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Abstract: There is an increasing need for skillful runoff season (i.e., spring) streamflow forecasts that extend beyond a 12-month lead time
for water resources management, especially under multiyear droughts and particularly in basins with highly variable streamflow, large storage
capacity, proclivity to droughts, and many competing water users such as in the Colorado River Basin (CRB). Ensemble streamflow pre-
diction (ESP) is a probabilistic prediction method widely used in hydrology, including at the National Oceanic and Atmospheric
Administration (NOAA) Colorado Basin River Forecasting Center (CBRFC) to forecast flows that the Bureau of Reclamation uses in their
water resources operational decision models. However, it tends toward climatology at 5-month and longer lead times, causing decreased skill,
particularly in forecasts critical for management decisions. We developed a modeling approach for seasonal streamflow forecasts using a
machine learning technique, random forest (RF), for runoff season flows (April 1–July 31 total) at the important gauge of Lees Ferry, Arizona,
on the CRB. The model predictors include antecedent basin conditions, large-scale climate teleconnections, climate model projections of
temperature and precipitation, and the mean ESP forecast from CBRFC. The RF model is fitted and validated separately for lead times
spanning 0 to 18 months over the period 1983–2017. The performance of the RF model forecasts and CBRFC ESP forecasts are separately
assessed against observed streamflows in a cross validation mode. Forecast performance was evaluated using metrics including relative bias,
root mean square error, ranked probability skill score, and reliability. Measured by ranked probability skill score, RF outperforms a clima-
tological benchmark at all lead times and outperforms CBRFC’s ESP hindcasts for lead times spanning 6 to 18 months. For the 6- to 18-month
lead times, the RF ensemble median had a root mean square error that was between ∼410- and ∼620-thousand acre-feet lower than that of the
ESP ensemble median (i.e., RF reduced ensemble median RMSE by −9% to −12% relative to ESP). Reliability was comparable between RF
and ESP. More skillful long-lead cross-validated forecasts using machine learning methods show promise for their use in real time forecasts
and better informed and efficient water resources management; however, further testing in various decision models is needed to examine RF
forecasts’ downstream impacts on key water resources metrics like robustness, reliability, and vulnerability. DOI: 10.1061/JWRMD5.
WRENG-6167. © 2024 American Society of Civil Engineers.

Introduction

In river basins that have highly variable interannual flows, that is,
multiyear periods where streamflow is above or below average,
there is a need for river flow forecasts that go beyond seasonal time
scales to make efficient water resources management decisions.
The need for long-lead water supply forecasts is heightened in ba-
sins with high storage capacity, semiarid climate, sustained dry
periods, competing needs, and a large number of stakeholders—
such as the Colorado River Basin (CRB). Anthropogenic climate

change has also impacted the CRB and the ongoing 23-year-long
drought that was caused not only by lower-than-average precipita-
tion but also by warmer-than-average temperatures (Hoerling et al.
2019; Williams et al. 2020, 2022; Woodhouse et al. 2016; Xiao
et al. 2018). The sensitivity of CRB streamflow to temperature
is estimated between −2.5%°C−1 and −14%°C−1 (Hoerling et al.
2019; McCabe and Wolock 2007; Milly and Dunne 2020; Nowak
et al. 2012; Udall and Overpeck 2017; Vano et al. 2012, 2014), and
as the warming trend continues over the next decades, research has
suggested that temperature-induced drying may offset any possible
future precipitation increases, or worse, compound with precipita-
tion decreases and result in even lower CRB flows or increased
aridification (Milly and Dunne 2020; Udall and Overpeck 2017).
Compounding these problems, the CRB is overallocated. The
Colorado River’s average annual flow over the last century is about
15 million acre-feet (MAF), but 16.5 MAF of Colorado River water
is allocated per annum between the United States and Mexico, and
evaporative losses are significant (Stern 2023). The earliest alloca-
tions were made during an anomalously wet pluvial period at the
beginning of the 20th century (Gangopadhyay et al. 2022; Meko
et al. 2007; Woodhouse et al. 2005).

The United States (US) Bureau of Reclamation (“Reclamation”)
manages water resources in the Western United States including the
CRB. They generate ensemble forecasts of potential basin and res-
ervoir conditions based on flow outlooks that project beyond a sea-
son up to a ∼2-year time period (Payton et al. 2020; Reclamation
2015, 2019). For example, Reclamation forecasts reservoir levels
at Lakes Mead and Powell and these projections can influence
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decision making with respect to reservoir releases or conservation
efforts. Notably, Reclamation’s August 2022 24-month study sug-
gested that Lake Mead would enter an unprecedented Level 2a
shortage condition in the water year 2023, with a projected pool
elevation of 1,048 ft on January 1, 2023 (Reclamation 2022). Lake
Mead’s water level did drop to 1,043′ in November 2022, shortly
before an unforeseen, above-average winter precipitation season
led to Lake Mead’s water level rising to 1,065′ by August 2023.
However, the Level 2a shortage condition had already been trig-
gered and reduced 2023 water deliveries to Arizona, Nevada, and
Mexico by 592,000, 25,000, and 104,000 acre-feet, respectively.

For projecting operations of the reservoirs, Reclamation uses
forecasts generated by the National Oceanic and Atmospheric Ad-
ministration’s (NOAA) CRB River Forecasting Center (CBRFC).
The CBRFC forecasts apply an Ensemble Streamflow Prediction
(ESP) approach that involves initializing the Sacramento Soil
Moisture Accounting (SAC-SMA) and SNOW-17 models with the
current state of the basin conditions (e.g., stream and reservoir
stages, soil moisture, and snowpack) and then forcing them with
traces of observed precipitation and temperature subset from the
historical record, resulting in a streamflow forecast of ensemble
members derived from each meteorological year (Day 1985; Lukas
and Payton 2020; Werner and Yeager 2013; Wood and Werner
2011). ESP forecasts are most skillful at seasonal (i.e., shorter)
time scales for which persistence from the model’s initial hydro-
logic conditions (IHC) is strong, but ESP is less skillful at longer
lead times due to the decreasing predictive skill of basin IHCs
(5–18 months). Hence, the ESP forecasts at longer lead times con-
verge to historical average flows, i.e., climatology, after the persist-
ence from IHCs is lost. Since the meteorological ensemble forcing
contains both wet and dry extremes, the ESP forecasts do best when
flows are in the median range but tend to overpredict during low-
flow times and underpredict during high flow periods.

In the CRB, there has been an ongoing drought since the early
21st century (“the Millennium Drought” Hoerling et al. 2019;
Salehabadi et al. 2022) that has resulted in the basin’s reservoirs,
including its two largest: Lakes Mead and Powell, to fall in 2022–
2023 to their lowest pool elevation since Mead’s filling in the 1930s
and Powell’s filling in the 1960s. Reclamation has been challenged
to manage the reservoirs under the latest operating guidelines that
have for the first time imposed shortages on downstream users and
enacted creative new policies to avoid dropping the large reservoirs
below their hydropower generating pool levels (Reclamation 2021;
Smith et al. 2022). However, research has shown that Reclama-
tion’s 24-month study has a wet bias for lead times of 12- to
24-months (“year-2”) due to the use of probabilities derived from
a 30-year reference period spanning 1991–2020 for these lead
times (Wang et al. 2022). Prior to fall 2021, the reference period
was 1981–2010, which had average flows 9% higher than those
during the Millennium Drought, leading to year-2 ensemble
median projections up to ∼7-MAF higher than observations during
2010–2021. At a 24-month lead time, ∼70% of ensemble members
had a wet bias and the ensemble median bias was ∼1-MAF (Wang
et al. 2022). The importance of these high-profile operational de-
cisions and intense stakeholder scrutiny has raised the bar for the
necessity of more skillful forecasting at lead times up to 2 years.

This pressing need for and importance of skillful forecasting in
the CRB for both near-term operations and long-term planning has
motivated extensive research and methodological advancement.
For example, the United States Department of Agriculture (USDA)
Natural Resource Conservation Service (NRCS) has a long history
of issuing seasonal water supply forecasts for ∼1,000 locations in
the Western United States. NRCS monthly forecasts use principal
component regression (and Z-score regression for daily forecasts)

trained on predictors like snow-water equivalent (SWE), accumu-
lated precipitation, and antecedent streamflow (Lukas and Payton
2020). Various studies have found added value from other covari-
ates like soil moisture, temperature forecasts, and ocean telecon-
nections like El Niño Southern Oscillation (ENSO) (Harpold
et al. 2017; Lehner et al. 2017; Rosenberg et al. 2011). NRCS water
supply forecasts are generally issued January through April to pre-
dict the runoff season volume and have high skill due to the strong
signal imparted by IHCs, but various machine learning approaches
were shown to outperform the NRCS forecasts in three test basins
(Fleming and Goodbody 2019). Other statistical ensemble models
based on local polynomials and multi-models—using SWE and
large climate variables from the ocean and atmosphere during win-
ter have been shown to be quite skillful for modeling seasonal flows
in the CRB and other basins in the Western United States (Bracken
et al. 2010; Regonda et al. 2006a, b). Recently, Baker et al. (2021a)
used North American multimodel ensemble forecasts of precipita-
tion and temperature as well as antecedent streamflow with a
K-nearest neighbor trace weighting approach to improve CBRFC
ESP forecasts and found that the climate-conditioned forecasts per-
formed better than ESP alone in predicting April, May, June, and
July (AMJJ) runoff volume for forecasts made in winter and early
spring. Finally, Zhao et al. (2021) used artificial neural networks
and stepwise linear regression to hindcast Lees Ferry AMJJ stream-
flow for lead times up to 12 months using predictors including ante-
cedent Pacific Sea surface temperatures, soil moisture, SWE, and
precipitation: they found a correlation between predicted and ob-
served streamflow of about 0.4 for a 12-month lead time.

Increasingly, researchers have sought to elicit skill at lead times
of greater than 12 months. For example, Chikamoto et al. (2020)
were able to produce skillful forecasts of CRB annual water supply
up to two years into the future through ocean initialization of a
decadal climate model. Similarly, Switanek and Troch (2011) gen-
erated skillful projections of the 10-year mean Lees Ferry flow us-
ing the preceding 10-year mean Atlantic multidecadal oscillation
(AMO) and Pacific decadal oscillation (PDO). Studies have also
found that incorporating climate model projections of temperature
into streamflow forecasts through various statistical weighting
approaches can improve performance at multiyear time scales
(e.g., for lead times of 1- to 5-years; Towler et al. 2018, 2021;
Towler and Yates 2021).

Recently, climate model projections have been used with non-
parametric stochastic methods such as time series bootstrapping
(Towler et al. 2021) and machine learning methods such as RF
(Woodson et al. 2021) for decadal projections of streamflow in
the CRB. These projections have been shown to translate skillfully
into projections of water resources decision variables, especially in
Woodson et al. (2021). Stochastic simulations to generate scenarios
of flows for multi-decadal scale planning have been developed us-
ing time series methods such as wavelets and bootstrapping
(Erkyihun et al. 2016; Rajagopalan et al. 2019), hidden Markov
models (Bracken et al. 2016). Despite the growing interest in
and need for decadal projections that span the gap between seasonal
forecasts and multidecadal projections, there are little to no skillful
year-2 forecasts available in the CRB.

To address this critical need, we developed a modeling frame-
work to generate runoff season ensemble streamflow forecasts for
the CRB at the Lees Ferry gauge–the most important gauge on the
Colorado River through which passes 85%–90% of the average an-
nual natural flow of the entire river, generated by snowmelt in the
Upper CRB (UCRB) (Christensen et al. 2004). The framework uses
a random forest (RF) technique, a machine learning approach, to
model and test retrospective forecasts (i.e., hindcasts) of historical
spring flows over the period 1983–2017 at various lead times
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spanning 0 to 18 months and compares them with the correspond-
ing ESP forecasts from CBRFC. In the next section, Materials and
Methods, we describe the modeling framework, the RF approach,
and the datasets used as well as variable selection, model valida-
tion, and evaluation metrics. The results are subsequently de-
scribed, concluding with a summary and reflections.

Materials and Methods

The modeling framework is intended to be employed in real time
forecasting; hence, it is referred to as a forecasting model—much
like other such models in literature—with the caveat that the val-
idation of the model can only be done in a retrospective forecast
(i.e., hindcast) mode, even when done in cross validation. Thus, we
use forecast, retrospective forecast, and hindcast interchangeably in
this paper.

Datasets

We used both historic observed information as well as future, si-
mulated information in the modeling framework. Predictor selec-
tion was performed separately for each lead time and involved
training a RF model for each year for each lead time on all of
the predictors, then aggregating RF ‘variable importance’ and re-
moving the variables that had a negative median variable impor-
tance over the entire 1983–2017 hindcast period, resulting in a
suite of custom predictors for each lead time, described in Table 1.

The length of the training record for the RF model depends on
the lead time since the predictors used for each lead time vary, as
does the period of record for each predictor. RF hindcasts with lead
times of 0, 1, 2, 3, and 4 months have a 35-year period of record for
model training (1983–2017); while lead times of 6, 7, and 8 months
use a 96-year record (1922–2017), and a 95-year record (1923–
2017) is used for lead times of 12 and 18 months because an addi-
tional year must be dropped in cross validating these latter two lead
times. The period of records for the 4-month and less hindcasts are
much shorter since the primary predictors used for these lead times,
CBRFC ESP ensemble mean and CESM-DPLE temperature, begin
in 1983 and 1981, respectively (Table 1). Conversely, the longer
lead hindcasts do not use those predictors and instead are tempo-
rally limited by the CESM-LE projections, which began in 1921.

Historical Observations
The predictand (dependent variable being predicted) at all lead
times is the Lees Ferry naturalized spring flow (April 1–July 31)
over the period 1983–2017 (Prairie et al. 2005; USBR 2020).
Natural flow is constructed using a RiverWare (Zagona et al. 2001)
model that removes anthropogenic influences like diversions, res-
ervoir storage, and consumptive use.

The suite of predictors used in the model are hydroclimate
variables, large-scale climate teleconnection indices, and climate
model projections, which are described as follows. UCRB basin-
average precipitation and maximum and minimum temperatures are
derived from parameter-elevation regressions on independent
slopes model (PRISM) data (Daly et al. 1994). Runoff efficiency
is calculated as the ratio of annual natural flow at Lees Ferry to
basin-average precipitation.

Large-scale climate teleconnection indices including the PDO;
Mantua et al. 1997; Zhang et al. 1997) and the AMO; Enfield et al.
2001) are obtained from International Research Institute (IRI) data
library.

Future Simulated Predictors
Future simulated predictors include temperature and precipitation
projections from both the Community Earth System Model–Large
Ensemble (CESM-LE; Kay et al. 2014) and the Community Earth
System Model–Decadal Prediction Large Ensemble (CESM-
DPLE; Yeager et al. 2018). The climate model projections are
basin-average and basin-totals, respectively, for maximum and
minimum temperatures and precipitation, calculated as seasonal
averages dictated by forecast lead time. The CESM-LE was initial-
ized on January 1, 1920, and is free running through 2080. Con-
versely, the CESM-DPLE projections are initialized on November
1 of a given year and then run for ∼10 years; this process is re-
peated for every year between 1981 and 2017 (e.g., projections
span 1981–1991, 1982–1992, : : : , 2016–2026, 2017–2027).
CESM projections have been shown to be skillful in projecting
flows on the Colorado River decadal time scales (Woodson et al.
2021).

Additionally, we obtained ESP (Wood and Werner 2011) retro-
spective forecasts issued by NOAA’s CBRFC and then used them
as predictors in the RF forecast and as a stand-alone benchmark
forecast for which to compare random forest forecasts. CBRFC
ESP hindcasts are based on a physical hydrologic model initialized

Table 1. Selected predictors and resolution

Predictor type Predictor Variable name Resolution
Used for lead

time(s) (months)
Period of record
for model training

Observed, past
information

Atlantic Multidecadal Oscillation amo Seasonal mean 6, 7, 8, 18 1921–2017
Pacific Decadal Oscillation pdo Seasonal mean 8, 12, 18 1921–2017
Maximum Temperature tmax Seasonal mean 1, 7 1921–2017
Minimum Temperature tmin Seasonal mean 12, 18 1921–2017
November to September precipitation win.pcp Seasonal total 6 1921–2017
Past year’s flow past.q.maf Annual total 6, 7, 8 1921–2017
Past year’s runoff efficiency past.re Annual total 6, 7, 8 1921–2017

Simulated,
future
information

CBRFC ESP–Ensemble Mean esp Seasonal sum 0, 1, 2, 3, 4 1983–2017
Decadal Prediction Large Ensemble–Maximum
Temperature

dple.tmax Seasonal mean 0, 1, 2 3, 4 1981–2017

Decadal Prediction Large Ensemble–Minimum
Temperature

dple.tmin Seasonal mean 0, 1, 2 1981–2017

Large Ensemble–Maximum Temperature
(Summer, winter, or spring)

le.tmax.sum, le.tmax.
win, or le.tmax.spg

Seasonal mean 7, 8, 12, 18 1921–2017

Large Ensemble–Minimum Temperature
(Summer, winter, or spring)

le.tmin.sum, le.tmin.
win, or le.tmin.spg

Seasonal mean 12, 18 1921–2017

Large Ensemble–Precipitation (Summer, Spring) le.pcp, le.pcp.spg Seasonal total 2, 12 1921–2017
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with basin snow, land surface conditions, and storage and forced
with 5-year-long historical sequences of daily weather spanning
1981–2010. The ESP hindcasts are initialized and run on a monthly
basis between 1983 and 2017, thus producing 30 ensemble mem-
bers for each 5-year-long hindcast period in that time span. The
ESP hindcasts for each lead time are initialized separately; for
example, a 0-month lead time is initialized on April 1, a 3-month
lead time is initialized on January 1, and a 12-month lead time is
initialized on April 1 of the prior year. The CBRFC ESP forecasts
are used in official water resources management decisions by
Reclamation.

Ensemble means were calculated for CESM-LE projections and
ESP. Further, they are aggregated to either seasonal or annual aver-
ages (or volumes in the case of precipitation and streamflow). For
example, an RF forecast made on April 1 with a 12-month lead time
might use a suite of predictors, including historical observations
(e.g., the preceding winter average PDO and observed minimum
temperature) as well as future simulations (e.g., CESM-LE pro-
jected future summer, winter, and spring mean temperature and
precipitation, and ESP mean forecasted flows).

Modeling Framework and Predictor Justification

The research framework is schematically depicted in Fig. 1. It
shows the lead times at which retrospective forecasts are made
for the given spring runoff. As illustrated in this figure, the target
is 2019 runoff season volume (April 1, 2019, through July 31,
2019), and this volumetric hindcast is made at three different
lead times (18 months, 12 months, and 6 months): with hindcasts
made on October 1, 2017, April 1, 2018, and October 1, 2018,
respectively.

Any forecast framework requires the identification of predictors
and a method for using them to generate hopefully skillful ensem-
ble forecasts. Past research has shown that temperature plays an
important role in modulating CRB flow, particularly during the
ongoing Millennium Drought (Hoerling et al. 2019; Udall and
Overpeck 2017), and that the Western United States climate is in-
fluenced by climate indices such as the ENSO, AMO and PDO
(Kalra and Ahmad 2012; Lukas and Payton 2020; Nowak et al.
2012; Zhao et al. 2017, 2021, 2023; Zhao and Zhang 2022). From
these studies, we hypothesize that the Pacific and Atlantic Oceans
provide predictability at year-2 time scales, particularly with re-
spect to land surface temperatures. Temperature predictability in
turn impacts the basin runoff efficiency (the ratio of streamflow
to precipitation), and consequently the streamflow, given the CRB’s
relatively high temperature sensitivity (higher temperatures lead to
decreased runoff efficiency via increased evaporation and vice
versa).

Preliminary analysis found moderate Spearman’s rank correla-
tion between winter sea surface temperatures (SSTs) and sub-
sequent spring Lees Ferry flow as well as with flows one year
ahead; correlation spatial patterns coincided with PDO and AMO
regions (Fig. 2). SST correlation with Lees Ferry flow and UCRB
precipitation persists into year-2 time scales (Zhao et al. 2017,
2021, 2023; Zhao and Zhang 2022). As such, the teleconnections
captured by PDO and AMO indices along with antecedent condi-
tions like temperature and precipitation are good candidate predic-
tors for long-lead flow hindcasts.

As mentioned previously, the RF algorithm provides variable
importance values for each variable in each fitted RF model.
The variable importance values are provided as percent change
in mean square error (MSE) if the given predictor is dropped from
the model. Positive or negative values suggest that the variable is
either beneficial or deleterious, respectively, to model performance.
We used the variable importance metrics as a predictor selection
tool for each lead time by starting with the ‘full model’ of all appli-
cable predictors and then removing variables that yielded a 1983–
2017 hindcast median percent change in MSE that was negative
(i.e., the variable did not add value in over half of hindcast years).
Nonlinear correlation of the tuned suite of predictors with spring
flows at various lead times is shown in Fig. 3. Nonlinear correlation
is calculated with the ‘nlcor’ R package (Ranjan 2020).

Based on our recent results (Woodson et al. 2021) in stochastic
simulation of CRB flows at decadal time scales, we propose a ma-
chine learning approach based on RF as the forecasting model
along with the suite of predictors. More background on the RF
algorithm is provided in the following section.

Modeling Approach-RF

RFs are a commonly used machine learning approach originated by
Ho (1995) and popularized by Breiman (2001). Random forests are
a supervised approach based on the repeated bootstrapping of a
training dataset to generate many different classification and regres-
sion trees (CART). Random forests are an attractive nonparametric
approach due to their predictive ability, speed, robustness, stability,
and capabilities in handling nonlinearity, noise, interactive effects,
and small sample sizes (Tyralis et al. 2019). Particularly in hydro-
logic modeling, many predictors will be correlated (e.g., precipita-
tion, SWE, and soil moisture), but the presence of correlated
variables does not impact random forest prediction accuracy due
to the random sampling of predictors involved in growing a single
tree, although it may influence variable importance metrics
(Boulesteix et al. 2012; Ziegler and König 2014). Additionally, ran-
dom forests are less prone to overfitting than other techniques be-
cause of the bootstrap aggregation involved in growing a forest and
again due to the random selection of a subset of predictors for each

Fig. 1. Forecast framework for spring flows at three different lead times.
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tree (Ziegler and König 2014). Others (Qi 2012) have reported that
random forests can perform well even with small sample sizes; for
example, Luan et al. (2020) found that a species distribution mod-
el’s performance greatly improved after increasing the sample size
from 10 to 30, but only marginal improvements occurred when the
sample size increase to 50 to 80 samples.

Another valuable aspect of random forests is their ability to
provide information about variable importance within the training
dataset. Random forests have been used in many fields, with
applications ranging from construction safety risk (Tixier et al.
2016) towater quality modeling (Suchetana et al. 2017). Researchers
have also found utility in random forests for streamflow simula-
tion, generally at monthly and daily time scales (Abbasi et al.

2020; Al-Juboori 2019; Ghorbani et al. 2020; Hussain and Khan
2020; Li et al. 2019; Liang et al. 2018; Muñoz et al. 2018;
Papacharalampous and Tyralis 2018; Pham et al. 2020). Recently,
Woodson et al. (2021) applied this for the projection of streamflows
at decadal time scales in the CRB. The presented papers describe
the methodology; however, for a good description of the method
with implementation, we refer the readers to a book by Hastie et al.
(2009).

In RF, the space of predictors (i.e., independent variables) is suc-
cessively partitioned by randomly selecting one of the variables to
partition at each step–hence, its name. The partitions continue until
a stopping criterion is met that is often based on minimizing the
mean squared error of the dependent variable, resulting in a ‘tree.’

Fig. 2. (a) Rank correlation (1950–2021) between winter SST and concurrent, UCRB water year flow reminiscent of PDO, ENSO, and AMO
teleconnections; and (b) rank correlation and spatial patterns persist when calculated between winter SSTs and next year’s flow.
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The process is repeated to generate a large number of trees. The
estimate of the dependent variable is obtained from the average
of the estimates from all the trees. However, to generate an ensem-
ble, instead of computing the average across all the trees, we keep
the estimates from each tree thus producing an ‘ensemble.’ This
novel modification was proposed and outlined in Woodson et al.
(2021) and is used here. We implemented this in R with the ‘ran-
domForest’ package (Liaw and Wiener 2002; R Core Team 2019).
Using the ‘tuneRF’ function within ‘randomForest,’ we optimize
the ‘mtry’ parameter (number of predictors randomly sampled at
each split in a tree) for each hindcast year and lead time based on
the relevant training data. Further, we use a ‘ntree’ size of 2,000
trees for robust predictions.

While many other machine learning approaches exist and have
been applied in hydrologic studies (e.g., support vector machines,
Gaussian process regression, K-means clustering, long-and short-
term memory networks, and other neural networks), we selected the
RF algorithm due to its proven performance in streamflow forecast-
ing, robustness, and computational efficiency.

Model Validation

For model validation, we tested both RF and CBRFC ESP using a
Leave P Out Cross Validation (LPOCV) over the common period
1983–2017. In an LPOCV, P is equal to the number of data points
dropped from the training set prior to model training. We set P ¼ 5

and drop the year to be hindcast, as well as the two preceding years
and the two following years. This provides for a ‘blind’ retrospec-
tive forecast, where no knowledge of the year in consideration is
included in model training. For example, to hindcast water year
2001 spring flow, the following water years are dropped from the
training set: 1999, 2000, 2001, 2002, and 2003. Similarly, to hind-
cast water year 2002 spring flow, data for water years 2000–2004
are dropped. This is applied to both the training dataset for the
RF model and for the CBRFC ESP traces. There are 30 CBRFC
ESP traces total for any given year, after dropping P ¼ 5 years
from this record, 25 traces remain to be used as an ESP hindcast
of the given year. The LPOCV, while not truly blind as in real time
forecast, attempts to mimic this and assess the hindcast models
conservatively.

The LPOCVapproach is applied to each year in the 1983–2017
period, resulting in 35 different hindcasts for each lead time from

both the RF approach and ESP. For each hindcast, the RF generates
a 2000-member ensemble, while the blind ESP hindcasts only have
25 traces. As mentioned in the description of the RF in an earlier
section, traditionally, the mean of estimates of the predictand (in
this case spring streamflow) from all the trees in the RF is used
as the single output of the RF. However, as done in Woodson et al.
(2021), we use the entirety of the forest as our ensemble.

Evaluation Metrics

Multiple metrics are used to evaluate the model performance of RF
and ESP during the 1983–2017 validation period. The following
paragraphs describe these metrics.

We use the ranked probability skill score (RPSS) to evaluate
the RF and ESP forecast performance using historical flow terciles
as the boundaries for the categories. RPSS is a categorical probabi-
listic skill metric (Epstein 1969; Murphy 1969, 1971; Weigel et al.
2007) that compares the forecasted categorical probabilities (e.g., a
percent chance of being a high-, medium-, or low-flow year) with a
climatological probabilistic hindcast based on the 1983–2017 natu-
ral flow record (∼1=3 chance of being in any tercile). For a blind
comparison, we drop the hindcast year from the flow record prior to
use as climatology. RPSS values range from one to negative infin-
ity. Scores greater or less than zero represent better or worse per-
formance, respectively, of the hindcast relative to climatology. A
score of one is considered a perfect hindcast. Another performance
metric used is relative bias (RB), measuring accuracy via the
deviation of the ensemble median from the observed value for each
year [Eq. (1)]

RBð%Þ ¼
P

n
i¼1ðŷi − yiÞP

n
i¼1 yi

� 100 ð1Þ

where, ŷi = Forecast ensemble median for year i; yi = Observed
value for year i; and n = number of years in the hindcast.

Additionally, we calculated the root MSE on the hindcast en-
semble median for each lead time [Eq. (2)]

RMSEmedian ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðŷi − yiÞ2
n

s
ð2Þ

We also calculated an ‘ensemble RMSE’, which measures the
performance of the entire ensemble for each year in the hindcast
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Fig. 3. Nonlinear correlation between predictors and predictand by lead time. Definitions for each variable are given in Table 1.
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[Eq. (3)] rather than the ensemble mean or median time series, as
has been done in prior work (Baker et al. 2021b; Woodson et al.
2021). This is essentially the root of the average squared ensemble
trace error

RMSEensemble;year−i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

ðŷi;j − yiÞ2
m

vuut ð3Þ

where, ŷi;j = Forecat ensemble member j for year i; and m = num-
ber of members in ensemble.

Finally, we evaluate the forecasts using reliability diagrams
and rank histograms, which are general measures of reliability
(Hashimoto et al. 1982) and show how well-observed frequencies
(conditioned on the hindcast distribution) compare to hindcast
probabilities (Baker et al. 2021b; Hartmann et al. 2002).

Overall, RPSS, ensemble RMSE, reliability diagrams, and rank
histograms indicate overall ensemble performance, whereas RMSE
and RB describe ensemble median performance.

Results

The predictor variables selected and their importance for the RF
models at various lead times are first presented, followed by the
hindcast skills.

Predictor Variable Importance

We fit a RF model for each year of the 35-year period in LPOCV
mode; thus, for a given lead time we have 35 importance values
for each variable that can be shown as a boxplot. The variables se-
lected and their importance values for several lead times are shown
as boxplots in Fig. 4 (see Table 1 for the full names of the abbre-
viations of the variables). We found that at shorter lead times
(0–4 months), fewer (2–4) variables are important and used in
the model. The CBRFC ESP ensemble mean hindcast was found

to be the most important variable at these lead times along with
seasonal projections of temperatures from the CESM-DPLE cli-
mate model (Fig. 4, top row). This is intuitive and expected, in that
the CBRFC ESP’s use of SAC-SMA and SNOW17 physical mod-
els captures all the hydrologic processes (e.g., snow, land surface
conditions, and basin storage) quite robustly until the start of the
forecast issuance, while the projections of temperatures during
the spring season of interest provide additional complementary in-
formation not captured by the ESP model. Thus, together they help
to capture all aspects of the land surface and projected atmospheric
conditions.

The magnitude of variable importance was also generally
greater at shorter lead times, indicating that the predictors add value
to the model and are thus skillful. At shorter lead times (4 months or
shorter), we initially used predictors like SWE and winter precipi-
tation but later found similar performance by substituting these
variables with CBRFC ESP ensemble mean and CESM-DPLE fu-
ture temperature. The ESP hindcasts simulate SWE from winter
precipitation inputs; thus, using ESP ensemble mean hindcasts
as an input to our RF model was parsimonious. At longer lead times
(6–18 months), the hydrologic information provided by the prior
winter’s snowpack and other land surface conditions diminishes.
Consequently, the ESP forecasts tend to be closer to climatology
and thus not very skillful. Therefore, the large-scale climate drivers
and their teleconnection indices–PDO, AMO–provide new infor-
mation about future climate conditions along with antecedent run-
off efficiency and hindcasts of temperature and precipitation from
the CESM-DPLE model. This is seen in the variables selected and
their positive importance in Fig. 4 (bottom row). As lead time in-
creases, there are no strong predictors; hence, combining informa-
tion from several predictor variables is important. In addition, the
variable importance magnitudes are lower in comparison to those at
shorter lead times. For the 18-month hindcast, the most important
variable was the preceding 3-month mean minimum temperature.
Since the 18-month hindcast is issued on October 1st, this predictor
would be the mean of the preceding July, August, and September
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Fig. 4. Variable importance plots from RF flow hindcasts during 1983–2017 LPOCV (n ¼ 35 years per boxplot).
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monthly minimum temperatures. This suggests that the effects of
antecedent basin conditions can extend far into the future.

Cross Validation Results and Skill

We generated LPOCVensemble hindcasts for all 10 lead times and
show boxplots of these at representative lead times of 8, 12, and
18 months in Fig. 5 to highlight that improving performance at lon-
ger lead times is a central goal of this work. Boxplots in Fig. 5 show
the distribution of ensemble members for both the 25-member
CBRFC ESP and 2,000-member RF ensembles as well as the ob-
served spring flow value for each year. Even at an 8-month lead
time, both ensembles are well dispersed, indicating comparable
confidence and reliability. However, ESP’s flow distribution gen-
erally does not change much over time, meaning that high- or
low-flow years are not well captured by the ensemble median and
interquartile range (IQR). The limited ensemble from ESP is also a
likely factor in this. Conversely, the RF hindcast’s median and IQR

vary with time and better track with the observed flows, except
in some years where it is off. For example, all three of the longer
lead time hindcasts show, relative to CBRFC ESP, RF projections
(as evidenced by the IQR) tend toward higher-than-average
flows in the mid-1980s pluvial and lower-than-average flows dur-
ing the early 2000s Millennium Drought. Conversely, CBRFC ESP
looks more like a climatological ensemble during these extreme
epochs.

Hindcast ensemble medians compared to observations are
shown for each model type and lead time in Fig. S1. Performance
deteriorates for all model types for lead times longer than 4 months.
This shows the importance of probabilistic, rather than determin-
istic, predictions.

The first skill metric calculated was the RPSS on terciles for
both CBRFC ESP and RF hindcasts at all lead times (Fig. 6). Indi-
vidual points represent a single year in the retrospective forecast,
while the boxplots represent aggregate performance during the en-
tire 35-year period. At shorter lead times, the RPSS distribution

5

10

15

1990 2000 2010

Fl
ow

 (M
A

F)

8−month lead time

5

10

15

1990 2000 2010

Fl
ow

 (M
A

F)

12−month lead time

5

10

15

1990 2000 2010
Water Year

Fl
ow

 (M
A

F)

18−month lead time

Forecast Method
ESP
RF

(a)

(b)

(c)

Fig. 5. LPOCV (P = 5) results for (a) 8-; (b) 12-; and (c) 18-month lead time hindcasts from ESP and 2000-member RF ensemble. Observed spring
flows shown by cross marks. RF ensembles include values less than the minimum observed flow shown here because RF is trained on flows starting in
1921, some of which are below those in the 1983–2017 retrospective forecast period.
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shows that ESP outperforms RF, although the latter outperforms
climatology in ∼75% of forecast years and has a median RPSS
of around 0.5 or higher. As lead time increases, the performance
of both methods decreases and ESP’s median RPSS becomes
zero or negative beyond 6 months. Conversely, the median RPSS
of RF remains positive at all long lead times, with values spanning
0.07 to 0.18 for lead times of 7 to 18 months: a 0.14 to 0.18 im-
provement over the ESP median RPSS. RF’s upper quartile and
upper whisker also outperform ESP at longer leads. However,
RF’s lower quartile and lower whisker are generally lower than
ESP’s. RF’s few but extreme failure cases may be a result of over-
confident hindcasts in those poorly performing years (e.g., the RF
IQR spread does not capture the observed value). This may be a
result of predictor-predictand relationships not seen in the training
set and motivates the need for longer datasets with more relevant
predictors. Conversely, ESP does not experience such a great fail-
ure because at longer lead times it is underconfident and performs
similarly to a climatological ensemble forecast (RPSS ∼0).

Hindcast median RPSS values from each lead time and hindcast
method are summarized in Table 2. RF shows the most improve-
ment over ESP at 8- and 18-month lead times (Δ ¼ 0.18). How-
ever, a 6-month lead time and longer RF shows increasing skill,

while the skill of ESP declines below climatology. Continuous
ranked probability skill scores (CRPSS) are also calculated for
RF, ESP, and a linear model (Fig. S2).

Similar to the results for RPSS, ESP generally has a lower RB
and root MSE for lead times up to 3–5 months, but for leads of
6 months or longer, RF performs better than both ESP and clima-
tology (Fig. 7). All three approaches appear to underpredict but are
never lower than −10% in RB. ESP experiences the worst RB
(−10%) during a 6-month lead time whereas RF is consistently be-
tween 0 and −6% in RB.

The data shown in Fig. 7 is numerically highlighted in Table 3.
Percent change in the ensemble median RMSE was also calculated
and shows how better or worse the RF ensemble median performs
with respect to either ESP or climatology. For lead times of
6 months and greater, RF outperforms ESP with reductions in
RMSE ranging from −10% to −15%. RF ensemble median outper-
forms climatology at all lead times, with RMSE reductions ranging
from −9% to −35%. The ensemble RMSE (Fig. 8) shows a com-
parable pattern as the other metrics: RF begins to outperform ESP
at a 6-month lead time and shows moderate improvement over ESP
and climatology for lead times of 8, 12, and 18 months. At lead
times of 8, 12, and 18 months, RF’s median ensemble RMSE is
0.57-MAF (−13%), 0.23-MAF (−5%), and 0.56 (−12%) MAF
lower, respectively, than ESP’s median (Table 4).

Both methods appear to have high reliability, particularly at lon-
ger lead times, as shown by close agreement with the 1∶1 line in the
reliability diagram (Fig. 9). The high reliability at longer leads is
likely due to the wide range both methods show at these leads,
whereas at shorter lead times, the hindcasts may be overconfident
and underdispersed.

Summary and Discussion

We developed a random forest-based machine learning modeling
framework, for forecasting UCRB runoff season flow at several
lead times spanning 0 to 18 months across years 1983–2017. The
suite of predictors includes large-scale climate drivers–AMO,

−2
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18 12 8 7 6 4 3 2 1 0
Lead time (months)

R
PS

S

Forecast
Method

ESP
RF

Runoff season skill spread from 1983−2017 hindcast by lead time (months)

Fig. 6. RPSS results by lead time from LPOCV (P ¼ 5) for 2,000-member RF ensemble and ESP. Climatology is 1983–2017 with the forecast year
left out.

Table 2. Median RPSS by lead time for RF and ESP hindcasts

Lead time
(months)

Median RPSS Δ Improvement
(RF minus ESP)RF ESP

18 0.17 −0.01 0.18
12 0.07 −0.07 0.14
8 0.18 −0.01 0.18
7 0.15 0.01 0.14
6 0.10 0.07 0.03
4 0.13 0.15 −0.02
3 0.39 0.50 −0.11
2 0.57 0.71 −0.14
1 0.67 0.76 −0.08
0 0.63 0.84 −0.20
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Fig. 7. (a) Root MSE; and (b) RB calculated on LPOCV ensemble median hindcast across lead time for three hindcast methods (RF, ESP, and
climatology) over 1983–2017. Climatology is 1983–2017 with the hindcast year left out.

Table 3. RB and root MSE calculated on LPOCV ensemble medians by lead time for RF and ESP

Lead time
(months)

RB (%) RMSE (MAF)

RF ESP Climatology RF ESP
RF % change
from ESP (%) Climatology

RF % change from
climatology (%)

18 −2.02 −2.37 −5.84 3.58 4.05 −12 3.98 −10
12 −5.09 −6.39 −5.84 3.64 4.26 −15 3.98 −9
8 −2.95 −7.37 −5.84 3.51 4.14 −15 3.98 −12
7 −4.48 −7.42 −5.84 3.62 4.07 −11 3.98 −9
6 −1.24 −9.95 −5.84 3.52 3.93 −10 3.98 −12
4 −5.86 −4.28 −5.84 3.49 3.36 4 3.98 −12
3 −4.65 −1.02 −5.84 2.59 2.62 −1 3.98 −35
2 −2.88 −1.71 −5.84 3.04 2.46 23 3.98 −24
1 −5.00 −0.54 −5.84 2.61 2.49 5 3.98 −34
0 0.20 −2.29 −5.84 2.78 1.94 43 3.98 −30
Note: RF % change indicates performance relative to ESP or climatology: negative values and positive values represent better and worse performance,
respectively, from RF.

0.0
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Fig. 8. Ensemble RMSE by the lead time for RF, ESP, and climatology during the 1983–2017 hindcast. Each point in a given boxplot is the RMSE
calculated on the LPOCV forecast ensemble from a single hindcast year.
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PDO, hindcasts of temperature and precipitation from CESM-
DPLE and CESM-LE climate models, basin runoff efficiency,
and the ensemble mean of CBRFC ESP flow. At shorter lead times
(0–4 months), when the basin’s IHC have high persistence, CBRFC
ESP retrospective forecasts forced with 1981–2010 precipitation
and temperature were skillful in comparison to the RF. However,
at longer lead times, CBRFC ESP was less skillful than RF, and in
some cases, climatology. Based on multiple metrics, random forest-
based hindcasts outperformed both CBRFC ESP and climatology
for lead times of 8, 12, and 18 months while maintaining reliability
over the course of a 35-year-long hindcast. At long leads, RF hind-
casts also performed better than CBRFC ESP at capturing wet and
dry extremes in the 1980s and early 21st century, respectively, as
evidenced by the IQR spread of each model type.

At shorter lead times, the CBRFC ESP ensemble mean was the
most important training variable for the RF hindcasts followed by
CESM-DPLE temperature projections, indicating the usefulness of
CBRFC ESP forecasts and associated IHC at these lead times. At
lead times of 6 months or greater, the ESP ensemble mean had a
negative hindcast median variable importance score, indicating that
it added no value to RF hindcasts in over half of hindcast years.
For these longer lead times, ocean teleconnections, antecedent min-
imum temperature, and to a lesser degree, climate projections, were
the only variables that added value to the RF hindcasts.

Although only naturalized flows at Lees Ferry, AZ, were
examined in this study, other studies have found slightly better per-
formance when making UCRB subbasin forecasts then aggregat-
ing, compared to UCRB aggregate (i.e., Lees Ferry) forecasts
(Baker et al. 2021a). Though outside of the scope of this research,
model performance at a subbasin scale should be elucidated when
using novel ML techniques trained on ocean teleconnections and
climate model projections. Others have developed robust methods
for disaggregating streamflows in space and time from a single
gauge to subbasins (Nowak et al. 2010). For this study, the runoff
season flow hindcasts could be disaggregated in space-time to all
UCRB subbasins and be used as inputs to a decision model such as
Reclamation’s CRB Mid-term Modeling System that is used in
0–24 months operations and planning (Baker et al. 2021b;
Reclamation 2019; Towler et al. 2021; Woodson et al. 2021).

Our proposed method showing improved retrospective forecasts
over existing operational forecasts through the inclusion of addi-
tional basin and climate information serves as a proof of concept
toward enhanced predictability of years 1 to 2 CRB flows. Mecha-
nistic sources that contribute to the predictability of years 1 to 2
CRB flows need to be fully understood. However, machine learn-
ing methods can better exploit them and potentially the nonlinear-
ities and interactions between land, ocean, and atmospheric
variables, and augment traditional, physically based methods like
SAC-SMA and SNOW-17 used in CBRFC’s ESP forecasts. The
relatively low computational burden of machine learning ap-
proaches is also attractive. Given the importance of Reclamation’s
forecasts to stakeholders for anticipating upcoming operations that
affect water deliveries, hydropower production, recreation, and
environmental flows under increasingly uncertain and critical con-
ditions, even moderate improvements over climatological and op-
erational forecasts are likely to be welcome tools.

Encountering streamflows that are outside of the historical
envelope is a challenge for both RF and CBRFC’s ESP technique
and is a phenomenon that will likely increase with climate change’s
influence on variability and extremes. RF hindcasts performed bet-
ter than CBRFC ESP in anticipating these unprecedented values but
are susceptible to greater failure in cases where the relationship be-
tween predictors and predictand changes from what is learned in
the training set, which is a potential reality, particularly for ocean

Table 4. Median ensemble RMSE by lead time for RF and ESP hindcasts

Lead time
(months)

Median ensemble
RMSE (MAF)

Δ Improvement
(RF minus
ESP, MAF)

% Change
(RF over
ESP) (%)RF ESP

18 4.17 4.73 −0.56 −12
12 4.38 4.61 −0.23 −5
8 3.77 4.34 −0.57 −13
7 4.37 4.47 −0.10 −2
6 3.94 4.08 −0.15 −4
4 3.54 3.71 −0.17 −5
3 2.91 2.78 0.13 5
2 3.33 2.43 0.90 37
1 3.54 2.25 1.30 58
0 2.88 1.97 0.91 46

Fig. 9. Reliability diagram and rank histogram by lead time for RF and ESP hindcast ensembles: (a) shows long lead times (6 to 18 months); and
(b) shows short lead times (0 to 4 months).
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teleconnections as the oceans warm and salinity changes. As such,
future work might examine the use of tailored SST predictors, po-
tentially delineated using causal and convolution network methods
or long- and short-term memory networks (e.g., Kratzert et al.
2019a, b; Sasou 2021; Song 2022; Zhang et al. 2021), to better
exploit the high correlation zones observed in the Pacific and
Atlantic Oceans, rather than simply using traditional ocean indices.
Additionally, other machine learning approaches could be used in-
stead of or in addition to the RF approach, with the latter having the
potential to be a multimodel projection. Training ML models on the
paleoreconstructed streamflow record (e.g., Gangopadhyay et al.
2022) could yield a rich predictive source, assuming quality pre-
dictors are available for such a time span. Finally, the assessment
of translation of the skills in flow forecasts from this study to their
potential skill in water resources decision variables is crucial for
real time application, particularly with respect to how well such
forecasts perform concerning robustness, reliability, and vulner-
ability of, for example, estimates of reservoir elevation from a de-
cision model forced with streamflow forecasts.
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