Solving Systems of Differential Equations

1 Solving Systems of Differential Equations

We know how to use ode4d5 to solve a first order differential equation, but it can handle much
more than this. We will now go over how to solve systems of differential equations using Matlab.
Consider the system of differential equations

Yy = Y2
1 .
Yy = —5y2—sm(y1)

We would like to solve this forward in time. To do this, we must first create a function M-File
that holds the differential equation. It works exactly how the function M-file works for solving a
first-order differential equation, except we must treat our variables (except time) as vectors instead
of scalars as we did before. The function M-File for this differential equation should be saved as
system_ex.m and looks like

function yprime = system_ex(t,y)
yprime = zeros(2,1);

yprime (1) = y(2);

yprime (2) = -1/5%y(2)-sin(y(1));

See how y is a vector, where y (1) is associated with y; and y(2) is associated with y2? The same
is true of yprime, where yprime(1) is associated with y; and yprime(2) is associated with ys.
That’s all there is to it!

Now we’d like to solve the differential equation with initial conditions y;(0) = 0 and y2(0) = 3
forward in time, lets say ¢ € [0,40]. The command is just the same as we have used before, except
we need to give it a vector of initial conditions instead of just a scalar. In the command window,

type
[t,y] = ode45(@system_ex, [0,40],[0,3])

The system has been numerically solved. Looking in the workspace, you see we now have two
variables. t holds all the time steps while y is a matrix with 2 columns. The first column of the
matrix is all the y; values and the second column is all the y» values. You can plot these against
time to see the solution of each variable, or plot them against each other to generate solutions in
the phase plane:

plot(t,y(:,1))

plot(t,y(:,2))

plot(y(:,1),y(:,2))
Try this with some more initial conditions.




2 Global Variables

Sometimes, we would like to have a parameter inside our function m-file. To do this, we declare a
global variable, since it’s hard to pass these using ode45. Say we now have the system:

Y=y
yy = ay® —sin(y)

where a is a parameter. In the command window, type:

global a

and in the system_ex.m file, change it to
function [yprime] = system_ex(t, y)
global a
yprime(1,1) = y(2);
yprime(2,1) = a*xy(2)-sin(y(1));

In the command window, set a equal to whatever value you’d like, and plot the solutions using
ode45. You can see that the value is automatically changed in system_ex.m whenever you change
it in the command window.

Alternatively, instead of using global variables we could change system_ex.m to:
function [yprime] = system_ex(t,y,a)
yprime(1,1)=y(2);
yprime(2,1)=axy(2)-sin(y(1));
and in the command window type:
[t,y] = ode45(@system_ex, [0,40],[0,3],[],-1/5)

3 Contour Plots

Matlab can generate contour plots quite easily. First we create a mesh using meshgrid. Then we
use the contour command to plot the contours of the given equation. If we wanted to plot the
contours for the equation of a circle 22 4 y? for values of 2 and ¥ in the unit circle, we type
[x,y]=meshgrid(-1:0.01:1,-1:0.01:1);
contour (x,y,x. 2+y."2,20)
Type help contour to see all the optional parameters.

4 Homework #10

Solve the system of equations

2'(t) = —sin(z(t)) + y(t)

Y (6) = cos(a(t)) ~ £yt

using ode45, over the time interval ¢ € (0.40) with initial conditions (0) = 4 and y(0) = 0. Then,
plot y against x. You should observe the trajectory approaching an equilibrium , i.e. a single point
(z0,Y0), in this space. (Hint: Generally, we plot y against ¢ using plot(t,y). How would we plot
y against z7)



