TMR Magnetic Field Mapper

Medtronie

Team Flatirons

Molly Alvine | Vinicius Pelissari | Nick DiPonzio | Alex Wu | Justin Caro | Fahad Gabgab

OVERVIEW

Tunnel magnetoresistance (TMR) sensors have higher sensitivity, lower power consumption, and smaller size compared to other types of magnetic sensors. Our initial goal was to use these sensors to create a highly sensitive metal detector that could detect small surgical tools, such as needles or tweezers, that may be left in a body during a procedure. The TMR sensors presented a learning curve and uncertainty about if they could work for this application. The project was rescoped to research the operation and capabilities of the sensors to better understand it and determine the feasibility for a retained item detector.

KEY FEATURES

The TMR Magnetic Field Mapper uses TMR sensors oriented along the x, y, and z axes to generate a heatmap of the magnetic field over a region. The gantry moves the sensor PCB in a grid pattern and allows us to perform controlled tests with the TMR. The heatmap algorithm provides a visual indication of the magnetic field magnitude.

TMR SENSOR

- Very thin (1-3nm)
 insulating layer between
 two ferromagnetic
 electrodes
- Resistance changes
 based on the
 magnetization direction
 in the electrodes relative
 to each other
- Electrons tunnel
 through insulator layer
 to generate current

SYSTEM DESIGN

A gantry based TMR sensor tester that maps the magnetic field of magnetized objects.

TMR Sensors

The Crocus CT220

TMR sensor

measures the
magnetic field and
outputs an analog
voltage linearly
proportional to the
field strength.

Analog to Digital Converter

The ADS1115 is a low noise ADC that reads the sensor output voltage and converts it to a digital signal that is sent to the microcontroller.

Microcontroller

The ATMEGA328
collects the TMR
sensor
measurements from
the ADC and gantry
position from an
encoder and sends
the data to the
heatmap algorithm.

SOFTWARE

HEATMAP

ACKNOWLEDGEMENTS

We would like to thank our sponsor Aaron Mattmiller at Medtronic, our faculty advisor Gabriel Altman, and Professor Eric Bogatin.