Solving Systems of Differential Equations

1 Solving Systems of Differential Equations

We know how to use ode 45 to solve a first order differential equation, but it can handle much more than this. We will now go over how to solve systems of differential equations using Matlab. Consider the system of differential equations

$$
\begin{aligned}
y_{1}^{\prime} & =y_{2} \\
y_{2}^{\prime} & =-\frac{1}{5} y_{2}-\sin \left(y_{1}\right)
\end{aligned}
$$

We would like to solve this forward in time. To do this, we must first create a function M-File that holds the differential equation. It works exactly how the function M-file works for solving a first-order differential equation, except we must treat our variables (except time) as vectors instead of scalars as we did before. The function M-File for this differential equation should be saved as system_ex.m and looks like

```
function yprime = system_ex(t,y)
yprime = zeros(2,1);
yprime(1) = y(2);
yprime(2) = -1/5*y(2)-sin(y(1));
```

See how y is a vector, where $\mathrm{y}(1)$ is associated with y_{1} and $\mathrm{y}(2)$ is associated with y_{2} ? The same is true of yprime, where yprime(1) is associated with y_{1} and yprime(2) is associated with y_{2}. That's all there is to it!

Now we'd like to solve the differential equation with initial conditions $y_{1}(0)=0$ and $y_{2}(0)=3$ forward in time, lets say $t \in[0,40]$. The command is just the same as we have used before, except we need to give it a vector of initial conditions instead of just a scalar. In the command window, type

$$
[t, y]=\text { ode45(@system_ex, }[0,40],[0,3])
$$

The system has been numerically solved. Looking in the workspace, you see we now have two variables. t holds all the time steps while y is a matrix with 2 columns. The first column of the matrix is all the y_{1} values and the second column is all the y_{2} values. You can plot these against time to see the solution of each variable, or plot them against each other to generate solutions in the phase plane:

```
plot(t,y(:,1))
plot(t,y(:,2))
plot(y(:,1),y(:,2))
```

Try this with some more initial conditions.

2 Global Variables

Sometimes, we would like to have a parameter inside our function m-file. To do this, we declare a global variable, since it's hard to pass these using ode45. Say we now have the system:

$$
\begin{aligned}
y_{1}^{\prime} & =y_{2} \\
y_{2}^{\prime} & =a y^{2}-\sin \left(y_{1}\right)
\end{aligned}
$$

where a is a parameter. In the command window, type:
global a
and in the system_ex.m file, change it to
function [yprime] = system_ex(t, y)
global a
yprime(1,1) $=y(2)$;
yprime (2,1) = a*y(2)-sin(y(1));
In the command window, set a equal to whatever value you'd like, and plot the solutions using ode45. You can see that the value is automatically changed in system_ex.m whenever you change it in the command window.

Alternatively, instead of using global variables we could change system_ex.m to:

```
function [yprime] = system_ex(t,y,a)
yprime(1,1)=y(2);
yprime(2,1)=a*y(2)-sin(y(1));
```

and in the command window type:

```
[t,y] = ode45(@system_ex,[0,40],[0,3],[],-1/5)
```


3 Contour Plots

Matlab can generate contour plots quite easily. First we create a mesh using meshgrid. Then we use the contour command to plot the contours of the given equation. If we wanted to plot the contours for the equation of a circle $x^{2}+y^{2}$ for values of x and y in the unit circle, we type

$$
\begin{aligned}
& {[\mathrm{x}, \mathrm{y}]=\text { meshgrid }(-1: 0.01: 1,-1: 0.01: 1) ;} \\
& \text { contour }\left(\mathrm{x}, \mathrm{y}, \mathrm{x} .{ }^{\wedge} 2+\mathrm{y} .{ }^{\wedge} 2,20\right)
\end{aligned}
$$

Type help contour to see all the optional parameters.

4 Homework \#10

Solve the system of equations

$$
\begin{aligned}
& x^{\prime}(t)=-\sin (x(t))+y(t) \\
& y^{\prime}(t)=-\cos (x(t))-\frac{1}{5} y(t)
\end{aligned}
$$

using ode45, over the time interval $t \in(0.40)$ with initial conditions $x(0)=4$ and $y(0)=0$. Then, plot y against x. You should observe the trajectory approaching an equilibrium, i.e. a single point $\left(x_{0}, y_{0}\right)$, in this space. (Hint: Generally, we plot y against t using plot (t, y). How would we plot y against x ?)

