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• Isogeometric analysis (IGA) is a variant of traditional finite element analysis

(FEA) that integrates Computer Aided Design (CAD) with traditional FEA.

• Compared to FEA, IGA uses the same smooth spline basis functions for

geometrical modeling and numerical solution. Thus, IGA can preserve the

exact geometry with less degree of freedoms.

Isogeometric AnalysisIntroduction

Hughes, T. J., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and 
mesh refinement. Computer methods in applied mechanics and engineering, 194(39-41), 4135-4195.
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The complexity of the geometry causes a 
significant transportation challenge because 
material synthesis and degradation in neurons 
are carried out mainly in the cell body.

Typical neuron structure

Introduction to Neural Networks. http://science.slc.edu/~jmarshall/courses/2002/fall/cs152/lectures/intro/intro.html

Dendrites

Cell Body
Axon

Terminal Bulb

• Overview of neuron geometry

Introduction



• Material transport in neuron

• Objective: Study the traffic control of material transport in neurons
5

Analyzing traffic routing at 
neurite junction

The transport of synaptic vesicles over a branch

Introduction



IGA-based Material Transport 
Simulation In Complex 
Geometry of Neurons
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Rohena, C. C., & Mooberry, S. L. (2014). Recent progress with microtubule stabilizers: new 
compounds, binding modes and cellular activities. Natural product reports, 31(3), 335-355.

Retrograde Transport
(Synapse to Cell body)

Anterograde Transport
(Cell body to Synapse)

Microtubules
Materials

• Molecular motors and mechanisms of directional transport in neurons

Background
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[1] D. A. Smith et al. Models of motor-assisted transport of intracellular particles. Biophysical Journal, 2001.
[2] Dinh, A. T. et al. A model for intracellular trafficking of adenoviral vectors. Biophysical journal, 2005.

• Study the transport using a PDE model in 1D domain.
• Method: Finite Difference Method (FDM)

Transition map of between transport states [2]

• Motor-assisted transport model [1]



• We model the transport of material in neurite network by generalizing the 
motor-assisted transport model to 3D domain:
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D. A. Smith and R. M. Simmons. Models of motor-assisted transport of intracellular particles. Biophysical Journal, 2001.

• To get the velocity field, we solve the steady incompressible Navier-Stokes 
Equation and couple with the motor-assisted transport model:

Convection term

Diffusion term
Reaction term

Model of Material Transport

∇ ⋅ 𝒖 = 0
∇ ⋅ 𝒖⊗ 𝒖 + ∇𝑝 = 𝜈Δ𝒖 + 𝑓



• Matlab–TREES toolbox
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Example of TREES toolbox

H. Cuntz et al. One rule to grow them all: a general theory of neuronal branching and its practical application. 
PLoS computational biology, 2010.

Tree structure reconstruction

The toolbox can reconstruct geometry of neurons by an input ‘swc’ file.



• Skeleton-based sweeping method
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Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, and T. J. R. Hughes. Patient-specific vascular NURBS modeling for 

isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering, 196(29):2943 – 2959, 2007

Basic idea: sweep the cross-section template along the neuron skeleton

Mesh generation examples for some simple neuron geometries

Method for mesh generation



Simulation Pipeline Summary
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A. Li, X. Chai, G. Yang, Y. J. Zhang. An Isogeometric Analysis Computational Platform for Material Transport Simulations in
Complex Neurite Networks. Molecular & Cellular Biomechanics,16(2):123-140, 2019.



Result in three simple neurons: Velocity
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• Problem setting: 
• Unidirectional transport

• Parabolic inlet velocity 

• Sudden increase in the
velocity magnitude is
observed near the branching
point in both bifurcation
models (red circle regions).

• The velocity magnitude is
higher in shorter branch.

A. Li, X. Chai, G. Yang, Y. J. Zhang. An Isogeometric Analysis Computational Platform for Material Transport Simulations in

Complex Neurite Networks. Molecular & Cellular Biomechanics,16(2):123-140, 2019.



Result in three simple neurons: Concentration
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We compare the concentration results with different detachment rates:
• 𝑘′ = 0.5 𝑠−1 (Fig. A, C, E)
• 𝑘′ = 0.1𝑠−1 (Fig. B, D, F)

• The propagation is faster under the
lower detachment rate.

• For the one-bifurcation model (Fig.
C&D), transport exhibits faster
propagation in the left branch than
in the right branch. Similar
observation is obtained in the
neurite tree of three bifurcations
(Fig. E&F)

Conclusion: Geometry affects the
velocity field inside neurites and in
turn affects the spatial distribution of
transported material.

A. Li, X. Chai, G. Yang, Y. J. Zhang. An Isogeometric Analysis Computational Platform for Material Transport Simulations in

Complex Neurite Networks. Molecular & Cellular Biomechanics,16(2):123-140, 2019.



Result for Complex Neurite Network
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Geometry and mesh for Neuron 
NMO_66731:

A zebrafish retina neuron
(Data comes from the 

NeuroMorpho database)

Velocity field Concentration colormap

The material is prior to transport to high velocity region.
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Geometry and mesh for Neuron 
NMO_66748:

A zebrafish retina neuron
(Data comes from the 

NeuroMorpho database)

Velocity field Concentration colormap

The transport priority is not obvious for more complex geometry.

Result for Complex Neurite Network
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Geometry and mesh for Neuron NMO_00865
A mouse cerebellum Purkinje neuron

(Data comes from the NeuroMorpho database)

Result for Complex Neurite Network
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Result for Complex Neurite Network

Velocity field Concentration colormap 
(logarithmic scale is used to 

highlight the distribution pattern)



The simulation result in a mouse cerebellum Purkinje neuron showing the dynamic 
material transport process for 350 seconds. The colormap represents the 
concentration of the material. 

Result for Complex Neurite Network

19



Summary

• An IGA-based computational platform to study cellular process in neuron

The solver can provide the concentration prediction of material transport

process for complex neuron geometry. It can also be extended to solve

other PDE models of cellular processes in complex neurite network

geometry.

• The transport process is mediated by neuron geometry

Our results show how the complex network geometry mediates spatial

patterns of transport velocities at neurite junctions and within different

branches. The spatial patterns of transport velocities in turn drive different

distributions of transported material in different regions of neurite

networks.

20



GNN-based Deep Learning 
Model of Material Transport 

In Complex Neurite Networks

21



• The “Big data” generated by material transport simulation includes massive
velocity and concentration information that can be used to study the
transport mechanism and material spatial pattern in neuron.

• The computational cost of the simulation is too expensive, and we need a
surrogate to provide faster prediction result.

Motivation
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Input

• Mesh or Grid for geometry
• PDE model parameter setting
• Boundary condition (BC) setting
• Initial condition setting 

Build Linear System
• Space-time Formulation
• Matrix Assembly
• Apply BCs

Solve Linear System 

Time Iteration

Output

Concentration 
distribution

Data 
processing 

Fast Prediction 
using Well-

Trained Model

Network 
Training

Training 
Data

Test Data

Current IGA 
Workflow

Deep Learning
Workflow 

Figure: A comparison between IGA and deep learning workflow



• The sample data from simulation is stored in unstructured mesh
Current deep learning technique like convolutional neural
network (CNN) is mature to handle the data stored in
structured quadrilateral or hexahedral mesh. How to efficiently
handle unstructured data format is still an emerging problem in
machine learning field.

• Extensive neuron geometries with different topologies
The deep learning model needs to be trained with the
geometry information encoded as input feature to fit for any
complex geometry.

Challenge

23

Graph neural network (GNN) could be a solution for these problems, 
since it can directly handle non-Euclidean 3D representations like 
point clouds, graphs, and meshes.



Graph representation of neuron geometry
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• For each neuron tree, the geometry can 
be decomposed into two basic units 

Bifurcation

Single pipe

• The neuron tree can be represented as a
graph. The nodes represents the
decomposed bifurcations and single pipes.
The directed edges show the skeleton of
the tree.

Input neuron geometry Output neuron graph

A. Li, A. B. Farimani, Y. J. Zhang. Deep Learning of Material Transport in Complex Neurite Networks. Scientific Reports, 11:11280, 2021.



GNN Framework 
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Our GNN model is built on the graph representation, and it consists of two parts:
• The simulator for bifurcation (𝐹𝑏) and pipe (𝐹𝑝)

𝑥𝑘+1/2 = 𝐹𝑏 𝑜𝑟 𝑝(𝑥
𝑘 , 𝑐𝑖 , 𝑐𝑏, 𝑣𝑝)

Input: Prediction value 𝑥𝑘 from step 𝑘, initial condition 𝑐𝑖, boundary condition 𝑐𝑏, simulation parameters 𝑣𝑝.

Output: Prediction value 𝑥𝑘+1/2 before assembly.
• The assembly model (𝐺𝐴):

𝑥𝑘+1 = 𝐺𝐴(𝑥
𝑘+1/2, 𝑐𝑖 , 𝑐𝑏 , 𝑣𝑝)

Input: Prediction value 𝑥𝑘+1/2 from simulator, initial condition 𝑐𝑖 , boundary condition 𝑐𝑏 , simulation
parameters 𝑣𝑝.

Output: Prediction value 𝑥𝑘+1 after assembly.

Decompose

Input: 𝒙𝒌

Training process: compare with target concentration values
and update parameters in simulator and assembly model

Bifurcation 
simulator

Pipe 
simulator

Intermediate : 

𝒙𝒌+𝟏/𝟐
Output : 𝒙𝒌+𝟏

𝑭𝒃 and 𝑭𝒑 𝑮𝑨

Assembly 
model

Figure: GNN framework

A. Li, A. B. Farimani, Y. J. Zhang. Deep Learning of Material Transport in Complex Neurite Networks. Scientific Reports, 11:11280, 2021.



GNN Simulator for local prediction in pipe and bifurcation

Mean square error

Residual term from PDE

GN 
Block

GN 
Block

…
…

…
……

…

…
…

Nodal features: 
ℎ0 = (𝐱, 𝐩, 𝐜𝐭𝐤)

Input

Input graph:
𝑛𝑣 × 𝑛𝑣 adjacent 

matrix

+

…
…

OR

Predicted nodal 
concentration: 
𝑐𝑡𝑘+1

Output

OR

⊕ ℎ𝐿⊕ℎ1…… ℎ𝐿−1 MLP
Decoder

𝑥𝑣

𝓔 𝜙𝑒

𝜙𝑣
𝑥𝑣

𝓥

Σ𝑥𝑒

𝓥’

Edge Module
Node 

Module

• Two different GNN simulators are trained for pipe and bifurcation structures.
• The GNN simulator adopts a recurrent “GN block + MLP Decoder” scheme.
• The loss function includes the residual term from PDEs:

Figure: The architecture of GNN simulator 

A. Li, A. B. Farimani, Y. J. Zhang. Deep Learning of Material Transport in Complex Neurite Networks. Scientific Reports, 11:11280, 2021.



GNN assembly model to improve global prediction
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Penalty term to impose consistent 
prediction on interface

Intermediate 
prediction 𝑿 from 

GN simulators 

Output 
concentration 
prediction 𝑿′

Pipe-bifurcation 

assembly 𝑮𝑨
𝒑−𝒃

Pipe-pipe 
assembly 

𝑮𝑨
𝒑−𝒑

Bifurcation-
bifurcation 

assembly 𝑮𝑨
𝒃−𝒃

• The GNN assembly accounts for three types of assembly during prediction
• The GNN assembly model gathers predicted information from its neighboring simulators
• The loss function includes a penalty term to ensure consistent results at assembly interface

Mean square error

Figure: The architecture of GNN assembly model

A. Li, A. B. Farimani, Y. J. Zhang. Deep Learning of Material Transport in Complex Neurite Networks. Scientific Reports, 11:11280, 2021.



Dataset generation and training
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• We run IGA simulations in 2 different geometries and 200 different boundary conditions to collect data

• Constant parameters are 𝐷 = 1.0
𝜇𝑚

𝑠2
, 𝑘 = 1.0𝑠−1, 𝑘′ = 0.5𝑠−1, 𝑢𝑖 = 0.1 𝜇𝑚/𝑠

• For each simulator, extract 20,000 samples = 100 (pipes/bifurcations) * 200 (boundary conditions)
• For each type of assembly, extract 30 different geometries
• 75% samples used for training and 25% for testing
• The performance is evaluated using mean relative error (MRE)

𝑀𝑅𝐸 =
σ𝑖=1
𝑁 1

𝑁 𝑐𝑖
𝑃 − 𝑐𝑖

𝐺 2

max 𝑐𝐺 −min 𝑐𝐺
× 100%

Figure 2: The graph extraction of the pipe and 
bifurcation structures

Figure 1: Two neuron geometries used for data 
generation: NMO_66731 (left), NMO_66748 (right)

A. Li, A. B. Farimani, Y. J. Zhang. Deep Learning of Material Transport in Complex Neurite Networks. Scientific Reports, 11:11280, 2021.



Results – prediction in complex neuron trees
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Figure 1: NMO_66731

Figure 2: NMO_66748 Figure 3: (A,D) NMO_06846; (B,E)NMO_06840; 
(C,F)NMO_112145; (G,I)NMO_32235; (H,J)NMO_32280;

A. Li, A. B. Farimani, Y. J. Zhang. Deep Learning of Material Transport in Complex Neurite Networks. Scientific Reports, 11:11280, 2021.



30Figure: (A,B) NMO_54504; (C,D)NMO_54499; (E,F)NMO_00865.

Results – prediction in complex neuron trees



Results - prediction in complex neuron trees 
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We summarize the details of the computation for each tree in the following table: 

• Our GNN model provides high accurate prediction with all the prediction MRE below 9%.
• The average prediction MREs of zebrafish and mouse neurons are comparable with 7.18% 

and 8.23%.
• Our GNN model can achieve up to 330 times faster compared to IGA simulation.
• The model performs worse in longer branches or regions with a high density of bifurcations 

due to increasing complexity of the geometry.

A. Li, A. B. Farimani, Y. J. Zhang. Deep Learning of Material Transport in Complex Neurite Networks. Scientific Reports, 11:11280, 2021.

Table: Statistics of all tested complex neurite networks



Summary

• We develop a GNN-based deep learning model to study
neuron transport pattern from simulation results.

• The model can tackle different neuron geometries with the
use of GNN assembly model.

• The model can provide the spatiotemporal concentration
prediction with MRE < 10% and over 100 times faster than
the IGA simulation.
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Modeling Material Transport Regulation 
and Traffic Jam In Neurons Using PDE-

constrained Optimization

33



• Microtubules (MTs) swirls and induced axonal swelling in abnormal neuron

O.A. Shemesh, H. Erez, I. Ginzburg, M.E. Spira, Tau-Induced Traffic Jams Reflect Organelles Accumulation at Points of Microtubule Polar 
Mismatching, Traffic. 9 (2008) 458–471. 

Background

• The tau-induced impairment of
organelle transport is caused by polar
reorientation of the MTs along the
axon or their displacement to
submembrane domains.

• Therefore, ‘traffic jams’ reflect the
accumulation of organelles are
observed at points of MT polar
discontinuations or polar mismatching
rather than because of MT
depolymerization.

Fig. Formation of MT swirls underlies axonal swelling 
and transport defects in tau overexpressing neurons 

34

• Motivation: Though our IGA solver and GNN model can effectively simulate the
transport process in complex neuron geometries, the motor-assisted transport model
is too simple to simulate and explain the traffic jam phenomenon.
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Modeling neuron material transport control using PDE 
constrained optimization 

Such that
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න
0

𝑇

න
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2𝑑Ω𝑑𝑡Minimizing the object function

• 𝑉± 𝑥 is the predefined velocity distribution to control velocity.

• 𝛼 represents to what extend we want to optimize the transport process and avoid traffic
jam.

• 𝑙± represents the density of microtubules used for motor-assisted transport.

• 𝑓± represents the control forces (or accelerations) that used to mediate the material traffic.

New terms added to

model the traffic control

mechanism

• Based on the motor-assisted transport model, we propose to use PDE-constrained 
optimization (PDE-CO) to model the traffic jam and the active regulation from 
neurons to control the transport process:
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[1] A. Li, Y. J. Zhang. Modeling Intracellular Transport and Traffic Jam in 3D Neurons Using PDE-Constrained Optimization. Special Issue of Journal of
Mechanics on Recent Advances in IGA, 38:44-59, 2022.
[2] A. Li, Y. J. Zhang. Modeling Material Transport Regulation and Traffic Jam in Neurons Using PDE-Constrained Optimization. Scientific Reports,
12:3902, 2022.
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Result for 2D pipe geometry

• Boundary conditions:

Inlet: 𝑛0 = 1, 𝑛+ = 2, 𝑛− = 0, 𝑣+𝑥 = 1.0, 𝑣+𝑦 = 0

• Computed velocity profile: 
• Desire velocity profile: 

• Default Parameter settings:

𝐷+ = 0.1, 𝑘+ = 1.0, 𝑘+
′ = 0.1, 𝑙+ = 1.0,

𝛼 = 1.0, 𝛽 = 1.0

• 𝑙+ distribution for introducing traffic jam

Normal

Traffic jam

Normal

Traffic jam

A. Li, Y. J. Zhang. Modeling Material Transport Regulation and Traffic Jam in Neurons Using PDE-Constrained Optimization. Scientific

Reports, accepted, 2022.

• Computed concentration profile and distribution along 

geometry centerline



Result for 2D neuron trees with reduced MTs
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NMO_54505 NMO_54499

• Velocity

Material accumulation can
be observed in the local
region

The outlet concentration is
also affected by the traffic
jam

• Material concentration and the curve plot from the inlet to every outlet of the neuron tree

The decrease of velocity is observed
in the traffic jam region

Reduce the number of MTs in the red circle region of two neuron trees



Result for 2D single pipe with swelling and MT swirls
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• Computed velocity profile

• Boundary conditions:

Inlet: 𝑛0 = 1, 𝑛+ = 2, 𝑛− = 0, 𝑣+𝑥 = 1.0, 𝑣+𝑦 = 0

• Default Parameter settings:
𝐷+ = 0.1, 𝑘+ = 1.0, 𝑘+

′ = 0.1, 𝛼 = 1.0, 𝛽
= 1.0

• 𝑙± distribution for introducing traffic jam

𝐿1 𝐿2 𝐿3

𝑙−

𝐿1 𝐿2 𝐿3

𝑙+

Along centerline: 

On cross-section:

𝑙+ 𝑙−

𝐿1 𝐿2 𝐿3

• Simulation setting for MT swirls

Normal

MT swirls

Normal MT swirls

Normal

MT swirls

• Concentration + velocity streamline at swollen region

• Computed concentration profile

Vortex pattern velocity streamline is observed at high 
concentration region

A. Li, Y. J. Zhang. Modeling Material Transport Regulation and Traffic Jam in Neurons Using PDE-Constrained Optimization. Scientific

Reports, accepted, 2022.



Simulation settings for modeling traffic jam in 3D
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Three types of transport conditions:
1. Normal transport: assuming a unidirectional transport with a unipolar MT system
2. Traffic jam caused by reduced number of MTs: decrease MT distribution in the traffic jam region and the 
definition of 𝑙+ in a single pipe is

3. Traffic jam caused by MT swirls:
• The traffic jam is introduced at the swollen region (Pink color)
• The distribution of 𝑙+ and 𝑙− are set differently within the cross 

section of the swollen region. Red regions have MTs point to the 
outlet while the blue regions have MTs reverse back to the inlet 
direction. We have

Figure 1: 𝑙+ distribution along single pipe

A. Li, Y. J. Zhang. Modeling Intracellular Transport and Traffic Jam in 3D Neurons Using PDE-Constrained Optimization. Special Issue of
Journal of Mechanics on Recent Advances in IGA, 38:44-59, 2022.
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• Velocity

• Concentration

Normal Traffic jam

Normal Traffic jam Concentration along centerline

Result for single pipe with reduced number of MTs

A. Li, Y. J. Zhang. Modeling Intracellular Transport and Traffic Jam in 3D Neurons Using PDE-Constrained Optimization. Special Issue of
Journal of Mechanics on Recent Advances in IGA, 38:44-59, 2022.
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• We observe reversing and vortex pattern
streamlines that caused by distribution of
different direction MTs

• We find that the reversing streamline mainly
occurs between the red and blue region,
indicating the transport path of material is
extended or even trapped in the local region.

• We find that the material flux is significantly
decreased in all the traffic jam results
compared with the normal transport.

A. Li, Y. J. Zhang. Modeling Intracellular Transport and Traffic Jam in 3D Neurons Using PDE-Constrained Optimization. Special Issue of
Journal of Mechanics on Recent Advances in IGA, 38:44-59, 2022.

Result for single pipe with swelling and MT swirls

Fig. C

Normal 

transport

Fig. D Fig. E Fig. F Fig. G

Area ratio 

𝐴𝑟𝑒𝑑/
𝐴𝑏𝑙𝑢𝑒

- 1.0 1.0 1.5 2.1

Flux 0.9415
0.22418

(-75%)

0.2506

(-73%)

0.3804

(-58%)

0.4027

(-56%)
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Normal transport Traffic jam (Reduced MTs) Traffic jam (MT swirls)

Modeling traffic jam in the neuron tree extracted from NMO_54499

Velocity

Local 
Streamline

Local
Streamline

Velocity

• A sudden decrease of
velocity is observed in
the traffic jam region.

• The reversing and vortex
pattern streamlines are
observed in the region
with MT swirls
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Tree 1

Normal transport Traffic jam (Reduced MTs) Traffic jam (MT swirls)

Modeling traffic jam in two neuron trees extracted from
NMO_54499 - Concentration

• The distribution plots from the inlet to each outlet show the material accumulation in the traffic jam region.
• The material concentration is reduced in the outlets downstream the traffic jam region.
• More materials are transported to the branches without traffic jam to mitigate the accumulation.

Tree 2



Summary

• The transport process is mediated by microtubules (MTs)

Our study shows that MTs have a major impact on the material transport
velocity and further affect the material concentration distribution. The
reduction of MTs in the local region can slow down the transport velocity
and lead to traffic jam in this region.

• The simulation potentially explains the formation of traffic jam

Due to MT swirls, the streamline with vortex pattern is observed and it not
only extends the transport distance but also traps the material in the local
region, and therefore explains why high concentration region matches with
the circular streamline pattern.

• An IGA-based optimization framework to study cellular process in neuron

The IGA optimization solver provides an efficient computation tool for
studies of material transport regulation in complex neurite networks. The
solver can also be extended to solve other PDE-CO models of cellular
processes in complex neurite network geometry.

44



Conclusion

• We have developed an IGA-based platform for material transport
simulation and tested the IGA solver within multiple complex and
representative neurite networks.

• To address the high computational cost of the IGA solver, we have
developed a GNN-based deep learning framework to learn from IGA
simulation data and provide fast material concentration prediction.

• We have then developed a novel PDE-CO transport model to further
study the traffic control mechanism and explain the traffic jam
formation during the transport process.
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Future work
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• Model improvement
We need to improve the transport model to account for the effect of traffic
jam on the effect on the deformation of neuron geometries. To address
this limitation, we can couple the transport model with a structural model
and solve a fluid-structure interaction problem to simulate the geometry
deformation during traffic jam.

• Model validation with biological experiments
Biological experiments are necessary to validate our model. We need to
derive more accurate parameter setting from the experiment and test our
solver in complex geometry.

• Application in studying other related biological process
The material transport model can be used to study other related biological
process such as neuron growth, which will help understand the neuron
growth process and neurodegenerative diseases.
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