Skip to main content
Log in

Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk

  • Biomechanics (G Niebur and J Wallace, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Bone mineral density and systemic factors are used to assess skeletal health in astronauts. Yet, even in a general population, these measures fail to accurately predict when any individual will fracture. This review considers how long-duration human spaceflight requires evaluation of additional bone structural and material quality measures that contribute to microgravity-induced skeletal fragility.

Recent Findings

In both humans and small animal models following spaceflight, bone mass is compromised via reduced bone formation and elevated resorption levels. Concurrently, bone structural quality (e.g., trabecular microarchitecture) is diminished and the quality of bone material is reduced via impaired tissue mineralization, maturation, and maintenance (e.g., mediated by osteocytes).

Summary

Bone structural and material quality are both affected by microgravity and may, together, jeopardize astronaut operational readiness and lead to increased fracture risk upon return to gravitational loading. Future studies need to directly evaluate how bone quality combines with diminished bone mass to influence bone strength and toughness (e.g., resistance to fracture). Bone quality assessment promises to identify novel biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hackney K, English K, Hackney KJ, English KL. Protein and essential amino acids to protect musculoskeletal health during spaceflight: evidence of a paradox? Life. 2014;4:295–317.

    PubMed  PubMed Central  Google Scholar 

  2. Michel EL, Johnston RS, Dietlein LF. Biomedical results of the Skylab Program. Life Sci Space Res. 1976;14:3–18.

    CAS  PubMed  Google Scholar 

  3. Johnston RS, Dietlein LF. In: Johnst RS, Dietlein LF, editors. 491 pages Biomedical results from Skylab. NASA SP-377. Biomed. Results from Skylab. NASA SP-377, vol. 377. Washington, D.C: NASA; 1977.

    Google Scholar 

  4. NASA Human Research Program. Integrated Research Plan. HRP 47065 Rev J PCN 1; 2019.

  5. Human Research Roadmap. NASA Human Resarch Program Website; 2019. Available at: humanresearchroadmap.nasa.gov. Accessed 5 June 2019.

  6. Sibonga JD. Spaceflight-induced bone loss: is there an osteoporosis risk? Curr Osteoporos Rep. 2013;11:92–8.

    PubMed  Google Scholar 

  7. Deymier AC, Schwartz AG, Cai Z, Daulton TL, Pasteris JD, Genin GM, et al. The multiscale structural and mechanical effects of mouse supraspinatus muscle unloading on the mature enthesis. Acta Biomater. 2019;83:302–13.

    PubMed  Google Scholar 

  8. Cohen HS, Kimball KT, Mulavara AP, Bloomberg JJ, Paloski WH. Posturography and locomotor tests of dynamic balance after long-duration spaceflight. J Vestib Res. 2012;22:191–6.

    PubMed  Google Scholar 

  9. Reschke MF, Clément G. Vestibular and sensorimotor dysfunction during space flight. Curr Pathobiol Rep. 2018;6:177–83.

    CAS  Google Scholar 

  10. Ozdemir RA, Goel R, Reschke MF, Wood SJ, Paloski WH. Critical role of somatosensation in postural control following spaceflight: vestibularly deficient astronauts are not able to maintain upright stance during compromised somatosensation. Front Physiol. 2018;9:1680.

    PubMed  PubMed Central  Google Scholar 

  11. Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364:eaau8650.

    CAS  PubMed  Google Scholar 

  12. Lee JK, Koppelmans V, Riascos RF, Hasan KM, Pasternak O, Mulavara AP, et al. Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurol. 2019;76:412.

    PubMed  PubMed Central  Google Scholar 

  13. Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM. Bone mechanical properties and changes with osteoporosis. Injury. 2016;47:S11–20.

    PubMed  PubMed Central  Google Scholar 

  14. Reitz G. Characteristic of the radiation field in low Earth orbit and in deep space. Z Med Phys. 2008;18:233–43.

    PubMed  Google Scholar 

  15. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25:2359–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. U.S. Preventive Services Task Force. Screening for osteoporosis: U.S. Preventive Services Task Force Recommendation Statement. Ann Intern Med. 2011;154:356.

    Google Scholar 

  17. •• Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS Astronauts. Aerosp Med Hum Perform. 2015;86:38–44 While ISS astronauts show significant reductions in bone mineral density (via DXA measurements), this measurement is not predictive of skeletal fragility. This article proposes new technologies and approaches for evaluating fracture risk in astronauts and points to the need for novel information to guide skeletal assessment.

    Google Scholar 

  18. Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV. Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab. 2016;20:846.

    PubMed  PubMed Central  Google Scholar 

  19. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry. JAMA. 2002;288:1889.

    PubMed  Google Scholar 

  21. Wang X, Shen X, Li X, Mauli Agrawal C. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.

    PubMed  Google Scholar 

  22. Paschalis EP, Mendelsohn R, Boskey AL. Infrared assessment of bone quality: a review. Clin Orthop Relat Res. 2011;469:2170–8 (Springer-Verlag.

    PubMed  PubMed Central  Google Scholar 

  23. Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250–61.

    CAS  PubMed  Google Scholar 

  24. Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone. 2006;39:1173–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14:118–27.

    Google Scholar 

  26. van der Meulen MC, Jepsen K, Mikić B. Understanding bone strength: size isn’t everything. Bone. 2001;29:101–4.

    PubMed  Google Scholar 

  27. Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci. 2017;1410:93–106.

    PubMed  PubMed Central  Google Scholar 

  28. Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469:2128–38 (Springer-Verlag.

    PubMed  Google Scholar 

  29. Roach H. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int. 1994;18:617–28.

    CAS  PubMed  Google Scholar 

  30. Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, et al. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res. 2009;24:1565–71.

    PubMed  PubMed Central  Google Scholar 

  31. Seeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26:1–8.

    PubMed  Google Scholar 

  32. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.

    CAS  PubMed  Google Scholar 

  33. McCarthy I, Goodship A, Herzog R, Oganov V, Stussi E, Vahlensieck M. Investigation of bone changes in microgravity during long and short duration space flight: comparison of techniques. Eur J Clin Investig. 2000;30:1044–54.

    CAS  Google Scholar 

  34. Bembey AK, Bushby AJ, Boyde A, Ferguson VL, Oyen ML. Hydration effects on the micro-mechanical properties of bone. J Mater Res. 2006;21:1962–8.

    CAS  Google Scholar 

  35. Nyman JS, Roy A, Shen X, Acuna RL, Tyler JH, Wang X. The influence of water removal on the strength and toughness of cortical bone. J Biomech. 2006;39:931–8.

    PubMed  PubMed Central  Google Scholar 

  36. Zimmermann EA, Ritchie RO. Bone as a structural material. Adv Healthc Mater. 2015;4:1287–304.

    CAS  PubMed  Google Scholar 

  37. Heveran CM, Schurman C, Acevedo C, Livingston EW, Howe D, Schaible EG, et al. Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice. Bone. 2019;127:91–103.

    PubMed  Google Scholar 

  38. Ural A, Vashishth D. Hierarchical perspective of bone toughness—from molecules to fracture. Int Mater Rev. 2014;59:245–63.

    CAS  Google Scholar 

  39. Gordon CL, Lang TF, Augat P, Genant HK. Image-Based Assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int. 1998;8:317–25.

    CAS  PubMed  Google Scholar 

  40. LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, et al. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact. 2000;1:157–60.

    CAS  PubMed  Google Scholar 

  41. Collet P, Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, et al. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone. 1997;20:547–51.

    CAS  PubMed  Google Scholar 

  42. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:1006–12.

    PubMed  Google Scholar 

  43. Vico L, Hargens A. Skeletal changes during and after spaceflight. Nat Rev Rheumatol. 2018;14:229–45.

    PubMed  Google Scholar 

  44. Belavý DL, Baecker N, Armbrecht G, Beller G, Buehlmeier J, Frings-Meuthen P, et al. Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest. J Bone Miner Metab. 2016;34:354–65.

    PubMed  Google Scholar 

  45. Frings-Meuthen P, Boehme G, Liphardt A-M, Baecker N, Heer M, Rittweger J. Sclerostin and DKK1 levels during 14 and 21 days of bed rest in healthy young men. J Musculoskelet Neuronal Interact. 2013;13:45–52.

    CAS  PubMed  Google Scholar 

  46. Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD, et al. Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab. 2012;97:E1736–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rittweger J, Debevec T, Frings-Meuthen P, Lau P, Mittag U, Ganse B, et al. On the combined effects of normobaric hypoxia and bed rest upon bone and mineral metabolism: results from the PlanHab study. Bone. 2016;91:130–8.

    CAS  PubMed  Google Scholar 

  48. Vico L, van Rietbergen B, Vilayphiou N, Linossier M-T, Locrelle H, Normand M, et al. Cortical and trabecular bone microstructure did not recover at weight-bearing skeletal sites and progressively deteriorated at non-weight-bearing sites during the year following International Space Station Missions. J Bone Miner Res. 2017;32:2010–21.

    CAS  PubMed  Google Scholar 

  49. Orwoll ES, Adler RA, Amin S, Binkley N, Lewiecki EM, Petak SM, et al. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA bone summit. J Bone Miner Res. 2013;28:1243–55.

    PubMed  Google Scholar 

  50. Leblanc AD, Driscol TB, Shackelford LC, Evans HJ, Rianon NJ, Smith SM, et al. Alendronate as an effective countermeasure to disuse induced bone loss. J Musculoskelet Neuronal Interact. 2002;2:335–43.

    CAS  PubMed  Google Scholar 

  51. LeBlanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int. 2013;24:2105–14.

    CAS  PubMed  Google Scholar 

  52. Smith SM, Heer M, Shackelford LC, Sibonga JD, Spatz J, Pietrzyk RA, et al. Bone metabolism and renal stone risk during International Space Station missions. Bone. 2015;81:712–20.

    CAS  PubMed  Google Scholar 

  53. Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res. 2012;27:1896–906.

    CAS  PubMed  Google Scholar 

  54. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2010;15:613–20.

    Google Scholar 

  55. Sibonga JD, Evans HJ, Sung HG, Spector ER, Lang TF, Oganov VS, et al. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone. 2007;41:973–8.

    CAS  PubMed  Google Scholar 

  56. Carpenter RD, LeBlanc AD, Evans H, Sibonga JD, Lang TF. Long-term changes in the density and structure of the human hip and spine after long-duration spaceflight. Acta Astronaut. 2010;67:71–81.

    Google Scholar 

  57. Kovacs GTA, Shadden M. Analysis of age as a factor in NASA astronaut selection and career landmarks. PLoS One. 2017;12:e0181381.

    PubMed  PubMed Central  Google Scholar 

  58. Chatani M, Mantoku A, Takeyama K, Abduweli D, Sugamori Y, Aoki K, et al. Microgravity promotes osteoclast activity in medaka fish reared at the international space station. Sci Rep. 2015;5:14172.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ronca AE, Moyer EL, Talyansky Y, Lowe M, Padmanabhan S, Choi S, et al. Behavior of mice aboard the International Space Station. Sci Rep. 2019;9:4717.

    PubMed  PubMed Central  Google Scholar 

  60. Gridley DS, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S, et al. Selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. J Appl Physiol. 2003;94:2095–103.

    PubMed  Google Scholar 

  61. Pecaut MJ, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S, et al. Selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. I Immune population distributions. J Appl Physiol. 2003;94:2085–94.

    PubMed  Google Scholar 

  62. • Novoselova EG, Lunin SM, Khrenov MO, Parfenyuk SB, Novoselova TV, Shenkman BS, et al. Changes in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in space. Immunobiology. 2015;220:500–9 This study evaluates stress responses in mice flown in the Bion-M1 mission showing elevated levels of immune parameters that may result from factors (e.g., diet, environment) other than that of microgravity. This study necessitates that future spaceflight studies evaluate for relationships between musculoskeletal changes (e.g, as reported in Gerbaix, Sci. Rep., 2017) and physiological, environmental, and other forms of stress.

    CAS  PubMed  Google Scholar 

  63. Moyer EL, Dumars PM, Sun G-S, Martin KJ, Heathcote DG, Boyle RD, et al. Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days). NPJ Microgravity. 2016;2:16002.

    PubMed  PubMed Central  Google Scholar 

  64. Liu Y, Biticchi R, Cilli M, Piccardi F, Cancedda R. Mouse Drawer System ( MDS ): an automated payload for supporting rodent research on the international space station. Basic Appl Myol. 2009;19:87–95.

    Google Scholar 

  65. Shimbo M, Kudo T, Hamada M, Jeon H, Imamura Y, Asano K, et al. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies. Exp Anim. 2016;65:175–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Perlman RL. Mouse models of human disease: an evolutionary perspective. Evol Med Public Health. 2016;2016:170–6.

    PubMed  PubMed Central  Google Scholar 

  67. Beheshti A, McDonald J, Miller J, Grabham P, Costes S. GeneLab database analyses suggest long-term impact of space radiation on the cardiovascular system by the activation of FYN through reactive oxygen species. Int J Mol Sci. 2019;20:661.

    CAS  PubMed Central  Google Scholar 

  68. Lutwak L, Whedon GD, Lachance PA, Reid JM, Lipscomb HS. Mineral, electrolyte and nitrogen balance studies of the Gemini-VII fourteen-day orbital space flight. J Clin Endocrinol Metab. 1969;29:1140–56.

    CAS  PubMed  Google Scholar 

  69. Smith SM, Mccoy T, Gazda D, Morgan JLL, Heer M, Zwart SR. Space flight calcium: implications for Astronaut Health, Spacecraft Operations, and Earth. Nutrients. 2012;4:2047–68.

    PubMed  PubMed Central  Google Scholar 

  70. Vico L, Chappard D, Palle S, Bakulin AV, Novikov VE, Alexandre C. Trabecular bone remodeling after seven days of weightlessness exposure (BIOCOSMOS 1667). Am J Physiol Integr Comp Physiol. 1988;255:R243–7.

    CAS  Google Scholar 

  71. Sibonga J, Zhang M, Evans GL, Westerlind KC, Cavolina JM, Morey-Holton E, et al. Effects of spaceflight and simulated weightlessness on longitudinal bone growth. Bone. 2000;27:535–40.

    CAS  PubMed  Google Scholar 

  72. Wronski TJ, Morey-Holton ER, Doty SB, Maese AC, Walsh CC. Histomorphometric analysis of rat skeleton following spaceflight. Am J Physiol Integr Comp Physiol. 1987;252:R252–5.

    CAS  Google Scholar 

  73. Westerlind KC, Turner RT. The skeletal effects of spaceflight in growing rats: tissue-specific alterations in mrna levels for TGF-β. J Bone Miner Res. 2009;10:843–8.

    Google Scholar 

  74. Lloyd SA, Morony SESE, Ferguson VLVL, Simske SJSJ, Stodieck LSLS, Warmington KSKS, et al. Osteoprotegerin is an effective countermeasure for spaceflight-induced bone loss in mice. Bone. 2015;81:562–72.

    CAS  PubMed  Google Scholar 

  75. Backup P, Westerlind K, Harris S, Spelsberg T, Kline B, Turner R. Spaceflight results in reduced mRNA levels for tissue-specific proteins in the musculoskeletal system. Am J Physiol Metab. 2017;266:E567–73.

    Google Scholar 

  76. Vailas AC, Zernicke RF, Grindeland RE, Kaplansky A, Durnova GN, Li KC, et al. Effects of spaceflight on rat humerus geometry, biomechanics, and biochemistry. FASEB J. 1990;4:47–54.

    CAS  PubMed  Google Scholar 

  77. Lafage-Proust MH, Collet P, Dubost JM, Laroche N, Alexandre C, Vico L. Space-related bone mineral redistribution and lack of bone mass recovery after reambulation in young rats. Am J Phys Regul Integr Comp Phys. 1998;274.

    CAS  Google Scholar 

  78. Evans GL, Morey-Holton E, Turner RT. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur. J Appl Physiol. 1998;84:2132–7.

    CAS  PubMed  Google Scholar 

  79. Bateman TA, Zimmerman RJ, Ayers RA, Ferguson VL, Chapes SK, Simske SJ. Histomorphometric, physical, and mechanical effects of spaceflight and insulin-like growth factor-I on rat long bones. Bone. 1998;23:527–35.

    CAS  PubMed  Google Scholar 

  80. Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age-related bone loss in male C57BL/6J mice. Bone. 2003;33:387–98.

    PubMed  Google Scholar 

  81. Sheng MHC, Baylink DJ, Beamer WG, Donahue LR, Rosen CJ, Lau KHW, et al. Histomorphometric studies show that bone formation and bone mineral apposition rates are greater in C3H/HeJ (high-density) than C57BL/6J (low-density) mice during growth. Bone. 1999;25:421–9.

    CAS  PubMed  Google Scholar 

  82. Silva MJ, Brodt MD, Lynch MA, Stephens AL, Wood DJ, Civitelli R. Tibial loading increases osteogenic gene expression and cortical bone volume in mature and middle-aged mice. PLoS One. 2012;7:e34980.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ. Genetic variability in adult bone density among inbred strains of mice. Bone. 1996;18:397–403.

    CAS  PubMed  Google Scholar 

  84. Cancedda R, Liu Y, Ruggiu A, Tavella S, Biticchi R, Santucci D, et al. The mice drawer system (MDS) experiment and the space endurance record-breaking mice. PLoS One. 2012;7:e32243.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tavella S, Ruggiu A, Giuliani A, Brun F, Canciani B, Manescu A, et al. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the international space station (ISS). PLoS One. 2012;7:e33179.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dadwal UC, Maupin KA, Zamarioli A, Tucker A, Harris JS, Fischer JP, et al. The effects of spaceflight and fracture healing on distant skeletal sites. Sci Rep. 2019;9:11419.

    PubMed  PubMed Central  Google Scholar 

  87. Blaber EA, Dvorochkin N, Lee C, Alwood JS, Yousuf R, Pianetta P, et al. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PLoS One. 2013;8:e61372.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Macaulay TR, Siamwala JH, Hargens AR, Macias BR. Thirty days of spaceflight does not alter murine calvariae structure despite increased Sost expression. Bone Rep. 2017;7:57–62.

    PubMed  PubMed Central  Google Scholar 

  89. • Blaber EA, Dvorochkin N, Torres ML, Yousuf R, Burns BP, Globus RK, et al. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Stem Cell Res. 2014;13:181–201 Bone changes were observed in group-housed mice flown in NASA rodent habitats, where osteocytes, along with osteoclasts, are implicated in reduced bone quantity and structural quality.

    CAS  PubMed  Google Scholar 

  90. Keune JA, Philbrick KA, Branscum AJ, Iwaniec UT, Turner RT. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation. NPJ Microgravity. 2016;2:16016.

    PubMed  PubMed Central  Google Scholar 

  91. Zhang C, Li L, Jiang Y, Wang C, Geng B, Wang Y, et al. Space microgravity drives transdifferentiation of human bone marrow–derived mesenchymal stem cells from osteogenesis to adipogenesis. FASEB J. 2018;32:4444–58.

    CAS  PubMed  Google Scholar 

  92. Nabavi N, Khandani A, Camirand A, Harrison RE. Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone. 2011;49:965–74.

    PubMed  Google Scholar 

  93. Kumei Y, Shimokawa H, Ohya K, Katano H, Akiyama H, Hirano M, et al. Small GTPase Ras and Rho expression in rat osteoblasts during spaceflight. Ann N Y Acad Sci. 2007;1095:292–9.

    CAS  PubMed  Google Scholar 

  94. Kumei Y, Morita S, Katano H, Akiyama H, Hirano M, Oyha K, et al. Microgravity signal ensnarls cell adhesion, cytoskeleton, and matrix proteins of rat osteoblasts: osteopontin, CD44, osteonectin, and α-tubulin. in. Ann N Y Acad Sci. 2006;1090:311–7.

    CAS  PubMed  Google Scholar 

  95. Schiller HB, Fässler R. Mechanosensitivity and compositional dynamics of cell–matrix adhesions. EMBO Rep. 2013;14:509–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Guignandon A, Faure C, Neutelings T, Rattner A, Mineur P, Linossier M-T, et al. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells. FASEB J. 2014;28:4077–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Meyers VE, Zayzafoon M, Douglas JT, McDonald JM. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res. 2005;20:1858–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun Z, Cao X, Zhang Z, Hu Z, Zhang L, Wang H, et al. Simulated microgravity inhibits L-type calcium channel currents partially by the up-regulation of miR-103 in MC3T3-E1 osteoblasts. Sci Rep. 2015;5:8077.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yan M, Wang Y, Yang M, Liu Y, Qu B, Ye Z, et al. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2015;460:327–32.

    CAS  PubMed  Google Scholar 

  100. Dai Z, Wu F, Chen J, Xu H, Wang H, Guo F, et al. Actin microfilament mediates osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity. PLoS One. 2013;8:e63661.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kapitonova MY, Kuznetsov SL, Salim N, Othman S, Kamauzaman TMHTM, Ali AM, et al. Morphological and phenotypical characteristics of human osteoblasts after short-term space mission. Bull Exp Biol Med. 2014;156:393–8.

    PubMed  Google Scholar 

  102. Rea G, Cristofaro F, Pani G, Pascucci B, Ghuge SA, Corsetto PA, et al. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteome. 2016;137:3–18.

    CAS  Google Scholar 

  103. Sambandam Y, Townsend MT, Pierce JJ, Lipman CM, Haque A, Bateman TA, et al. Microgravity control of autophagy modulates osteoclastogenesis. Bone. 2014;61:125–31.

    PubMed  PubMed Central  Google Scholar 

  104. • Gerbaix M, Gnyubkin V, Farlay D, Olivier C, Ammann P, Courbon G, et al. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons. Sci Rep. 2017;7:2659 Bone changes were observed in group-housed mice flown in the Bion-M1 rodent habitat, where osteocytes are implicated in reduced bone tissue-level mechanical properties. along with reduced populations of mesenchymal and hematopoietic stem cells and cell-mediated tissue regeneration. No changes in bone biochemistry were observed.

    PubMed  PubMed Central  Google Scholar 

  105. Cabahug-Zuckerman P, Frikha-Benayed D, Majeska RJ, Tuthill A, Yakar S, Judex S, et al. Osteocyte apoptosis caused by hindlimb unloading is required to trigger osteocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs. J Bone Miner Res. 2016;31:1356–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res. 2007;22:1197–207 (John Wiley & Sons, Ltd.

    PubMed  Google Scholar 

  107. Coulombe JC, Livingston EW, Ortega AM, Bateman TA, Vance EA, Stodieck LS, et al. Microgravity exposure diminishes trabecular microarchitecture and cortical bone structure differently in growing and skeletally mature mice (Conference Presentation). J Bone Miner Res. 2018;33:326.

    Google Scholar 

  108. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26:229–38.

    CAS  PubMed  Google Scholar 

  109. Qing H, Ardeshirpour L, Divieti Pajevic P, Dusevich V, Jähn K, Kato S, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012;27:1018–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Rodionova NV, Oganov VS, Zolotova NV. Ultrastructural changes in osteocytes in microgravity conditions. Adv Space Res. 2002;30:765–70.

    CAS  PubMed  Google Scholar 

  111. Mader KS, Schneider P, Müller R, Stampanoni M. A quantitative framework for the 3D characterization of the osteocyte lacunar system. Bone. 2013;57:142–54.

    PubMed  Google Scholar 

  112. Heveran CM, Rauff A, King KB, Carpenter RD, Ferguson VL. A new open-source tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone. Bone. 2018;110:115–27.

    PubMed  PubMed Central  Google Scholar 

  113. Coulombe JC, Mullen ZK, Wiens AM, Stodieck LS, Ferguson VL. Microgravity exposure in growing mice is detrimental to osteocyte lacunar volume and shape (Conference Presentation). J Bone Miner Res. 2018;33:98.

    Google Scholar 

  114. Pavalko FM, Norvell SM, Burr DB, Turner CH, Duncan RL, Bidwell JP. A Model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem. 2003;88:104–12.

    CAS  PubMed  Google Scholar 

  115. Zernicke RF, Vailas AC, Grindeland RE, Kaplansky A, Salem GJ, Martinez DA. Spaceflight effects on biomechanical and biochemical properties of rat vertebrae. Am J Physiol Integr Comp Physiol. 1990;258:R1327–32.

    CAS  Google Scholar 

  116. Simmons DJ, Grynpas MD, Rosenberg GD. Maturation of bone and dentin matrices in rats flown on the Soviet biosatellite Cosmos 1887. FASEB J. 1990;4:29–33.

    CAS  PubMed  Google Scholar 

  117. Simmons DJ, Russell JE, Grynpas MD. Bone maturation and quality of bone material in rats flown on the space shuttle ‘Spacelab-3 Mission’. Bone Miner. 1986;1:485–93.

    CAS  PubMed  Google Scholar 

  118. Patterson-Buckendahl P, Arnaud SB, Mechanic GL, Martin RB, Grindeland RE, Cann CE. Fragility and composition of growing rat bone after one week in spaceflight. Am. J. Physiol. Integr. Comp. Physiol. 1987;252:R240–6.

    CAS  Google Scholar 

  119. Mechanic GL, Arnaud SB, Boyde A, Bromage TG, Buckendahl P, Elliott JC, et al. Regional distribution of mineral and matrix in the femurs of rats flown on Cosmos 1887 biosatellite. FASEB J. 1990;4:34–40.

    CAS  PubMed  Google Scholar 

  120. France EP, Oloff CM, Kazarian LE. Bone Mineral Analysis of Rat Vertebra Following Spaceflight: Cosmos 1129. Physiologist, supl. 1983;25(6):S147-S148.

  121. Simmons DJ, Russell JE, Winter F, Tran Van P, Vignery A, Baron R, et al. Effect of spaceflight on the non-weight-bearing bones of rat skeleton. Am. J. Physiol. Integr. Comp. Physiol. 1983;244:R319–26.

    CAS  Google Scholar 

  122. Glimcher MJ. The nature of the mineral component of bone and the mechanism of calcification. Instr Course Lect. 1987;36:49–69.

    CAS  PubMed  Google Scholar 

  123. Shaw SR, Vailas AC, Grindeland RE, Zernicke RF. Effects of a 1-wk spaceflight on morphological and mechanical properties of growing bone. Am. J. Physiol. Integr. Comp. Physiol. 1988;254:R78–83.

    CAS  Google Scholar 

  124. Vernikos J, Schneider VS. Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology. 2010;56:157–66.

    PubMed  Google Scholar 

  125. Liu Y, Wang E. Transcriptional analysis of normal human fibroblast responses to microgravity stress. Genomics Proteomics Bioinformatics. 2008;6:29–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Radugina EA, Almeida EAC, Blaber E, Poplinskaya VA, Markitantova YV, Grigoryan EN. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps. Life Sci Space Res. 2018;16:18–25.

    CAS  Google Scholar 

  127. Jonscher KR, Alfonso-Garcia A, Suhalim JL, Orlicky DJ, Potma EO, Ferguson VL, et al. Spaceflight activates lipotoxic pathways in mouse liver. PLoS One. 2016;11.

    PubMed  PubMed Central  Google Scholar 

  128. Mao XW, Nishiyama NC, Byrum SD, Stanbouly S, Jones T, Drew A, et al. Characterization of mouse ocular response to a 35-day spaceflight mission: evidence of blood-retinal barrier disruption and ocular adaptations. Sci Rep. 2019;9:8215.

    PubMed  PubMed Central  Google Scholar 

  129. Mao XW, Pecaut MJ, Stodieck LS, Ferguson VL, Bateman TA, Bouxsein M, et al. Spaceflight environment induces mitochondrial oxidative damage in ocular tissue. Radiat Res. 2013;180.

    CAS  PubMed  Google Scholar 

  130. Mao X, Sandberg L, Gridley D, Herrmann E, Zhang G, Raghavan R, et al. Proteomic analysis of mouse brain subjected to spaceflight. Int J Mol Sci. 2018;20:7.

    PubMed Central  Google Scholar 

  131. Lang T, Van Loon JJWA, Bloomfield S, Vico L, Chopard A, Rittweger J, et al. Towards human exploration of space: the THESEUS review series on muscle and bone research priorities. NPJ Microgravity. 2017;3:8.

    PubMed  PubMed Central  Google Scholar 

  132. Gridley DS, Mao XW, Stodieck LS, Ferguson VL, Bateman TA, Moldovan M, et al. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One. 2013;8:e75097.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sofronova SI, Tarasova OS, Gaynullina D, Borzykh AA, Behnke BJ, Stabley JN, et al. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice. J Appl Physiol. 2015;118:830–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Taylor CR, Hanna M, Behnke BJ, Stabley JN, McCullough DJ, Davis RT, et al. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J. 2013;27:2282–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17:521–5.

    CAS  PubMed  Google Scholar 

  136. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19:1945–54.

    PubMed  Google Scholar 

  137. Russo CR, Lauretani F, Seeman E, Bartali B, Bandinelli S, Di Iorio A, et al. Structural adaptations to bone loss in aging men and women. Bone. 2006;38:112–8.

    PubMed  Google Scholar 

  138. Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone. 2000;26:375–80.

    CAS  PubMed  Google Scholar 

  139. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB. Aging of microstructural compartments in human compact bone. J Bone Miner Res. 2003;18:1012–9.

    CAS  PubMed  Google Scholar 

  140. Burr DB. Changes in bone matrix properties with aging. Bone. 2019;120:85–93.

    CAS  PubMed  Google Scholar 

  141. Cavolina JM, Evans GL, Harris SA, Zhang M, Westerlind KC, Turner RT. The effects of orbital space flight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats. Endocrinology. 1997;138:1567–76.

    CAS  PubMed  Google Scholar 

  142. Petit MA, Beck TJ, Lin H-M, Bentley C, Legro RS, Lloyd T. Femoral bone structural geometry adapts to mechanical loading and is influenced by sex steroids: the Penn State Young Women’s Health Study. Bone. 2004;35:750–9.

    CAS  PubMed  Google Scholar 

  143. Mahoney E. Sending American Astronauts to Moon in 2024: NASA Accepts Challenge. NASA Press Release. 2019.

  144. Schierholz S, Jorgan G, Northon K. (Editor). NASA Opens International Space Station to New Commercial Opportunities. NASA Press Release. 2019.

Download references

Acknowledgments

Funding was provided by NSBRI MA00002, BL01302; NASA NNJ10GA25A, NNX10AE39G-S1. Thank you to Louis Stodieck, BioServe Space Technologies, University of Colorado at Boulder, for helpful input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia L. Ferguson.

Ethics declarations

Conflict of Interest

Jennifer Coulombe, Bhavya Senwar, and Virginia L. Ferguson declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biomechanics

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulombe, J., Senwar, B. & Ferguson, V.L. Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk. Curr Osteoporos Rep 18, 1–12 (2020). https://doi.org/10.1007/s11914-019-00540-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-019-00540-y

Keywords

Navigation