shows the merger of three regions of 
high vorticity near the bottom boundary. Similar merger events have been reported 
for laboratory experiments by Zhong et al. (1993). 

The stirring action of both the co-rotation of plumes and plume mergers is to mix 
the fluid in horizontal planes. It is this lateral mixing which is responsible for the 
mean thermal gradient presented in figure 10: if a warm fluid element mixes with the 
surrounding fluid at a given level, it loses its density contrast (and hence its buoyancy) 
with respect to that level. In turn, the surrounding fluid becomes warmer than if the 
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Time 

2 
FIGURE 12. Merger of three vortex filaments over a no-slip boundary. Ra = 8.4 x lo6. Temperature 
on a plane just above the hot boundary layer is shown with lighter shades depicting hotter fluid. 
Since plumes intensify cyclonic vorticity, the light spots also indicate vorticity filaments. 

lateral mixing had not occurred. Fewer buoyant elements survive at greater distances 
from the boundaries and the result is a mean temperature stratification with warmer 
(cooler) fluid near the bottom (top) boundary. 

The fact that the mean gradient for the stress-free solutions is somewhat larger than 
that for the no-slip solutions indicates that Ro is effectively smaller (either because tw  
is larger or t R  is smaller) for the stress-free solutions. Here we connect larger mean 
gradients with stronger rotation since non-rotating convection does not possess a 
mean thermal gradient. Physically, we might expect t w  to be larger for the stress-free 
solutions since Ekman pumping enhances vertical transport (and therefore reduces 
t w )  for the no-slip solutions. Also, t R  for individual plumes is plausibly smaller for 
the stress-free solutions given that during their formation (and associated spin-up) 
they need not overcome viscous stresses in the boundary layers as do plumes in the 
no-slip solutions. Both effects are present at convective onset and are evident in the 
greater buoyancy forcing required to destabilize the stress-free fluid layer at high Ta;  
see figure 1. 

Since the effectiveness of the lateral mixing induced by the vortex interactions is 
strongly dependent on the ratio of the timescale associated with vortex motions to 
that associated with vertical convective transport through the layer, the temperature 
gradient in the interior is likely to be strongly dependent on the value of the 
convective Rossby number. This dependence is examined in greater detail in Julien 
et al. (1996b). 
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4. Conclusion 
Rapidly rotating turbulent Boussinesq convection, like non-rotating convection, 

is dominated by coherent plumes when Ra is sufficiently high. If the rotation 
timescale of the fluid layer is comparable to the characteristic convection timescale, 
i.e. Ro 5 1, the dynamics of individual plumes are dominated by strong vortex-vortex 
interactions with neighbouring plumes, all of which are cyclonic. The impact of these 
vortical interactions include vigorous lateral mixing throughout the fluid layer and 
the establishment of a mean temperature gradient which depends on Ro, cr, and the 
surface boundary conditions. Additional numerical and experimental work is required 
to deduce the form of the dependence on each of these parameters. 

Despite the dramatic differences between rotating and non-rotating convecting 
flows (vortical interactions, mean thermal gradient, Ekman pumping, etc.), the scaling 
on Ra exhibited by Nu, W,, and A ,  is identical to that found for non-rotating 
convection. In particular, we find Nu cc i.e. the heat-transport law for hard- 
turbulent convection, despite the presence of strong rotation in our solutions. This 
suggests that hard turbulence is more ubiquitous in turbulent thermal convection 
than previously appreciated. 

Our long-term goal of this and future work is to improve our understanding of 
rotation and convection in geophysical and astrophysical flows. At present, attempts 
to model such flows incorporate large-eddy simulation (LES) or subgrid-scale (SGS) 
models which do not explicitly resolve small-scale phenomena such as turbulent 
convective mixing. Instead, parameterizations are utilized to model the subgrid-scale 
behaviour ; often such parameterizations are based on properties of non-rotating 
turbulence. Here we demonstrate (i) that inhomogeneous mixing is an inherent part 
of rotating convection, and (ii) that the global statistics and transport properties 
of hard turbulence are ubiquitous to turbulent convection; these results should be 
incorporated into parameterization schemes for flows influenced by rotation and/or 
convection. 
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Appendix A. Numerical algorithm 
Solutions to the Navier-Stokes equations (2.1)-(2.3) are computed between ei- 

ther no-slip or stress-free boundaries using a pseudospectral Fourier-Chebyshev- 
'tau' method (with 'tau'-corrections). The timestepping algorithm is the mixed im- 
plicit/explicit, third-order Runge-Kutta scheme of Spalart, Moser & Rogers (1991), 
which takes the form 

(A 1)  



Rapidly rotating turbulent convection 267 

Here n and n + 1 refer to sequential time levels for the numerical integration, and 
6t is the timestep. y is a constant (different for each Runge-Kutta substep), and the 
functions f" and S" represent all terms at time level n and earlier; this includes the 
explicitly treated nonlinear terms, as well as contributions to the linear terms from 
previous timesteps. See the appendix of Spalart et al. (1991) for details. The timestep 
6t is variable, selected in accord with the maximum velocity/grid-spacing ratio 
U = maxlv/br] and the Courant-Friedrichs-Lewy (CFL)  condition: 6t = CFL/U.  
We typically use values of CFL between 0.65 and 0.70 (for the full, 3-level Runge- 
Kutta timestep). u is one component of the flow velocity and 6r the grid spacing 
parallel to that velocity component, both evaluated at the same spatial location. 

Spatial discretization is accomplished with the decomposition of the flow fields into 
Fourier-Chebyshev coefficients; e.g. 

k kJ 

where k = (kx ,  k,, 0) is the horizontal wave-vector, x = (x, y, z )  is the position vector, 
and T,(z) is the jth-order Chebyshev polynomial. Rearranging (A 1)-(A 3), then 
substituting (A4), we obtain the 'continuous in z' form of the discrete evolution 
equations for the Fourier coefficients: 

Here, k2  = k - k ,  11 = k2+y/6t, and < = k2+y/(06t). D represents differentiation in the 
z-direction. To solve this system, we begin by solving the linear Helmholtz equation 
for 7'"' (A 5), subject to fixed-temperature boundary conditions (2.6). Then, with the 
temperature at the future time known, we evaluate the right-hand sides of (A 8) and 
(A 9) pseudospectrally (by computing the nonlinear terms in physical-space, followed 
by a transformation (FFT) back to Fourier-space). The result is a system of the form 

W,"+'(+l) = 0 ,  (A 12) 
DW,"+'(+l) = 0 or D2WL+'(+1) = 0 .  (A 13) 

The solution to this system can be obtained using the influence-matrix technique 
(Kleiser & Schumann 1980; Werne 1995), involving the linear combination of par- 
ticular and homogeneous solutions that satisfies the boundary conditions of W 
(A 12)-(A 13) simultaneously. The result is a 2 x 2 influence-matrix problem for each 
wavevector k. Once (A 10)-(A 13) is solved, the right-hand sides of (A6)-(A 7) can 
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be evaluated and those equations solved for U[+' and V'c+'. The solution at later 
timesteps is obtained by repeating the procedure. 

When solving (A 10)-(A 13), we represent the z-dependence by expanding the 
Fourier coefficients in Chebyshev polynomials; see (A4). Substitution of (A4)  into 
(A 10)-(A 13) leads to a linear system of algebraic relations coupling the Chebyshev 
modes. To incorporate the boundary conditions, we employ the 'tau' approximation, 
in which equations for the two highest Chebyshev modes are neglected in lieu of 
conditions at the two boundaries. It has been noted that care must be taken to 
correctly handle the truncation errors incurred on neglecting the two highest-mode 
equations (Kleiser & Schumann 1980; Werne 1995). In particular, truncation errors 
in (A 10)-(A 11) can propagate to all of the mode equations through differentiation of 
the pressure field in (A 10). Although Kleiser & Schumann (1980) devise a scheme for 
avoiding the propagation of these errors, they miss a subtle point in the application 
of the influence matrix method, leading to relative errors in the divergence field of 
the order of 1%. The correct approach, which points out this subtle oversight and 
leads to errors at the level of numerical precision (i.e. machine round-off), has been 
formulated by Werne (1995). 

Appendix B. Linear thermal Ekman layer 
Consider a fluid layer of semi-infinite extent, bounded below by either a no-slip or 

stress-free surface. Let us model a hot thermal boundary layer on this surface with 
the temperature field 

l - z / A  ( z  < A )  
T = { o  ( z  > A )  . 

This temperature field possesses a constant gradient within the boundary layer and 
is uniform in the interior region away from the surface. The depth of the boundary 
layer A is a function of the horizontal coordinates x and y. 

Assuming the motions are slow, i.e. neglecting nonlinear and time-derivative terms, 
the momentum equation becomes 

Ra 
16 

dzP NN CT-T 

Equations ( B 1 )-( B 3) express the 'boundary-layer' approximation wherein horizontal 
derivatives are assumed small compared to vertical ones. Also, note that this equation 
set is identical to that considered in the classical Ekman-layer problem (Gill 1982), 
apart from the finite vertical pressure gradient required here to balance the thermal 
stratification. 

Defining the following quantities : 

Ra 
32 

X = u + i o ,  q = +Tap4 2 , and A = --(&A + ii),A) , 
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and substituting into (B 1)-(B 3), we obtain 
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Solving these equations subject to the following conditions : 

0 no slip 
X O  stress free ’ &X(Z = 0 )  = X ( z  = 0 )  = 

X and &X finite and continuous, 

we obtain 

x=xE+xth, 

where 

xE = { ~ ‘ & x ~  (1 - e-4‘ ) no slip 
stress free 

and 

no slip 
stress free ’ 

Note that X E  for the no-slip problem is the classical Ekman solution. If A = 0, 
i.e. the temperature field is homogeneous (or at least horizontally uniform), then 
the solution is simply X = X E .  On the other hand, if A # 0, then the classic 
Ekman solution is superposed with a thermal solution, which is identical for both the 
stress-free and no-slip problems. 

To illustrate the thermal solution, figure 13 shows a surface plot of the assumed 
thermal boundary layer shape l ( x ,  y),  superposed with contours of the horizontal 
divergence associated with (B 5 )  on a single plane beneath the ‘plume’ (in this case, a 
Gaussian bump). The qualitative features in the horizontal divergence are independent 
of height below the tip of the plume. The centre of the plume possesses a positive 
horizontal divergence, indicating Ekman suction towards the boundary on the plume 
axis. Hence, the core region of the plume opposes the tendency of the classical 
Ekman pumping effect near a no-slip boundary (see the main body of this paper for a 
description of the classic Ekman pumping effect). In contrast, figure 13 also illustrates 
a ring of convergent flow at the edge of the plume which does indeed contribute 
to Ekman pumping away from the boundary. With the structure of the horizontal 
divergence, one can guess the behaviour of a full nonlinear solution. The nonlinear 
advection of temperature (towards the boundary along the plume-axis and away 
from the boundary within the ring) would tend to reshape a plume into a ring-shaped 
ridge rather than an individual bump. Of course, this would be counter-balanced by 
buoyancy in a full nonlinear solution; nevertheless, plumes in a rotating environment 
should be broader than their non-rotating counterparts for this reason. Figure 5 
illustrates rotating plumes for solutions with Ra = 1.8 x lo8 (Ra = 1.1 x 10’) over 
stress-free (no-slip) boundaries. The horizontal divergence and the vertical vorticity 
are also presented. It is noteworthy that the numerical solutions demonstrate strongly 
cyclonic rings with weaker vorticity in the cores; in contrast, for the linear analysis the 
core region of a plume is anticyclonic, due to the assumed Gaussian (i.e. non-ring-like) 
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FIGURE 13. Gaussian bump on a thermal boundary layer with associated horizontal divergence. The 
shaded surface plot depicts the edge of a thermal boundary layer possessing a Gaussian bump. The 
lower bounding surface is depicted by a dotted plane. Between the bounding surface and the edge 
of the thermal boundary layer lies a plane on which the horizontal divergence of the flow is shown. 
The Solid, inner contours depict divergent flow, while the dotted, outer contours display convergent 
flow. The qualitative features in the horizontal divergence are independent of height below the tip 
of the “plume.” The convergent flow in the plane is associated with flow up away from the bottom 
bounding surface, while the divergent flow in the core of a plume is associated with downward fluid 
motion directed towards the bottom boundary. 

shape of the thermal anomaly, which concentrates too great a pressure in the plume 
interior; see (B  3). 

Though the qualitative structure of rotating plumes is revealed by this simple 
linear analysis, it should be clear what drawbacks remain. The major drawback 
in this analysis is the a priori prescription of the temperature field, rather than its 
self-consistent calculation within a general theory. This of course would be difficult, 
requiring inclusion of the nonlinear terms since boundary layers are maintained only 
through nonlinear processes. As a result, the solution presented in this Appendix 
should not be considered a general solution to the linear equations (B 1)-(B 3), 
but rather an illustration of the qualitative behaviour specific to rotating thermal 
boundary layers. Indeed, (B 1)-(B 3)  possess no general solution since they represent 
only three equations of four unknowns. 
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