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Abstract: We propose a new class of estimators for the size of a jump discontinuity on a nonparametric
regression. While there is a vast literature in Econometrics that addresses this issue (see, inter alia, Hahn
et al. (2001), Porter (2003), Imbens and Lemieux (2008)), the main approach in these studies is to use local
polynomial (mostly local linear) approximations for the regression on both sides of the discontinuity. In this
paper, we adopt a novel approach. The basic idea of our estimator is to extend the regressions on both
sides of the discontinuity using the extension of Hestenes (1941). These two extended regressions are then
estimated and used to estimate the jump at the discontinuity. The inspiration for our method comes from
recent work by Mynbaev and Martins-Filho (2019), where a simple and elegant solution to boundary prob-
lems in density estimation is obtained using the same extension principle. Our work provides a class of jump
estimators that are easy to construct using classical kernels and bandwidths that are constant over the entire
domain of the regression. Focusing on the properties of our estimators at boundary points, we provide their
bias, variance and asymptotic distributions and compare them with those of local linear (LL) estimators.
We conduct extensive Monte Carlo simulations to contrast the finite sample performance of our estimators
with that of the NW and LL estimators and, more importantly, to investigate the sources of bias at the
cutoff point. Finally, we apply our estimators to data provided by Litschig and Morrison (2013) to illustrate
their empirical applicability and demonstrate some advantages of using our nonparametric estimation over
standard procedures in regression discontinuity designs.
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1 Introduction

As a method for empirically evaluating the effects of policy or experimental interventions, regression discon-

tinuity (RD) designs have been widely used in Economics, Political Science and other social and behavioral

sciences. See Imbens and Lemieux (2008), Lee and Lemieux (2010) and Cattaneo and Escanciano (2017) for

theoretical and empirical overviews of the existing literature. RD designs are inherently nonparametric mod-

els as identification typically relies only on smoothness assumptions on the relevant conditional expectations

at a known threshold or cut-off point in the set where the conditioning covariate (regressor) takes values. It

is well known that traditional nonparametric kernel regression estimators, such as Nadaraya-Watson, suffer

from boundary problems (see, inter alia, Gasser et al., 1979, Gasser and Muller, 1984, Fan, 1992, Härdle and

Linton, 1994). Specifically, these estimators have slower rates of convergence for bias at boundary points than

at interior points in the regression domain. Under typical assumptions on the smoothness of the regression

and regressor density, the traditional Nadaraya-Watson (NW) estimator constructed with bandwidth h > 0

has bias of order O(h) at boundary points, compared to O(h2) at interior points of the regression domain.

This problem is particularly relevant for RD designs as the estimation of regression functions at boundary

points is precisely the object of interest.

The problem can be aggravated in RD designs, see Porter (2003), as an estimator for the jump disconti-

nuity at the threshold may compound the poor bias behavior of nonparametric estimators of the regression

to the right and to left of the threshold. While there is a vast literature in Econometrics and Statistics

that attempts to address this issue, (see, inter alia, Fan, 1992, Hahn et al., 2001, Porter, 2003, Imbens

and Lemieux, 2008, Lee and Lemieux, 2010, Imbens and Kalyanaraman, 2012) the main approach in RD

designs is to estimate local polynomial (mostly local linear) approximations for the regressions on both sides

of the discontinuity and use these to produce an estimate for the jump discontinuity at the threshold. This

approach is justified by Fan and Gijbels (1992) where it is shown that local linear estimators, under standard

smoothness assumptions, have bias of order O(h2) at boundary points. Porter (2003) proposes RD estima-

tors - partially linear local polynomial estimators - that can achieve smaller order biases at boundary points

by using high order kernels. However, these estimators require identical regression functions (separated by a

jump) on both sides of the threshold, a restriction that is not required by typical nonparametric estimators

when applied to to data to the left and right sides of a point of discontinuity.

In this paper, we adopt a novel approach. The basic idea behind our estimation procedure is to extend

regressions beyond the boundary of their domains to the entire real line, using an extension proposed by

Hestenes (1941). These extended regressions are then estimated using a generalized reflection approach and

used to estimate jump discontinuities. The inspiration for our method comes from Mynbaev and Martins-

Filho (2019), where a simple and elegant solution to boundary problems in density estimation is obtained

using the same extension principle. Their solution can be applied not only to densities but also to any
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sufficiently smooth function, such as suitably defined regressions. Building on their work, we apply Hestenes’

extension to estimate regressions that have jump discontinuities and can thus be viewed as comprising two

regimes with boundaries: one to the left and one to the right of the point of discontinuity. Regression

functions on each side of the discontinuity can be different and, in particular, can have different degrees

of smoothness. In essence, instead of using higher order polynomial functions to reduce bias, we use a

generalized reflection method of extending the regression functions across discontinuity points to reduce

bias.

In fact, as outlined in section 2 of this paper, our estimation strategy produces a class of jump discontinu-

ity estimators that is an alternative to the commonly used procedures based on local polynomial regression.

What distinguishes the elements in the class are the types of Hestenes’ extension used. Our estimators are

constructed based on the algebraic structure of the classical NW estimator. However, contrary to the NW

estimator that suffers from the aforementioned boundary problems (slow rates of bias decay and, in some

cases, inconsistency), our estimators have boundary behavior that is completely analogous to that at interior

points of the regression domain. Thus, we restore bias behavior at boundary points to be the same of that at

interior points. As is the case for the NW estimator, the estimators we propose are easy to construct, require

no modification to commonly used kernels and allow for a common bandwidth over the entire domain of the

regressions.

Focusing on properties at boundary points, we derive the bias, variance and asymptotic distribution of

our estimators. In addition, we provide a theoretical comparison between our estimator and the popular

local linear (LL) estimator. This estimator has the same unconditional bias of order O(h2) and variance

order O((nh)−1), where n is the sample size, but with different magnitudes for both bias and variance. Our

estimators eliminate the boundary problem by circumventing partial integration of kernels, but the size of

the bias and variance is a function of by the type of Hestenes (1941) extension used. Alternatively, the size

of the bias and variance of LL estimators are impacted by partial integration of kernels. Hence, for a given

kernel, our estimators may outperform LL estimators, since researchers have control over the selection of

which type of extension is used.

We have conducted extensive Monte Carlo simulations to shed light on the finite sample behavior of

our estimators. We contrast their finite sample performance with that of the NW and LL estimators,

and compare bias and variance of our estimators to their theoretical values. Our simulations confirm our

theoretical results. In particular, our estimators are free of boundary problems and perform better than NW

estimators in all cases. Compared to LL estimators, our estimators have the same bias order and similar, or

in some cases, smaller bias size.

To illustrate the applicability of our estimators in empirical settings, we apply them to data used in

Litschig and Morrison (2013), where a RD design is used to examine the degree to which intergovernmental

2



transfers impact education and poverty outcomes in Brazil. We use our estimators and the NW and LL

estimators to estimate the jump of the conditional mean of the treatment and outcome variables, and the

Hestenes-based density estimators of Mynbaev and Martins-Filho (2019) and LL density estimators of Cheng

(1994) to estimate the jump on the density of the running variable. Litschig and Morrison (2013) use the

standard least squares method to implement a local linear estimator to estimate jumps, which is the typical

approach in empirical RD design studies. We demonstrate that our approach is more flexible than theirs in

several ways: first, we choose bandwidths optimally while their choice of bandwidth is arbitrary, following

no particular optimization criterion; second, by using a Gaussian kernel, all data influences the estimation

of the jump while they only use data in the vicinity (defined by the bandwidth) of the jump.

The rest of this paper is organized as follows. In section 2, we introduce the Hestenes-based estimators for

regressions with a domain that includes boundary points. Then we derive the bias, variance and asymptotic

distribution of our estimator for points in (and outside) a vicinity of the boundary. We compare these

properties with those of LL estimators. In section 3, we connect regression estimators to estimation of

a jump discontinuity within the context of the RD design literature. We define estimators for the jump

discontinuity and establish consistency and asymptotic normality of the estimator. In section 4, we conduct

Monte Carlo simulations that compare our estimators to NW and LL estimators. In section 5, we give an

empirical illustration of our methodology. Section 6 gives some concluding remarks and topics for future

study. Supporting lemmata and proofs are collected in the Appendix.

2 A Hestenes-based regression estimator

We start by considering an independent and identically distributed sequence of random vectors in R× [0,∞),

denoted by {(Yi, Xi)}ni=1, each of which is distributed as (Y,X), with

E(Y |X = x) = m(x). (1)

We assume that the marginal density f of X exists and that m, f ∈ Csb ([0,∞)), where Csb ([0,∞)) the class

of functions f : R → R whose support is [0,∞) and which is s-times differentiable with |f (s)(x)| ≤ C for

some 0 < C < ∞, s ∈ N and f (s)(x) denotes the derivative of order s ∈ N of f . To overcome boundary

problems when estimating m, we smoothly extend the function h(x) ≡ m(x)f(x) from its original domain

[0,∞) to (−∞, 0). Its smooth extensions to (−∞, 0) will be denoted by φ(x) for x < 0 and are given below.

In particular, we scale h and reflect it over from the nonnegative to the negative side of the real line up to

s + 1 times. The extension φ is a linear combination of the reflection of scaled h functions which satisfy

sewing conditions that preserve continuity and derivatives up to order s. We will then use the observations

on (Y,X), which include only nonnegative values of X to estimate µ(x), which is defined on the whole real

line by piecing together h and φ.
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Specifically, let w1, . . . , ws+1 be pairwise distinct positive numbers for s = 0, 1, . . . such as, wi = 1/i, or

wi = i, for i = 1, . . . , s+1. Also, let the numbers k1, . . . , ks+1 be defined by the following system of equations

s+1∑
i=1

(−wi)jki = 1, j = 0, . . . , s. (2)

The determinant of this system (Vandermonde) is nonsingular, i.e.,∣∣∣∣∣∣∣∣∣
1 1 · · · 1
−w1 −w2 · · · −ws+1

...
...

...
...

(−w1)s (−w2)s · · · (−ws+1)s

∣∣∣∣∣∣∣∣∣ 6= 0,

and consequently k1, . . . , ks+1 are uniquely defined for any choice of {wi}s+1
i=1 . Then, the Hestenes’ extensions

of h to (−∞, 0) are given by

φ(x) =
s+1∑
j=1

kjh(−wjx).

It follows immediately that sewing conditions are satisfied due to (2), and we have

φ(d)(0−) =

s+1∑
j=1

(−wj)dkjh(d)(0+) = h(d)(0+), d = 0, · · · , s,

where for an arbitrary function g : R→ R and ε > 0, g(x+) = lim
ε↓0
g(x+ ε) and g(x−) = lim

ε↓0
g(x− ε).

Now, we define

µ(x) ≡

{
m(x)f(x), x ≥ 0∑s+1
j=1 kjm(−wjx)f(−wjx), x < 0

(3)

with µ(x) being s-times differentiable. This follows from s-times differentiability of f andm as [m(x)f(x)](d) =∑d
j=0

(
d
j

)
m(d−j)(x)f (j)(x). Note that in our context, differentiability of m(x) at x = 0 must be under-

stood as differentiability from the right, i.e., m(d)(0+).1 In the following subsections, we construct estimators

for m(x) where x ∈ [0,∞) and study their bias, variance and asymptotic distributions for points in a vicinity

of zero, and compare them to cases where x is an interior point, i.e., outside this vicinity.

1 As an example, the sewing condition for d = 1 is satisfied as

φ(1)(0−) = lim
ε↓0

φ(1)(0 − ε) = lim
ε↓0

s+1∑
j=1

kjh
(1)(−wj(0 − ε))

= lim
ε↓0

s+1∑
j=1

kj

[
m(1)(−wj(0 − ε))f(−wj(0 − ε)) +m(−wj(0 − ε))f (1)(−wj(0 − ε))

]

=

s+1∑
j=1

(−wj)kj
[
m(1)(0+)f(0) +m(0+)f (1)(0)

]
= h(1)(0+).
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2.1 An infeasible Hestenes-based regression estimator

We start by defining an infeasible Hestenes-based regression estimator mH(x) for m(x) when x ≥ 0 which

assumes that f is known. We will need a kernel function K that will satisfy,

Assumption 1. K is uniformly bounded and symmetric with
∫
R
K(u)du = 1,

∫
R
uK(u)du = 0 and∫

R

∣∣uiK(u)
∣∣ du < C for i = 1, 2, 3, 4 and some 0 < C <∞.

If f(x) > 0, we define

mH(x) =
1

f(x)

1

nh

n∑
i=1

K (Xi − x
h

)
+

s+1∑
j=1

kj
wj
K

(
Xi
wj

+ x

h

)Yi, (4)

where n is taken to be the size of a random sample of observations {(Yi, Xi)}ni=1 and 0 < h is a sequence of

nonstochastic bandwidths that depend on n such that h→ 0 as n→∞.

The algebraic structure of the estimator is motivated by Mynbaev and Martins-Filho (2019) where density

estimators are constructed based on Hestenes’ extension. Since mH depends on s and the sequence {wj}s+1
j=1,

equation (4) defines a class of estimators whose elements are indexed by {wj}s+1
j=1. For instance, wj = 1/j

or wj = j have been suggested in Mynbaev and Martins-Filho (2019) and will produce different estimators

in the class. Once {wj}s+1
j=1 is chosen, the sequence {kj}s+1

j=1 is uniquely defined by (2) and every estimator

in the class is uniquely indexed by {wj}s+1
j=1.

The following theorem gives an integral representation for the bias of mH . Its proof gives the mathemat-

ical motivation for the algebraic structure of the estimator. In what follows we adopt the following notation:

κi =
∫
R
uiK(u)du, µi,x =

∫ x
−∞ uiK(u)du, κi,x =

∫∞
x
uiK(u)du, λi =

∫
R
uiK2(u)du, ηi,x =

∫ x
−∞ uiK2(u)du

and λi,x =
∫∞
x
uiK2(u)du for i = 0, 1, 2, 3, 4.

Theorem 1. Suppose that K satisfies Assumption 1. Then,

E (mH(x))−m(x) =
1

f(x)

∫
R

K(ψ) [µ(x− hψ)− µ(x)] dψ. (5)

where µ(x) is as defined in equation (3). If, in addition, f,m ∈ C4
b ([0,∞))

E (mH(x))−m(x) = h2
κ2
2

[
m(2)(x) +

2m(1)(x)f (1)(x)

f(x)
+
f (2)(x)m(x)

f(x)

]
+O(h4). (6)
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Proof. Since {Yi, Xi}ni=1 is independent and identically distributed sequence

E (mH(x)|X1, · · · , Xn) =
1

f(x)

1

nh

n∑
i=1

K (Xi − x
h

)
+

s+1∑
j=1

kj
wj
K

(
Xi
wj

+ x

h

)m(Xi)

E (mH(x)) =
1

f(x)

1

h
E

[
K

(
X1 − x
h

)
m(X1)d1

]
+

1

f(x)

1

h
E

s+1∑
j=1

kj
wj
K

(
X1

wj
+ x

h

)
m(X1)


=

1

f(x)

1

h

∫ ∞
0

K

(
X1 − x
h

)
m(X1)f(X1)dX1

+
1

f(x)

1

h

∫ ∞
0

s+1∑
j=1

kj
wj
K

(
X1

wj
+ x

h

)
m(X1)f(X1)dX1.

Since K is symmetric, in the first integral let ψ = x−X1

h and in the second integral, let ψ =
X1
wj

+x

h . Then,

E(mH(x)) =
1

f(x)

∫ x
h

−∞
K(ψ)m(x− hψ)f(x− hψ)dψ

+
1

f(x)

∫ ∞
x
h

s+1∑
j=1

kjK(ψ)m (−(x− hψ)wj) f (−(x− hψ)wj) dψ

In the first integral, we have x− hψ ≥ 0 and in the second integral, we have x− hψ < 0. Hence,

E (mH(x)) =
1

f(x)

∫ ∞
−∞

K(ψ)µ(x− hψ)dψ. (7)

Since
∫
R
K(ψ) = 1,

E (mH(x))−m(x) =
1

f(x)

∫ ∞
−∞

K(ψ) [µ(x− hψ)− µ(x)] dψ for x ≥ 0. (8)

For the second part of the theorem note that since f,m ∈ C4
b ([0,∞)) for x ≥ 0, we have µ(4)(x) =∑4

j=0

(
4
j

)
m(4−j)(x)f (j)(x). Using diffentiability of µ we have

E (mH(x))−m(x) =
1

f(x)

∫ ∞
−∞

K(ψ)

(
µ(1)(x)(−hψ) +

1

2
µ(2)(x)(−hψ)2

+
1

6
µ(3)(x)(−hψ)3 +

1

24
µ(4)(x̄)(−hψ)4

)
dψ where x̄ = αx+ (1− α)(x− hψ), α ∈ [0, 1]

=
1

f(x)

∫ ∞
−∞

K(ψ)

(
1

2
µ(2)(x)(−hψ)2 +

1

24
µ(4)(x̄)(−hψ)4

)
dψ

since K is symmetric. Now,
∣∣∣∫∞−∞K(ψ)ψ4µ(4)(x̄)dψ

∣∣∣ ≤ ∫∞−∞ |K(ψ)|ψ4
∣∣µ(4)(x̄)

∣∣ dψ ≤ C for some C < ∞,

provided |µ(4)(x)| < C <∞, and
∫∞
−∞ |K(ψ)|ψ4dψ < C. Consequently,

E (mH(x))−m(x) =

(
µ(2)(x)

2f(x)

∫ ∞
−∞

K(ψ)ψ2dψ

)
h2 +O(h4) =

µ(2)(x)

2f(x)
κ2h

2 +O(h4)

=
h2

2

[
m(2)(x) +

2m(1)(x)f (1)(x)

f(x)
+
f (2)(x)m(x)

f(x)

]
κ2h

2 +O(h4)
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The integral representation given for the bias of mH(x) given in equation (5) is the key insight in

constructing the estimator. It shows that the representation obtained for traditional estimators, such as

NW, can be obtained with the function µ in place of the regressor density. The algebraic structure of mH

permits the unification of the bias representations for x in and outside a neighborhood of 0. As a direct

consequence of the method of proof of Theorem 1, if, as usually done in the nonparametric kernel literature,

the kernel K is of order s and m, f ∈ Csb ([0,∞)) then the bias of mH is O(hs).

At the boundary point x = 0 we have,

E (mH(0))−m(0) =
h2

2

[
m(2)(0) +

2m(1)(0)f (1)(0)

f(0)
+
f (2)(0)m(0)

f(0)

]
κ2 +O(h4).

It is instructive to compare this expression to that of the bias for an infeasible NW estimator given by

mNW (x) = 1
nhf(x)

∑n
i=1K

(
Xi−x
h

)
Yi. The following corollary follows directly from Theorem 1.

Corollary 1. Under the assumptions of Theorem 1, for x ≥ 0, the bias of mNW (x) is given by

E(mNW (x))−m(x) = −m(x)κ0, xh − h
(
m(x)f (1)(x)

f(x)
+m(1)(x)

)
µ1, xh

+ h2
(
m(x)f (2)(x)

2f(x)
+
m(1)(x)f (1)(x)

f(x)
+
m(2)(x)

2

)
µ2, xh

+O(h3).

The slower order of the remainder term results from the fact that the symmetry of K can no longer be

used to eliminate the term of order h3. Hence, at x = 0

E(mNW (0))−m(0) = −1

2
m(0)− h

(
m(0)f (1)(0)

f(0)
+m(1)(0)

)
µ1,0

+
h2

2

(
m(2)(0) +

2m(1)(0)f (1)(0)

f(0)
+
f (2)(0)m(0)

f(0)

)
µ2,0 +O(h3).

We note that this expression suggests that mNW is inconsistent at the boundary. Although the coefficient

on the term of order h2 in the bias of mNW is half the size of the corresponding term in mH , it has little

impact on bias magnitude since mNW has two extra terms that are of larger magnitude.

The following theorem provides approximations for the variance of mH .

Theorem 2. Suppose E((Y −m(X))2|X = x) = σ2, m, f ∈ C4
b ([0, 1) and K satisfies Assumption 1. Then,

if nh→∞ and x ≥ 0, the variance of mH(x) is given by

V (mH(x)) =

 1
nh

m2(0)+σ2

f(0)

∫∞
0

[∑s+1
i=0

ki
wi
K
(
u
wi

)]2
du+ o((nh)−1), x = 0

1
nh

m2(x)+σ2

f(x) λ0 + o((nh)−1), x > 0.

Proof. Write mH(x) = ĝ(x)
f(x) where f(x) 6= 0 and ĝ(x) = 1

nh

∑n
i=1

[
K
(
Xi−x
h

)
+
∑s+1
j=1

kj
wj
K

( Xi
wj

+x

h

)]
Yi

and put ui = 1
h

[
K
(
Xi−x
h

)
+
∑s+1
j=1

kj
wj
K

( Xi
wj

+x

h

)]
Yi. Then letting w0 = −1, and k0 = −1 we can write

7



ui = 1
h

∑s+1
j=0

kj
wj
K

( Xi
wj

+x

h

)
Yi and ĝ(x) = 1

n

∑n
i=1 ui. Consequently, V (mH(x)) = 1

nf2(x)

(
Eu21 − E(u1)2

)
.

Now,

E(u21) = E

s+1∑
j=0

1

h

kj
wj
K

(
X1

wj
+ x

h

)
Y1

2

=
1

h2

s+1∑
i,j=0

ki
wi

kj
wj
E

[
K

(
X1

wi
+ x

h

)
K

(
X1

wj
+ x

h

)
Y 2
1

]

=
1

h2

s+1∑
i,j=0

ki
wi

kj
wj
E

[
K

(
X1

wi
+ x

h

)
K

(
X1

wj
+ x

h

)
(m(X1) + ε1)

2

]
where ε1 = Y1 −m(X1).

=
1

h2

s+1∑
i,j=0

ki
wi

kj
wj

{
E

[
K

(
X1

wi
+ x

h

)
K

(
X1

wj
+ x

h

)
m2(X1)

]
+ σ2E

[
K

(
X1

wi
+ x

h

)
K

(
X1

wj
+ x

h

)]}

=
1

h2

s+1∑
i,j=0

ki
wi

kj
wj

∫ ∞
0

K

(
t
wi

+ x

h

)
K

(
t
wj

+ x

h

)
m2(t)f(t)dt

+
σ2

h2

s+1∑
i,j=0

ki
wi

kj
wj

∫ ∞
0

K

(
t
wi

+ x

h

)
K

(
t
wj

+ x

h

)
f(t)dt

= T1 + T2

We first study T1 and consider two cases x > 0 and x = 0.

Case (x > 0): Letting Iij = 1
h

∫∞
0
K

(
t
wi

+x

h

)
K

(
t
wj

+x

h

)
m2(t)f(t)dt, note that hT1 = I00 +

∑s+1
i+j>0 Iij .

Now, ∣∣∣∣I00 −m2(x)f(x)

∫
R

K2(u)du

∣∣∣∣ =

∣∣∣∣∣
∫ x

h

−∞
K2(u)m2(x− hu)f(x− hu)du−m2(x)f(x)

∫
R

K2(u)du

∣∣∣∣∣
=

∣∣∣∣∫
R

K2(u)
[
m2(x− hu)f(x− hu)−m2(x)f(x)

]
du

−
∫ ∞
x
h

K2(u)m2(x− hu)f(x− hu)du

∣∣∣∣∣
≤
∣∣∣∣∫
R

K2(u)
[
m2(x− hu)f(x− hu)−m2(x)f(x)

]
du

∣∣∣∣
+

∣∣∣∣∣
∫ ∞
x
h

K2(u)m2(x− hu)f(x− hu)du

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|u|≤C

K2(u)
[
m2(x− hu)f(x− hu)−m2(x)f(x)

]
du

∣∣∣∣∣
+

∣∣∣∣∣
∫
|u|>C

K2(u)
[
m2(x− hu)f(x− hu)−m2(x)f(x)

]
du

∣∣∣∣∣
+

∣∣∣∣∣
∫ ∞
x
h

K2(u)m2(x− hu)f(x− hu)du

∣∣∣∣∣
8



Let p̄(δ, x) = sup
|y|≤δ
|f(x− y)− f(x)|, and since f ∈ C4

b ([0,∞)) we have f(x− hu)− f(x) ≤ p̄(Ch, x). Thus,

∣∣∣∣∣
∫
|u|≤C

K2(u)
[
m2(x− hu)f(x− hu)−m2(x)f(x)

]
du

∣∣∣∣∣ ≤ Cp̄(Ch, x)

∫
|u|≤C

K2(u)du.

Consequently, since m ∈ C4
b ([0,∞))∣∣∣∣I00 −m2(x)f(x)

∫
R

K2(u)du

∣∣∣∣ ≤ Cp̄(Ch, x)

∫
|u|≤C

K2(u)du+ C

∫
|u|>C

K2(u)du+ C

∫ ∞
x
h

K2(u)du

For C be sufficiently large and h, ε sufficiently small, by continuity of f , p̄(Ch, x) < ε. Since
∫
R
|K(u)|2 du <

C,
∫
|u|>C K

2(u)du < ε and
∫∞
x
h
K2(u)du < ε. Therefore, for all ε > 0,∣∣∣∣I00 −m2(x)f(x)

∫
R

K2(u)du

∣∣∣∣ ≤ ε. (9)

Now we turn attention to Iij where i+ j > 0, and without loss of generality take wi > 0. Changing variables

by setting u = 1
h (t + xwi), Iij = 1

h

∫∞
xwi
h
K
(
u
wi

)
K
(
x
h (1− wi

wj
) + u

wj

)
m2(hu − xwi)f(hu − xwi)du. Given

the uniform boundedness of K(x), f(x) and m2(x),

Iij ≤ Cwi
∫ ∞
x
h

K (u) du (10)

where
∫∞
x
h
K (u) du < ε for sufficiently small h. Consequently, inequalities (9) and (10) give∣∣∣∣hT1 −m2(x)f(x)

∫
R

K2(u)du

∣∣∣∣ ≤ ε.
We now turn to T2. Let Jij = 1

h

∫∞
0
K

(
t
wi

+x

h

)
K

(
t
wj

+x

h

)
f(t)dt, then hT2 = σ2(J00 +

∑s+1
i+j>0 Jij). Using

arguments similar to those for I00, we have
∣∣J00 − f(x)

∫
R
K2(u)du

∣∣ ≤ ε. Again, similar to the case of Iij ,

we have Jij ≤ Cwi
∫∞
x
h
K (u) du < ε for sufficiently small h. Thus,∣∣∣∣hT2 − σ2f(x)

∫
R

K2(u)du

∣∣∣∣ ≤ ε (11)

Since Eu21 = T1 + T2, we have ∣∣∣∣hEu21 − (m2(x) + σ2
)
f(x)

∫
R

K2(u)du

∣∣∣∣ ≤ ε (12)

From Theorem 1, hE(u1)2 = o(1), consequently

V (mH(x)) =
1

nh

{
m2(x) + σ2

f(x)

∫
R

K2(u)du+ o(1)

}
.
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Case x = 0: First, we consider T1. I00 = 1
h

∫∞
0
K2( 0−t

h )m2(t)f(t)dt =
∫ 0

−∞K2(u)m2(−hu)f(−hu)du and∣∣∣∣I00 −m2(0)f(0)

∫ 0

−∞
K2(u)du

∣∣∣∣ =

∣∣∣∣∫ 0

−∞
K2(u)

[
m2(−hu)f(−hu)du−m2(0)f(0)

]
du

∣∣∣∣
=

∣∣∣∣∣
∫ −C
−∞

K2(u)
[
m2(−hu)f(−hu)−m2(0)f(0)

]
du

+

∫ 0

−C
K2(u)

[
m2(−hu)f(−hu)−m2(0)f(0)

]
du

∣∣∣∣
≤ C

∫ −C
−∞

K2(u)du+ p̄(Ch, 0)

∫ C

0

K2(u)du

For C sufficiently large and ε, h sufficiently small we have∣∣∣∣I00 −m2(0)f(0)

∫ 0

−∞
K2(u)du

∣∣∣∣ ≤ ε. (13)

Now we consider the case where i+ j > 0. Note that Iij =
∫∞
0
K
(
u
wi

)
K
(
u
wj

)
m2(hu)f(hu)du.

|Iij −m2(0)f(0)

∫ ∞
0

K

(
u

wi

)
K

(
u

wj

)
du

∣∣∣∣ =

∣∣∣∣∫ ∞
0

K

(
u

wi

)
K

(
u

wj

)[
m2(hu)f(hu)−m2(0)f(0)

]
du

∣∣∣∣
=

∣∣∣∣∣
∫ C

0

K

(
u

wi

)
K

(
u

wj

)[
m2(hu)f(hu)−m2(0)f(0)

]
du

+

∫ ∞
C

K

(
u

wi

)
K

(
u

wj

)[
m2(hu)f(hu)−m2(0)f(0)

]
du

∣∣∣∣
≤ p̄(hC, 0)

∫ C

0

∣∣∣∣K ( u

wi

)∣∣∣∣ ∣∣∣∣K ( u

wj

)∣∣∣∣ du+ C

∫ ∞
C

K

(
u

wi

)
K

(
u

wj

)
du

where for sufficiently large C, and for all ε > 0,
∣∣∣∫∞C K

(
u
wi

)
K
(
u
wj

)
du
∣∣∣ < ε and for sufficient small h,

p̄(hC, 0) < ε. Thus, ∣∣∣∣Iij −m2(0)f(0)

∫ ∞
0

K

(
u

wi

)
K

(
u

wj

)
du

∣∣∣∣ < ε (14)

Consequently, (13) and (14) give∣∣∣∣∣∣hT1 −m2(0)f(0)

s+1∑
i,j=0

ki
wi

kj
wj

∫ ∞
0

K

(
u

wi

)
K

(
u

wj

)
du

∣∣∣∣∣∣ < ε.

Turning to the term T2.

hT2 =
σ2

h

∫ ∞
0

K2

(
t

h

)
f(t)dt+

σ2

h

s+1∑
i+,j>0

ki
wi

kj
wj

∫ ∞
−∞

K

(
t

wih

)
K

(
t

wjh

)
f(t)dt.

The first term σ2

h

∫∞
0
K2
(
t
h

)
f(t)dt = σ2

∫∞
0
K2 (u) f(hu)du = σ2f(0)

∫∞
0
K2(u)du+ o(1). From the second

term, 1
h

∫∞
0
K
(

t
wih

)
K
(

t
wjh

)
f(t)dt =

∫∞
0
K
(
u
wi

)
K
(
u
wj

)
f(hu)du. Now,∣∣∣∣∫ ∞

0

K

(
u

wi

)
K

(
u

wj

)
f(hu)du− f(0)

∫ ∞
0

K

(
u

wi

)
K

(
u

wj

)
du

∣∣∣∣ ≤∣∣∣∣∫ ∞
0

K

(
u

wi

)
K

(
u

wj

)
[f(hu)− f(0)] du

∣∣∣∣ < ε.
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by the continuity of f and the dominated convergence theorem. Thus,∣∣∣∣∣∣hT2 − σ2f(0)

s+1∑
i,j=0

ki
wi

kj
wj

∫ ∞
0

K

(
u

wi

)
K

(
u

wj

)
du

∣∣∣∣∣∣ ≤ ε (15)

Since Eu21 = T1 + T2, we have∣∣∣∣∣∣hEu21 − (m2(0) + σ2)f(0)

s+1∑
i,j=0

ki
wi

kj
wj

∫ ∞
0

K

(
u

wi

)
K

(
u

wj

)
du

∣∣∣∣∣∣ ≤ ε (16)

Thus,

V (mH(0)) =
1

nhf2(0)

(
hEu21 − hE2u1

)
=

1

nh

m2(0) + σ2

f(0)

s+1∑
i,j=0

ki
wi

kj
wj

∫ ∞
0

K

(
u

wi

)
K

(
u

wj

)
du+ o(1)

 .

Combining the two cases, we have

V (mH(x)) =


1
nh

{
m2(0)+σ2

f(0)

∫∞
0

[∑s+1
i=0

ki
wi
K
(
u
wi

)]2
du+ o(1)

}
, x = 0

1
nh

{
m2(x)+σ2

f(x)

∫
R
K2(u)du+ o(1)

}
, x > 0.

The expressions for the variance of mH(x) given in Theorem 2 are analogous to those obtained in Mynbaev

and Martins-Filho (2019) (see their equations (10) and (11)). The following corollary to Theorem 2 gives an

expression for the variance of the infeasible NW estimator.

Corollary 2. Suppose E((Y −m(X))2|X = x) = σ2, m, f ∈ C4
b ([0, 1) and K satisfies Assumption 1. Then,

if nh→∞ and x ≥ 0, the variance of mNW (x) is given by

V (mNW (x)) =
1

nh

m2(x) + σ2

f(x)
η0,x/h + o((nh)−1).

Note that mH and mNW have the same variance at interior points, but different variances at the boundary

point (x = 0). With suitable choice of wi it may be possible to have the leading term of the expression in

V (mH(0)) ≤ V (mNW (0)).

Remark 1. An optimal plug-in bandwidth hpi for mH(0) can be obtained by minimizing asymptotic mean

squared error (AMSE) at the boundary x = 0. As such, consider the asymptotic mean squared error (AMSE)

given by

AMSE(h) =

{
h2

2

[
m(2)(0) +

2m(1)(0)f (1)(0)

f(0)
+
f (2)(0)m(0)

f(0)

]
κ2

}2

+
1

nh

{
m2(0) + σ2

f(0)
γ

}
+ s.o.

where γ =
∫∞
0

[∑s+1
i=0

ki
wi
K
(
u
wi

)]2
du and and s.o. denotes terms of smaller order. Routine optimization of

the leading terms with respect to h gives

hpi = n−
1
5

{
m2(0) + σ2

f(0)
γ

} 1
5
[
m(2)(0) +

2m(1)(0)f (1)(0)

f(0)
+
f (2)(0)m(0)

f(0)

]− 2
5

κ
− 2

5
2 .
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2.2 Feasible Hestenes regression estimator m̂+
H

The regression model that motivated the infeasible mH had regressors taking values in [0,∞). It is apparent

that an identical estimator can be defined for the case where regressors take values in, and the support of m

is, (−∞, 0]. When the regressor takes values in R and there are potentially two regressions, one to the right

and one to the left of a discontinuity at x = 0, two infeasible Hestenes estimators can be constructed. The

first, for the regression to the right of the point of discontinuity,

m+
H(x) ≡ 1

f(x)

1

nh

n∑
i=1

K (Xi − x
h

)
+

s+1∑
j=1

kj
wj
K

(
Xi
wj

+ x

h

)Yidi for x ≥ 0 (17)

where di = IXi≥0, and the second for the regression to the left of the point of discontinuity

m−H(x) ≡ 1

f(x)

1

nh

n∑
i=1

K (Xi − x
h

)
+

s+1∑
j=1

kj
wj
K

(
Xi
wj

+ x

h

)Yi(1− di) for x ≥ 0. (18)

In a RD model where the point of discontinuity is x = 0, an estimator for the jump at 0, denoted by J(0),

is naturally given by

JH(0) = m+
H(0)−m−H(0). (19)

Since these are infeasible estimators due to the fact that f is unknown, we define their feasible versions by

replacing f with the Rosenblatt-Parzen estimator f̂(x) = 1
nh

∑n
i=1K

(
Xi−x
h

)
. The feasible versions of these

estimators are denoted by m̂+
H(x), m̂−H(x) and ĴH(0).

We note that a critical assumption for identification in RD models is that the density f of the regressor

(running variable) be continuous at the point of potential discontinuity, x = 0 in this case. As such, m̂+
H(x)

and m̂−H(x) are defined with the estimator f̂ using all observations available, to the right and to the left of

the point of potential discontinuity.

Theorem 3. Suppose that K satisfies Assumption 1, f ∈ C4
b (R) and m+ : [0,∞) → R is such that

m+ ∈ C4
b ([0,∞)). Then, for x ≥ 0, the bias of m̂+

H(x) is given by

E(m̂+
H(x))−m+(x) =

[
1

2
m+(2)(x) +

m+(1)(x)f (1)(x)

f(x)

]
κ2h

2 +O(h4 + (nh)−1) (20)

Proof. Given that K satisfies Assumption 1 and f(x) > 0, for n sufficiently large f̂(x) > 0 and E(f̂(X)) > 0.

Thus, using Taylor’s Theorem, we expand m̂+
H(x) ≡ q(ĝ(x), f̂(x)) = ĝ(x)

f̂(x)
at the point (E(ĝ(x)), E(f̂(x)))

and obtain,

m̂+
H(x) =

E(ĝ(x))

E(f̂(x))
+

1

E(f̂(x))
(ĝ(x)− E(ĝ(x)))− E(ĝ(x))

E(f̂(x))2
(f̂(x)− E(f̂(x)))

−

{
1

E(f̂(x))2

(
f̂(x)− E(f̂(x))

)
(ĝ(x)− E(ĝ(x)))− E(ĝ(x))

E(f̂(x))3

(
f̂(x)− E(f̂(x)

)2}
+ Zn

12



where ĝ(x) = 1
nh

∑n
i=1

[
K
(
Xi−x
h

)
+
∑s+1
j=1

kj
wj
K

( Xi
wj

+x

h

)]
Yidi and

Zn(x) = 3(ĝ(x)− Eĝ(x))(f̂(x)− Ef̂(x))2
∫ 1

0

(1− t)2 1

[Ef̂(x) + t(f̂(x)− Ef̂(x))]3
dt

− 3(f̂(x)− Ef̂(x))3
∫ 1

0

(1− t)2 Eĝ(x) + t(ĝ(x)− Eĝ(x))[
Ef̂(x) + t(f̂(x)− Ef̂(x))

]4 dt.
Taking the expectations on both sides of the expression for m̂+

H(x) gives,

E(m̂+
H(x)) =

E(ĝ(x))

E(f̂(x))
− 1

E2(f̂(x))
Cov

(
ĝ(x), f̂(x)

)
+

E(ĝ(x))

E3(f̂(x))
V (f̂(x)) + E(Zn(x)).

Now, from Theorem 1, we have

E(ĝ(x)) = f(x)E(m+
H(x)) = f(x)m+(x) +

h2

2
κ2

[
f(x)m+(2)(x) + 2m(1)(x)f (1)(x) + f (2)(x)m+(x)

]
+O(h4).

From standard results for kernel density estimators (see Li and Racine, 2007) E(f̂(x)) = f(x)+ h2

2 κ2f
(2)(x)+

O(h4). Thus,
E(ĝ(x))

E(f̂(x))
= m+(x) +

h2

2
κ2

[
m+(2)(x) + 2

m+(1)(x)f (1)(x)

f(x)

]
+O(h4).

Now, from Lemma 1, Cov(f̂(x), ĝ(x)) = O( 1
nh ), and from standard results for kernel density estimators

Li and Racine, 2007, V ar(f̂(x)) = O( 1
nh ). Lastly, from Lemma 2, E(Zn(x)) = O

(
(nh)−3/2

)
. Thus,

E(m̂+
H(x))−m+(x) =

[
1
2m

+(2)(x) + m+(1)(x)f(1)(x)
f(x)

]
κ2h

2 +O(h4 + (nh)−1).

An identical expression can be found for the bias of m̂−H(x), so that for x ≤ 0

E(m̂−H(x))−m−(x) =

[
1

2
m−(2)(x) +

m−(1)(x)f (1)(x)

f(x)

]
κ2h

2 +O(h4 + (nh)−1). (21)

We now provide expressions for the variance of m̂+
H(x).

Theorem 4. Suppose that K satisfies Assumption 1, f ∈ C4
b (R) and m+ : [0,∞) → R is such that

m+ ∈ C4
b ([0,∞)). Then, for x ≥ 0, the variance of m̂+

H(x) is given by

V (m̂+
H(x)) =


1
nh

{
m+2(0)+2σ2

f(0)

∑s+1
i,j=0

ki
wi

kj
wj

∫∞
0
K
(
u
wi

)
K
(
u
wj

)
du

+ m+2(0)
f(0)

∫
R
K2(u)du+ 2m2(0)

f(0)

∑s+1
j=0

kj
wj

∫∞
0
K (u)K

(
u
wj

)
du+ o(1)

}
, if x = 0

1
nh

{
4m2(x)+σ2

f(x)

∫
R
K2(u)du+ o(1)

}
, if x > 0.

Proof. Write a = E (ĝ(x)) and b = E
(
f̂(x)

)
. Then, m̂+

H(x) = ĝ(x)

f̂(x)
= a

b + 1
b (ĝ(x)−a)− a

b2 (f̂(x)−b))+Sn(x)

where

Sn(x) = 2(ĝ(x)− a)(f̂(x)− b)
∫ 1

0

(1− t)(−1)
1[

b+ t(f̂(x)− b)
]2 dt+ (f̂(x)− b)2

∫ 1

0

(1− t) 2 [a+ t(ĝ(x)− a)][
b+ t(f̂(x)− b)

]3 dt
13



Then, E (m̂+(x)) = a
b +E(Sn) and V (m̂+(x)) = 1

b2V (ĝ(x))+ a2

b4 V (f̂(x))− 2a
b3 Cov(ĝ(x), f̂(x))+Wn(x) where

Wn(x) = V (Sn) + 2
bCov(ĝ(x), Sn)− 2a

b2 Cov(f̂(x), Sn). Now,

1

b2
V (ĝ(x)) = V (mH(x)) =


1
nh

{
m+2(0)+2σ2

f(0)

∑s+1
i,j=0

ki
wi

kj
wj

∫∞
0
K
(
u
wi

)
K
(
u
wj

)
du+ o(1)

}
, x = 0

1
nh

{
m+2(x)+σ2

f(x) λ0 + o(1)
}
, x > 0

From the properties of the Rosenblatt-Parzen estimator f̂ , we have a2

b4 V (f̂(x)) = 1
nh

{
m+2(x)
f(x) λ0 + o(1)

}
.

From Lemma 1,

Cov(ĝ(x), f̂(x)) =

{
1
nh

{
m+(0)f(0)

∑s+1
,j=0

kj
wj

∫∞
0
K (u)K

(
u
wj

)
du+ o(1)

}
, x = 0

1
nh

{
m+(x)f(x)

∫
R
K2(u)du+ o(1)

}
, x > 0

and consequently

−2a

b3
Cov(ĝ(x), f̂(x)) =


1
nh

{
2m2(0)
f(0)

∑s+1
,j=0

kj
wj

∫∞
0
K (u)K

(
u
wj

)
du+ o(1)

}
, x = 0

1
nh

{
2m2(x)
f(x)

∫
R
K2(u)du+ o(1)

}
, x > 0.

Finally, using Lemma 2 we obtain Wn(x) = O
(

( 1
nh )

3
2

)
. Thus,

V (m̂+
H(x)) =


1
nh

(
m+2(0)+2σ2

f(0)

∑s+1
i,j=0

ki
wi

kj
wj

∫∞
0
K
(
u
wi

)
K
(
u
wj

)
du+ m+2(0)

f(0) λ0

+ 2m2(0)
f(0)

∑s+1
,j=0

kj
wj

∫∞
0
K (u)K

(
u
wj

)
du+ o(1)

)
, x = 0

1
nh

(
4m2(x)+σ2

f(x) λ0 + o(1)
)
, x > 0

(22)

As in the case of bias, an identical expression for the variance of m̂−H(x) can be obtained with the only

change being that x ≤ 0. The next theorem gives asymptotic normality of m̂+
H(x) for x ≥ 0.

Theorem 5. Suppose that K satisfies Assumption 1, f ∈ C4
b (R) and m+ : [0,∞) → R is such that

m+ ∈ C4
b ([0,∞)). If E

(
|(Yi −m+(Xi))di|

2+δ |X
)
<∞. Then, for x ≥ 0,

(nh)
1
2

(
m̂+
H(x)−m+(x)−

[
1

2
m+(2)(x) +

m+(1)(x)f (1)(x)

f(x)
κ2

]
h2
)

d−→ N(0, c/f2(x))

where c =

σ
2f(x)

∫
R
K2(u)du, if x > 0

σ2f(0)
∫∞
0

[∑s+1
i=0

ki
wi
K
(
u
wi

)]2
du, if x = 0.

Proof. Let w0 = −1, k0 = −1, ui =
∑s+1
j=0

kj
wj
K

( Xi
wj

+x

h

)
, and K(Xi−xh ) = Ki. Then, m̂+

H(x) = ĝ(x)

f̂(x)
=∑n

i=1 uiYidi∑n
i=1Ki

. f̂(x)
p−→ f(x), thus we are concerned with the convergence in distribution of ĝ(x). Note that

E(ĝ(x)|X1, · · · , Xn) = (nh)−1
∑n
i=1 uim

+(Xi)di and ĝ(x) − E(ĝ(x)|X1, · · · , Xn) = (nh)−1
∑n
i=1 ui(Yi −

m+(Xi))di. Let Zin = ui(Yi−m+(Xi))di
nh and note that E(Zin) = 0 and

V (Zin) = E(Z2
in) =

σ2

(nh)2
E(u2i di) =

σ2

(nh)2

∫ ∞
0

s+1∑
j=0

kj
wj
K

(
α
wj

+ x

h

)2

f(α)dα.
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Now, let S2
n =

∑n
i=1E(Z2

in) = 1
nh

σ2

h

∫∞
0

[∑s+1
j=0

kj
wj
K

(
α
wj

+x

h

)]2
f(α)dα and

Xin =
Zin
Sn

=
ui(Yi −m+(Xi))di

(nh)
1
2

(
σ2

h

∫∞
0

[∑s+1
j=0

kj
wj
K

(
α
wj

+x

h

)]2
f(α)dα

) 1
2

.

Consequently,
∑n
i=1Xin = 1 and by Liapounov’s Central Limit Theorem

∑n
i=1Xin

d→ N(0, 1) provided

that limn→∞
∑n
i=1E(|Xin|2+δ) = 0 for some δ > 0. Note that |Xin| =

|ui(Yj−m+(Xj))di|
(nh)

1
2 c(n)

1
2

with c(n) =

σ2

h

∫∞
0

[∑s+1
j=0

kj
wj
K

(
α
wj

+x

h

)]2
f(α)dα and |Xin|2+δ =

|ui(Yj−m+(Xj))di|2+δ

(nh)
2+δ
2 c(n)

2+δ
2

. c(n) is non-stochastic, therefore

E(|Xin|2+δ) = (nhc(n))−1−
δ
2E(|ui|2+δ

∣∣[Yi −m+(Xi)
]
di
∣∣2+δ)

and
∑n
i=1E(|Xin|2+δ) = (nhc(n))−1−

δ
2

∑n
i=1E(|ui|2+δ |[Yi −m+(Xi)] di|

2+δ
). Now, if

E
(∣∣[Yi −m+(Xi)

]
di
∣∣2+δ |Xi

)
< C <∞

then

E(|ui|2+δ
∣∣[Yi −m+(Xi)

]
di
∣∣2+δ) = E

[
|uidi|2+δ E

(∣∣[Yi −m+(Xi)
]∣∣2+δ |Xi

)]
≤ C

∫ ∞
0

s+1∑
j=0

kj
wj
K

(
α
wj

+ x

h

)2+δ

f(α)dα

Consequently,

n∑
i=1

E(|Xin|2+δ) ≤ (nh)−
δ
2 (c(n))−1−

δ
2C

1

h

∫ ∞
0

∣∣∣∣∣∣
s+1∑
j=0

kj
wj
K

(
α
wj

+ x

h

)∣∣∣∣∣∣
2+δ

fX(α)dα.

Note that c(n) = nT2 in Theorem 2, thus we have for x > 0, c(n) → σ2f(x)
∫
R
K2(u)du from (11). For

x = 0, c(n)→ σ2f(0)
∫∞
0

[∑s+1
i=0

ki
wi
K
(
u
wi

)]2
du from (15). By the cr-Inequality

E

∣∣∣∣∣∣
s+1∑
j=0

kj
wj
K

(
α
wj

+ x

h

)∣∣∣∣∣∣
2+δ

≤ (s+ 2)1+δ
s+1∑
j=0

E

∣∣∣∣∣ kjwjK
(

α
wj

+ x

h

)∣∣∣∣∣
2+δ

= (s+ 2)1+δh

s+1∑
j=0

1

h
E

∣∣∣∣∣ kjwjK
(

α
wj

+ x

h

)∣∣∣∣∣
2+δ

= (s+ 2)1+δh

s+1∑
j=0

1

h

∫ ∞
0

∣∣∣∣∣ kjwjK
(

α
wj

+ x

h

)∣∣∣∣∣
2+δ

fX(α)dα

Changing variable by setting u =
α
wj

+x

h ,

1

h
E

∣∣∣∣∣ kjwjK
(

α
wj

+ x

h

)∣∣∣∣∣
2+δ

= |kj |2+δ
∫ ∞
x
h

|K (u)|2+δ f(wj(hu− x))du.
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For x > 0, since f is bounded, K satisfies assumption 1∫ ∞
x
h

|K (u)|2+δ f(wj(hu− x))du ≤ C
∫ ∞
x
h

|K(u)|2+δ du ≤ ε

for sufficiently small h. For x = 0, and C > 0∣∣∣∣∫ ∞
0

|K (u)|2+δ f(wjhu)du− f(0)

∫ ∞
0

|K (u)|2+δ du
∣∣∣∣ =

∣∣∣∣∣
∫ C

0

|K (u)|2+δ [f(wjhu)− f(0)] du

+

∫ ∞
C

|K (u)|2+δ [f(wjhu)− f(0)] du

∣∣∣∣
≤ p̄(wjhC, 0)

∫ C

0

|K (u)|2+δ du+ 2sup(f)

∫ ∞
C

|K (u)|2+δ du

≤ ε

for sufficiently small h. Now, given that
∫∞
0
|K (u)|2+δ f(wjhu)du→ f(0)

∫∞
0
|K (u)|2+δ du since nhn →∞

we have that limn→∞
∑n
i=1E(|Xin|2+δ) = 0. Hence,

(nh)
1
2 (ĝ(x)− E(ĝ(x)|X1, · · · , Xn)

c(n)
1
2

d→ N(0, 1),

which implies that (nhn)
1
2 (ĝ(x)− E(ĝ(x)|X1, · · · , Xn)

d→ N(0, c) where

c = lim
n→∞

c(n) =

σ
2f(x)

∫
R
K2(u)du, x > 0

σ2f(0)
∫∞
0

[∑s+1
i=0

ki
wi
K
(
u
wi

)]2
du, x = 0

.

It follows immediately that

√
nh

{(
m̂+
H(x))−m+(x)

)
−
[

1

2
m+(2)(x) +

m+(1)(x)f (1)(x)

f(x)
κ2

]
h2 −Op(h4 + (nh)−1)

}
d−→ N(0, c/f2(x)).

An optimal bandwidth can be obtained by minimizing asymptotic weighted mean integrated squared

error (AWMISE). We will define an optimal hpi for m̂+
H(0) which is obtained by minimizing

AWMISE =

∫ ∞
0

{[
1

2

(
f(x)m+(2)(x) + 2m+(1)(x)f (1)(x)

)
κ2h

2

]2
+

1

nh

[(
4m+2(x) + σ2

)
λ0
]}

dx+ s.o.

where κi =
∫∞
−∞K(u)uidu ; λi =

∫∞
−∞K2(u)uidu, for i = 0, 1, 2... a full kernel for x > 0, and s.o. denotes

terms of smaller orders. Then, routine optimization gives

hpi =

(
λ0

2κ2n

) 1
5

{ ∫∞
0

(
4m+2(x) + σ2

)
dx∫∞

0

[
f(x)m+(2)(x) + 2m+(1)(x)f (1)(x)

]
dx

} 1
5

= n−
1
5C

where C =
(
λ0

2κ2

) 1
5

{ ∫∞
0 (4m+2(x)+σ2)dx∫∞

0 [f(x)m+(2)(x)+2m+(1)(x)f(1)(x)]dx

} 1
5

.
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2.3 A comparison with local linear (LL) estimators

Local linear (LL) estimators are the most commonly used estimators for nonparametric regression in RD

models. Estimation is normally conducted by selecting a uniform kernel K and a bandwidth that in effect

constrains the estimation to subsamples of {Yi, Xi}ni=1 to the right (Xi ≥ 0) and to the left (Xi < 0) of the

point of discontinuity x = 0. Hence, two local linear estimators are obtained m̂+
LL(x) and m̂−LL(x). Letting

Zi(x) =
(

1 Xi − x
)
, Z(x)′ =

(
Z1(x)′ . . . Zn(x)′

)
, Kix = K(Xi−xh ), K(x) = diag{Kix}ni=1, and

Y ′ =
(
Y 1 · · · Yn

)
, only the observations {(Xi, Yi) : Xi ≥ 0}ni=1 are used to to estimate m+(x) for

x ≥ 0. Observations {(Xi, Yi) : Xi < 0}ni=1 are used to estimate m−(x) where x < 0. For x ≥ 0, the local

linear estimator is given by

m̂+
LL(x) =

(
1 0

) (
Z(x)

′
K(x)Z(x)

)−1
Z(x)

′
K(x)Y (23)

where Xi takes values in [0,+∞). Similarly,

m̂−LL(x) =
(

1 0
) (
Z(x)

′
K(x)Z(x)

)−1
Z(x)

′
K(x)Y, (24)

in which Xi takes values in (−∞, 0]. Expressions for the conditional bias and variance of m̂+
LL(x) at boundary

points were obtained by Fan and Gijbels (1992) and are given by

E
(
m̂+
LL(x)−m+(x)|X1, · · · , Xn

)
=
h2

2
m(2)(x)

(
µ2
2, xh
− µ1, xh

µ3, xh

µ0, xh
µ2, xh

− µ2
1, xh

)
+ op(h

2)

and

V
(
m̂+
LL(x)|X1, · · · , Xn

)
=
µ2
2, xh

η0, xh − 2µ2, xh
µ1, xh

η1, xh + µ2
1, xh

η2, xh(
µ0, xh

µ2, xh
− µ2

2, xh

)2 σ2

nhf(x)
+ op((nh)−1).

Compared to the bias of LL estimators at interior points, given by E(m̂+
LL(x)|X1, · · · , Xn) − m+(x) =

h2

2 m
+(2)(x)κ2 + op(h

2), we see that their leading terms have the same order h2 but different magnitude.2

One way to interpret this is that LL estimators adapt to the boundary by adjusting a regular kernel to an

effective kernel, substituting κ2 with (
µ2
2, xh
− µ1, xh

µ3, xh

µ0, xh
µ2, xh

− µ2
1, xh

)
.

Comparing the bias of the Hestenes estimators at the boundary in equation (20) with that of the LL estimator

we can see that both have leading terms of the same order h2 but different magnitudes. The bias size of

Hestenes-based estimator depends on the chosen coefficients of Hestenes’ extension, whereas the bias size of

LL estimators is impacted by the partial kernels at the boundary point.

2Expressions for the unconditional bias and variance of the LL estimator when the regressors take values in R were given by

Fan (1993). In particular, he finds that E(m̂LL(x))−m(x) = h2

2
m(2)(x)κ2+o(h2) and V (m̂LL(x)) = σ2

nh
f−1(x)λ0+o((nh)−1).

17



An asymptotic approximation for the conditional MSE of m̂+
LL(x) can easily be obtained as is given by

MSE(m̂+
LL(x)|X1, · · ·Xn) =

h4

4

(
m+(2)(x)

)2(µ2
2, xh
− µ1, xh

µ3, xh

µ0, xh
µ2, xh

− µ2
1, xh

)2

+
µ2
2, xh

η0, xh − 2µ2, xh
µ1, xh

η1, xh + µ2
1, xh

η2, xh(
µ0, xh

µ2, xh
− µ2

2, xh

)2 σ2

nhf(x)
+ op

(
h4 +

1

nh

)

and an optimal bandwidth hpi for m̂+
LL can be obtained by minimizing the leading terms in this expression,

hpi = n−
1
5 t

1
5
1nt
− 2

5
1n

where t1n =
(
m(2)

)2(µ2
2, x
h
−µ1, x

h
µ3, x

h

µ0, x
h
µ2, x

h
−µ2

1, x
h

)2

and t2n =
µ2
2, x
h
η0, x

h
−2µ2, x

h
µ1, x

h
η1, x

h
+µ2

1, x
h
η2, x

h(
µ0, x

h
µ2, x

h
−µ2

2, x
h

)2
σ2

f(x) . Although a direct

comparison the bias and variance expression for the Hestenes-based and LL estimators is made difficult

by the complexity of these expressions, our simulations will provide additional evidence on their relative

magnitudes.

3 Estimators for a jump discontinuity

The Hestenes-based estimators m̂+
H(0) and m̂−H(0) can be used to estimate the jump at x = 0, denote by

J(0) by ĴH(0) = m̂+
H(0) − m̂−H(0). Hahn et al. (2001) establishes the identification of the RD model and

uses the jump discontinuity of the expected outcome at that point to measure an average treatment effect.

If Y is the outcome variable and let X is the running variable, when X ∈ R is above a threshold x = 0, the

individual gets the treatment and D = 1, otherwise the individual does not get the treatment and D = 0.

The regression jump is

J(0) =
limx↓0m

+(x)− limx↑0m
−(x)

limx↓cE(D|X = x)− limx↑cE(D|X = x)
(25)

and, in particular, for a sharp RD design

J(0) = lim
x↓0

m+(x)− lim
x↑0

m−(x)

because limx↓cE(D|X = x)− limx↑cE(D|X = x) = 1. An estimator for J(0)

ĴH(0) = lim
x↓0

m̂+
H(x)− lim

x↑0
m̂−H(x) = m̂+

H(0)− m̂−H(0) (26)

where m̂+
H(0) = limx↓0 m̂

+
H(x) and m̂−H(0) = limx↑0 m̂

−
H(x). From Theorem 3, we get the unconditional

biases of m̂+
H and m̂−H ,

E(m̂+
H(0))−m+(0) =

[
1

2
m+(2)(0) +

m+(1)(0)f (1)(0)

f(0)

]
κ2h

2 +O(h4 + (nh)−1)

and

E(m̂−H(0))−m−(0) =

[
1

2
m−(2)(0) +

m−(1)(0)f (1)(0)

f(0)

]
κ2h

2 +O(h4 + (nh)−1).
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It follows immediately that E(ĴH(0))− J(0) = Bn(0) +O(h4 + (nh)−1), where

Bn(0) =

(
1

2
(m+(2)(0)−m−(2)(0)) +

(
m+(1)(0)f (1)(0)

f(0)
− m−(1)(0)f (1)(0)

f(0)

)
κ2

)
h2

In addition, from Theorem 5, we have

√
nh

(
m̂+
H(0)−m+(0)−

[
1

2
m+(2)(0) +

m+(1)(0)f (1)(0)

f(0)
κ2

]
h2
)

d−→ N
(
0, cf−2(0)

)
where c = σ2

∫∞
0

[∑s+1
i=0

ki
wi
K
(
u
wi

)]2
du and an equivalent expression holding for for m̂−H(0).

Consequently, we obtain the asymptotic distribution of ĴH(0) as

√
nh(ĴH(0)− J(0)−Bn)

d−→ N
(
0, 2cf−2(0)

)
.

4 Simulations

in this section we compare the finite sample performance of the Hestenes (H), Nadaraya-Watson (NW)

and local linear (LL) estimators. Our simulation investigates the sources of bias at discontinuity points by

exploring three scenarios related to the H and NW estimators: infeasible estimators using the true density

function f , feasible estimators using either the whole sample or partial samples (one sided) for the estimation

of f . In addition, we examine how the performance of these estimators is affected by considering different

regressions, densities for the regressors, method of obtaining the bandwidth or choice of kernel functions.

Although estimates at interior points are considered, the primary focus of our comparisons is the estimates

at the point of discontinuity.

Comparisons are based on the evaluation of bias, standard deviation (SD), and root mean squared error

(RMSE) for the discontinuity point as well as average mean squared error (AMSE) for all points including

interior points and the boundary point.

Let x = 0 be the discontinuity point, m̂(x) be an estimate for the regression function m(x) at x, and

Ĵ(0) be an estimate for the jump J(0). We generate M samples calculate these statistics ofor m̂(x) and Ĵ(0)

Bias(θ̂) =

∑M
m=1

(
θ̂m − θ

)
M

, SD(θ̂) =

√√√√∑M
m=1

(
θ̂m − ¯̂

θ
)2

M − 1
, RMSE(θ̂) =

√√√√∑M
m=1

(
θ̂m − θ

)2
M

where
¯̂
θ = 1

M

∑M
m=1 θ̂m, θ denotes J(0), m+(0), or m−(0), and θ̂ denotes Ĵ(0), m̂+(0) or m̂−(0). We also

calculate

RRMSE(θ̂) =
RMSE(θ̂)

min
θ̂
RMSE(θ̂)

.

We calculate these statistics of m̂(x) at all points of evaluation of the regression. For each sample, and each

estimator, we calculate a root average squared error (RASE) over K evaluation points,

RASEm̂,m =

√∑K
k=1(m̂(xk)−m(xk))2

K
for sample m
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we then calculate an average of RASEm̂,m across all generated samples,

AMSEm̂ =

∑M
m=1RASEm̂,m

M
.

We also calculate RAMSE as RAMSEm̂ = AMSEm̂
min
m̂
AMSEm̂

. We compare three types of estimators: NW estimators,

LL estimators, and Hestenes estimators. We denote Hestenes estimators as HXX, such as H00, H10, H11,

H20, or H21, where the first digit stands for the degree of smoothness of the composite function µ(x),

s = 0, 1, 2, and the second digit denotes which sequence of wi is used: b = 0 means the sequence wi = 1/i is

used while b = 1 means the sequence wi = i is used, where i = 1, 2, · · · , n.

4.1 Estimating different types of jumps

We start by studying how estimators behave when the true regression functions have different types of

jumps at the discontinuity point. For instance, regression functions that have jumps or drops from a concave

function to a convex function or vice versa. We consider the following four regression functions:

m(x) =

{
(x+ 1)2, x < 0

sin(2πx+ 0.1π) x ≥ 0
(27)

m(x) =

{
sin(2πx+ 0.1π), x < 0

−(x− 1)2 + 2 x ≥ 0
(28)

m(x) =

{
−(x− 1)2 + 2, x < 0
1

x+1 − 1 x ≥ 0
(29)

m(x) =

{
(x− 1)2, x < 0
1

x+1 − 1 x ≥ 0
. (30)

We construct m̂NW , the NW estimators, using all observations to the right of the discontinuity point to

estimate the regression function on the right and use all observations to the left of the discontinuity point

to estimate the regression function on the left, and then calculate the jump at the discontinuity point.

For LL estimators, we use Fan (1992)’s modified version of the LL estimator to avoid singularities.3 We

construct m̂HXX , the H estimators, according to the expressions given in section 2, where we use the entire

sample to estimate f so that we can take advantage of the assumption of RDD that the density function f

is continuous.

Figure 1 shows four regression functions and four estimators, NW, LL, H10, and H21, that approximate

the true regression functions. We choose two H estimators with different degrees of smoothness in sewing

conditions and different series of w to show variations in the H-estimators. As expected, estimators differ

3As proved by Fan (1992), this estimators has the same asymptotic properties as the regular LL estimator described in
equations (23) and (24), so we can use properties derived from the latter estimators for comparison.
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mostly at the vicinity of the discontinuity point. NW estimators have a significant bias while the rest of the

estimators stay close to each other and are close to the true regression functions at the boundary. There is

no visual discrepancy between the two H-estimators.

4.2 Performance at the discontinuity point

Graphics can give us an intuitive impression of estimator’s behavior, but to precisely evaluate performance

across estimators, we rely on large sample simulations to show the distribution of the estimators. In the

following simulations, we compare the performance of three types of estimators in approximating the four

regression functions using 10000 repeated samples with a sample size of 2000.

To investigate the sources of bias at the boundary point, we explore three scenarios with respect to

the NW and H estimators. First, we construct infeasible estimators with the true density function f in

the denominator. Then, we construct feasible estimators with the whole sample to estimate f . Lastly, we

construct feasible estimators using partial samples (one sided) for the estimation of f : using only observations

to the right of the discontinuity point to estimate f(0+) and only observations to the left of the discontinuity

point to estimate f(0−). For all three scenarios, LL estimators are constructed in the same way as described

in section 4.1. In generating samples, we let X have a standard normal distribution with the peak of the

density occurring at x = 0, and use the four regression functions described above to generate Y with standard

normal error terms. In constructing estimators, we use Gaussian kernels and obtain optimal bandwidth h

through plug-in methods.

Table 1 shows the results of the first scenario. We construct infeasible NW estimators mNW and infeasible

H estimators m̃HXX , where the true density function f is used in the denominator. The first part of the

results shows bias, variance, RMSE, and RRMSE of estimates of the jump at the discontinuity point and

AMSE and RAMSE of estimates of the regression function at all evaluation points. To explore the estimate

of the jump, we examine the estimates of two regressions to the right and left of the discontinuity point in

the second part of the report. We show bias and variance both from samples and quantified results from

our theory. It is not surprising that the bias and variance of the jump is the sum of the bias and variance

of estimates on regressions from two sides. Most importantly, estimates from samples match the asymptotic

bias and variance from our theory very well, which further confirms our theoretical findings. It is evident

that NW estimators have the largest bias at the discontinuity point. In most cases, we can always find one

set of Hestenes estimators that have smaller bias than LL estimators.

Table 2 shows the results of the second scenario. We construct feasible NW estimators as m̂+
NW (x) =

(nh)−1∑n
i=1K(

Xi−x
h )Y idi

(nh)−1
∑n
i=1K(

Xi−x
h )

for x ≥ 0 and m̂−NW (x) =
(nh)−1∑n

i=1K(
Xi−x
h )Yi(1−di)

(nh)−1
∑n
i=1K(

Xi−x
h )

for x < 0, and feasible H

estimators as defined in section 2. The results are similar to those in the first scenario. What is worth

mentioning is that the NW estimators appear to have the smallest bias on the jump, but this conclusion

21



does not withstand further scrutiny. As shown in part two, the NW estimators on regressions have a large

bias. Not surprisingly, when we switch to using only half of the sample to estimate f , the large bias of NW

estimators on the jump occurs again.

Table 3 shows the results of the third scenario. We construct feasible NW estimators where the density

estimator in the denominator uses only data corresponding Xi ≥ 0 and Xi < 0 for m̂+
NW and m̂−NW ,

respectively. Similarly, for H estimators we consider

m̂+
H(x) =

1
nh

∑n
i=1

[
K
(
Xi−x
h

)
+
∑s+1
j=1

kj
wj
K

( Xi
wj

+x

h

)]
Yidi

1
nh

∑n
i=1K

(
Xi−x
h

)
di

for x ≥ 0 and

m̂−H(x) =
(nh)−1

∑n
i=1K(Xi−xh )Yi (1− di)

(nh)−1
∑n
i=1K(Xi−xh ) (1− di)

for x < 0, which we construct here solely for comparison with these NW estimators. The simulation outcomes

confirm the earlier notion: H estimators constructed in this way have large bias. Compared to the last table,

the bias of NW estimators depends on the regression function. When the regression function has a large

intersection away from zero, the NW estimators constructed with half of the sample have a smaller bias;

when the regression function has a steep slope, the NW estimators constructed with the whole sample have

a smaller bias, which accords with our theory.

From our theory, we know that the bias of NW estimators comes from the incomplete kernel at the

boundary points. Therefore, when the whole sample is used to estimate f , the leading term of bias is a

constant term. When half of the sample is used to estimate f , the leading term of bias is a term of order h.

As is often described in the literature (e.g.,Imbens and Lemieux (2008), Porter (2003)), NW estimators are

constructed to use half of the sample to estimate density f and the bias is described by a term of order h.

This statement is not wrong but it understates two drawbacks of this method: one, compared to the method

of using the whole sample to estimate f , this estimator has larger variance; two, it contains the h term

twice as large as the former method when regression m has a slope and symmetric kernels are used – both

situations are common. A large sample size does not help to alleviate the problem here because h converges

to 0 slowly: the optimal h yielded by cross-validation and plug-in methods is h = n−
1
5 . H estimators fix the

problem by making the kernels on the numerator complete, which reduces bias from the constant term – the

h term – at the same time, using the whole sample to estimate f in the denominator to avoid introducing a

fraction at the bottom which amplifies bias on the top.

Table 4 shows the performance of these estimators by focusing on one regression function, regression

(28) and increasing the sample size from 1000 to 4000 by 1000 units. As sample size increases, the bias and

variance of each of the estimators becomes smaller, but they converge at a different speed. NW estimators

converge slower than LL and H estimators, which agrees with the theoretical result that the bias of NW
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estimators decreases in the order of h while LL and H estimators decrease in the order of h2.

4.3 Choosing bandwidth and kernels

Choosing bandwidth is critical in non-parametric estimation. In the simulation, we use plug-in and cross-

validation methods to obtain bandwidths. For the plug-in method, we choose locally optimal bandwidth

by optimizing the leading terms of mean squared error of the regression estimator at the boundary point;

for the cross-validation method, we choose a globally optimal bandwidth by minimizing the sum of the

squared deviations between the observed outcomes and the regression estimates. In both methods, we take

advantage of the fact that we know the true function of the density and regression. For most simulations, we

use plug-in methods to find optimal bandwidth because this method is fast while the cross-validation method

is computationally time consuming. Using the plug-in method, h is calculated by the formulas described in

section 2 for the LL and H estimators. Table 5 shows that using different methods of the bandwidth does

not change results.

We compare two types of kernels: kernels without compact support, such as Gaussian kernels, and

kernels with compact support, such as Epanechnikov Kernels. Table 6 shows kernels make little impacts on

the performance of estimators.

4.4 Changing density function f

The simulations conducted above use standard normal distributions in generating X with the peak of the

density at the discontinuity point. This splits observations almost evenly between two sides of the disconti-

nuity point, which we know in reality will not always be the case. For example, in the case of using students’

class grade as the running variable to decide whether a third-year student can be promoted to the next grade

or to be held back for one more year, the cutoff grade, let us say 60 out of 100, is often located away from

the peak of the grade distribution, say 80 out 100. Therefore, it is useful to check how estimators detect the

jump when the cutoff point is off the peak of the distribution of the running variable. Table 7 shows there

are few differences in performance when the peak of the density function f is shifted away from the cutoff

point.

In summary, our theory has provided good predictions for bias and variance in finite samples for H

estimators in different setups. Hestenes estimators perform better than NW estimators in all cases and, in

most situations, one can always find a set of H estimators that have smaller bias than LL estimators.

5 Empirical illustration

To illustrate the applicability of our estimators in empirical settings, we use data collected by Litschig and

Morrison (2013) who use a RD model to examine the impact of intergovernmental transfer programs on
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education and poverty reduction outcomes. We begin with a discussion of the assumptions underlying RD

designs and their implications for empirical modeling. We then describe how a typical empirical RD model

is estimated to verify these assumptions and address some implementation issues.

5.1 Assumptions on RD designs and their implications for empirical studies

Identification of RD designs depends on several assumptions, which have important implications in empirical

studies. The most important assumption is on the regression function associated with the outcome variable.

Instead of assuming a specific functional form for the regression function, identification of RD models assumes

the existence of a smooth regression at the vicinity of the discontinuity point. Contrast this with the

difference-in-difference (DID) design where an “equal trend” is required: regression functions before and

after an intervention must be the same. The reason for this difference is that RD designs assess a local

average treatment effect (LATE).

The second assumption relates to how a treatment is assigned in association with a running variable.

Around the discontinuity point, individuals are similar but receive different treatments based on whether their

associated running variable values are slightly above or below the threshold, which determines the treatment

group and control group. We assume that the jump in the regression of outcomes is actually caused by a

treatment variable rather than other covariates and the running variable has a continuous density. To verify

the empirical validity of these assumptions, researchers check that all other covariates across the discontinuity

point are continuous to ensure that the running variable, rather than other covariates, are associated with

the treatment effect. They normally follow McCrary (2008)’s recommendation to check that the density of

the running variable around the discontinuity point to ensure that no individual endogenously manipulates

the running variable. This also trivially satisfies an assumption that sample data exist on both sides of the

discontinuity point. This is an important theoretical assumption for regression estimators that use one-sided

data (NW or LL) to ensure that the denominator, which consists of a kernel density estimator, is not equal

to zero.

Lastly, an important assumption for identification is knowledge of the point of discontinuity – that is, the

discontinuity of treatment status when the running variable crosses the discontinuity point is known to the

econometrician: in sharp RD designs, the jump on the probability of getting treated is one while in fuzzy

RD designs this jump is between 0 and 1. Without this underlying assumption, the jump in the expected

outcome will not be assigned to any treatment. Moreover, as shown in equation (25), the assumption ensures

the denominator of the estimator is not zero.

One common feature of empirical RD models is that, instead of using all data to perform a nonparametric

estimation, researchers often conduct estimation with a compactly supported kernel by arbitrarily restricting

a running variable to a small range of values around the threshold, then demonstrating, as a robustness test,
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that the parameter of interest is not sensitive to different ranges induced by the bandwidth in the vicinity of

the point of discontinuity. The rationale is that using all data could give undue influence to data far away

from the threshold. However, this procedure has at least two drawbacks. First, when we have a high volume

of data in a small range of discrete running variable values (often running variables are discrete, such as age,

test scores, or the number of individuals), the variance of the estimate is large. Second, data away from the

threshold have information that can influence the estimated regression and, therefore, affect the jump size

estimate.

5.2 A typical empirical RD model estimation procedure

The running variable X is not an object of direct interest, but it is of interest insofar as the expected value

of the outcome variable Y has a jump at a particular value of X. Normally, economists are interested in

regression slopes, but not in this case, where the primary interest in the regression jump. At the discontinuity

point, another variable D – the treatment variable – experiences a jump, and the jump in the expectation

of Y is thought of as the average treatment effect (ATE) of the treatment D on the outcome Y under

the assumptions discussed in the last subsection. Empirical work using RD designs often involve the the

following procedures:

1. Use a scatter plot to visually check if there is a jump in the regression function of the outcome variable

and treatment variable with respect to the running variable at the discontinuity point.

2. Perform regression estimation on the outcome and treatment variable.

3. Conduct a robustness test to ensure that no other covariates have a jump at the discontinuity point.

4. Conduct a test suggested by McCrary (2008) for checking that the density of the running variable is

continuous at the discontinuity point.

5. Repeat estimation with a truncated sample to ensure that points far away from the discontinuity point

do not exert undue influence.

Abstracting from specific empirical context or designs – sharp or fuzzy – estimations in RD models can be

simply categorized into regression and density discontinuity estimation at the discontinuity point. The re-

gression discontinuity estimation includes estimation of the regression discontinuity of the outcome variables

and the treatment variable with respect to the running variable, while the density estimation includes density

discontinuity of the running variable. In many studies (for example, Litschig and Morrison (2013), Matsu-

daira (2008)), a local least squares method is used for regression estimation and a histogram or McCrary’s

procedure is used for checking density discontinuity.
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5.3 An empirical example

Litschig and Morrison (2013) exploit an opportunity provided by the passing of Decree 188181, a federal

funds transfer plan in Brazil, which stipulates that federal funds – FPM (the federal Fundo de Participação

dos Munićıpios) – must be distributed to local communities according to municipality population. The

intergovernmental transfers jump in per capita spending at several population thresholds, which constitutes

a sharp RD design with multiple thresholds. The treatment variable here is per capita spending and the

running variable is the population of the municipality. The impacts on education and poverty are measured

by outcome variables such as years of schooling, literacy rate, poverty rate and political party reelection rate.

The study estimates the jump in the conditional means of the outcome variables using local least squares

and estimate jump in the density of the running variable at the threshold using the method recommended

by McCrary (2008). To show the robustness of their results, Litschig and Morrison vary the choice of

bandwidth, percentage of population away from the discontinuity point, from 2%, to 3% and 4%, and try

different functional forms ranging from linear, quadratic, cubic and quartic. Compared to their approach, our

approach is more flexible. Instead of arbitrarily choosing the bandwidth, we choose an optimal bandwidth

based on the sample; instead of trying different functional forms, we do not specify any functional form.

A direct comparison between our estimation results with Litschig and Morrison’s is not possible because

we choose different parameters, such as bandwidth. However, we try to produce comparable results using

our estimators by considering two situations: estimate the jump in regression of the running variable with

and without extra covariates. As mentioned in their paper, extra covariates are included to guard against

misspecification of the model and to increase the precision of the estimates.

For estimation without extra covariates, we consider

Y =

{
m+(X) + ε, X ≥ 0

m−(X) + ε, X < 0
,

where X is the running variable: the population of a municipality and Y represents either a treatment or

the outcome variable. The jump size is estimated by Ĵ(0) = limx↓0 m̂
+(x)− limx↑0 m̂

−(x).

For estimation with extra continuous covariates, we propose the following additive model and use the

marginal integration method to estimate regression functions.

Y =

{
m+

1 (X1) +m2(X2) + · · ·+mp(Xp) + ε, X1 ≥ 0

m−1 (X1) +m2(X2) + · · ·+mp(Xp) + ε, X1 < 0
,

where X1 is the running variable and X2, · · · , Xp are continuous covariates. Different from regular additive

models, the first regression function in this model is discontinuous. To make the jump identifiable, there

is no intercept term, and we assume that the regression functions other than m1 have mean zeros, i.e.,

E(mi(Xi)) = 0, for i = 2, · · · , p.
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We use two methods to obtain an optimal h: a plug-in rule of thumb and a jackknife cross-validation

method. For rule of thumb, h = n−1/5std(X). For the jackknife cross-validation method, we choose h to

minimize the sum of squared leave-one-out residuals using observations to the right and to the left of the

threshold respectively.

Estimation procedure is straightforward. We use Hestenes estimators to estimate the jump of the regres-

sions of the treatment variables and outcome variables and we use Hestenes density estimators proposed by

Mynbaev and Martins-Filho (2019) to estimate the jump of the density of the running variable.

Figures 2 and 3, which correspond to Figures 4 and 5 in Litschig and Morrison (2013), show the estimation

of the jump in the treatment and outcome variables. Each subgraph shows three estimates of regression:

regression without covariates using optimal h by the rule-of- thumb method or by the cross-validation method,

and regression with covariates using optimal h by the rule-of- thumb method. We can see from Figure 2

that, as a treatment variable, there is a clear increase in spending per capita while there isn’t significant

changes in other revenue and own revenue per capita. If anything, there is slightly increase in own revenue.

This agrees with their explanation that the federal transfer causes an increase in per capita public spending

without crowding out other and own per capita revenue. As a consequence, Figure 3 shows that there is a

increase in years of schooling for the 19-28 age group, a decrease in the illiteracy rate and poverty rates, and

an increase in the reelection rate of the incumbent party. These results agree with their results.

Figure 2 represents the discontinuity in regressions of the treatment variables: total spending per capital,

own revenue, and other revenue, and Figure 3 graphically represents the discontinuity in regressions of

outcome variables: schooling, literacy, poverty, and party reelection. Visually, we can see that our results

agree with their results: the federal transfer causes an increase in per capita public spending without crowding

out other and own per capita revenue, which in turn is responsible for an increase in years of schooling for

the 19–28 year-old group, a decrease in the illiteracy rate and poverty rates, and an increase in the reelection

rate of the incumbent party.

All jump estimates above are shown in Table 8. To compare with their results, we show their correspond-

ing estimation results using similar bandwidth. When the rule-of-thumb method is used, a bandwidth is

chosen based on the size and standard deviation of the population sample, so we have two bandwidths for all

16 regressions, one for the regression to the left and the other for the regression to the right of the threshold.

When the cross-validation method is used, a bandwidth is chosen based on the residuals of the sample, so we

have 16 bandwidths for 16 regressions. Although Hestenes estimation uses different bandwidth and method

from the OLS estimation that Litschig and Morrison use, the estimates are amazingly similar.

Finally, we check the continuity of the density of the population running variable. Figure 6, which

corresponds to their online appendix Figure 1, graphically presents estimates from Cheng (1994)’s LL density

estimators and Mynbaev and Martins-Filho (2019)’s Hestenes density estimators. The two estimates almost
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completely overlap. Since McCrary (2008)’s jump density estimators are based on Cheng (1994)’s LL density

estimators, it is not surprising that Figure 4 looks very similar to their online appendix Figure 1. Table 9

compares our density estimates with theirs. The estimates on the jump from the three estimators are slightly

different, but they all lead to the acceptance of the null hypothesis that there are no discontinuities at all

six cutoffs points. The discrepancy between the estimates from the LL and McCrary estimators could be

explained by different bin size and bandwidth chosen for each implementation.

In summary, our estimation for both regression and density mostly agree with the results Litschig and

Morrison (2013). One thing we want to point out is that they have made a mistake in implementing their

empirical specification described in equation (1) in their paper. One way to run this OLS regression is to

regress outcome variables with respect to all other explanatory variables which include the running variable,

other pretreatment variables, and state fixed effects. Alternatively, if one wants to remove the states effects

first, one can apply the Frisch-Waugh-Lovell theorem to get residuals of the outcome variables, the running

variable and the pretreatment variable against the state fixed effects, then regress the residues of the outcome

variable with respect to the residuals of explanatory variables. Instead, they first get the residual from the

regression of the outcome variables with respect to the state fixed effects and then run the residual from the

first regression against the rest of explanatory variables rather than their residuals. This mistake does not

qualitatively change the result but affects the size of the jumps.

6 Conclusions

In this paper, we provided a new nonparametric estimator for regression discontinuity based on the exten-

sion proposed by Hestenes (1941). Constructed using the same algebraic structure of NW estimators, our

estimators restore the bias at the boundary points to the same as that of the interior points in both order

and magnitude. A theoretical comparison between our estimators and the popular local linear approach

shows that these two types of estimators have the same unconditional bias order of O(h2) and variance

order O( 1
nh ). In Monte Carlo simulations, we show that our estimators are free of boundary problems and

perform better than NW estimators in all cases. Compared to LL estimators, our estimators have the same

bias order and similar, or in some cases, smaller bias size. By applying our estimators to an empirical study

by Litschig and Morrison (2013), we show our estimators are easy to use and provide more flexibility than

standard OLS estimation procedure used for RDD.

For future study, there is an opportunity to extend our method to other estimators, such as LL estimators.

Boundary problems actually exist in LL estimators, even though they do not affect the performance of LL

estimators as much as they do NW estimators: the bias of LL estimators at the boundary points has the same

order but different magnitude from biases at interior points. While bias order is important for asymptotic

properties, the size of the bias is also of great concern for researchers who deal with finite samples in empirical
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studies. This means that applying Hestenes (1941)’s extension to modify LL estimators could reduce bias

size for LL estimators on boundary points.
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Figure 1: Four regression functions estimated by four estimators
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Figure 2: Impacts on Total Spending, Other Revenue, and Own Revenue
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Figure 3: Impacts on Schooling, Literacy, Poverty, and Party Reelection
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Figure 4: Population Density estimated by LL estimator (black) and Hestenes estimator (red)
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Table 1: Using the true density to estimate four different regression functions

Jump estimators
Experiment NW LL H00 H10 H11 H21

Bias 1 0.6857 0.1310 0.6804 0.1086 0.4759 0.1008
Variance 1 0.0039 0.0345 0.0155 0.0455 0.0262 0.0394
RMSE 1 0.6885 0.2272 0.6917 0.2393 0.5026 0.2227

REL RMSE 1 3.0912 1.0202 3.1056 1.0742 2.2567 1.0000
AMSE 1 0.1803 0.0967 0.1265 0.1591 0.1309 0.1552

REL AMSE 1 1.8647 1.0000 1.3081 1.6448 1.3536 1.6049
Bias 2 -0.0154 0.0425 0.6602 0.1044 0.3706 -0.1294

Variance 2 0.0038 0.0389 0.0152 0.0521 0.0278 0.0480
RMSE 2 0.0635 0.2017 0.6716 0.2510 0.4063 0.2545

REL RMSE 2 1.0000 3.1745 10.5720 3.9514 6.3963 4.0061
AMSE 2 0.1371 0.0954 0.1157 0.1379 0.1167 0.1353

REL AMSE 2 1.4380 1.0000 1.2130 1.4455 1.2237 1.4187
Bias 3 0.2005 0.0364 -0.5990 -0.1118 -0.2915 0.1288

Variance 3 0.0023 0.0217 0.0092 0.0310 0.0172 0.0315
RMSE 3 0.2062 0.1517 0.6066 0.2085 0.3197 0.2193

REL RMSE 3 1.3587 1.0000 3.9978 1.3741 2.1069 1.4453
AMSE 3 0.1064 0.0635 0.1369 0.1199 0.1075 0.1178

REL AMSE 3 1.6752 1.0000 2.1559 1.8884 1.6932 1.8548
Bias 4 -0.9424 -0.0492 -0.5757 0.0100 -0.2095 0.2029

Variance 4 0.0032 0.0346 0.0128 0.0375 0.0215 0.0325
RMSE 4 0.9441 0.1924 0.5867 0.1938 0.2557 0.2715

REL RMSE 4 4.9060 1.0000 3.0489 1.0071 1.3285 1.4109
AMSE 4 0.1700 0.0920 0.1093 0.1360 0.1113 0.1338

REL AMSE 4 1.8468 1.0000 1.1880 1.4774 1.2099 1.4535
Sample Bias and Variance of regresion estimators

NW- NW+ LL- LL+ H00- H00+ H10- H10+ H11- H11+ H21- H21+

Bias 1 -0.6734 0.0124 -0.0495 0.0815 -0.3467 0.3337 -0.0064 0.1021 -0.1560 0.3199 0.0122 0.1130

Variance 1 0.0009 0.0025 0.0086 0.0261 0.0036 0.0099 0.0134 0.0293 0.0065 0.0170 0.0099 0.0271

Bias 2 -0.3626 -0.3780 -0.0202 0.0223 -0.4161 0.2440 -0.0299 0.0745 -0.2020 0.1686 0.1357 0.0063

Variance 2 0.0022 0.0018 0.0264 0.0131 0.0087 0.0071 0.0256 0.0245 0.0150 0.0129 0.0239 0.0221

Bias 3 -0.2582 -0.0577 -0.0511 -0.0146 0.4836 -0.1154 0.0897 -0.0221 0.2329 -0.0586 -0.1316 -0.0028

Variance 3 0.0014 0.0010 0.0087 0.0128 0.0056 0.0040 0.0185 0.0124 0.0108 0.0069 0.0212 0.0106

Bias 4 0.3633 -0.5791 0.0220 -0.0272 0.4176 -0.1581 0.0315 0.0416 0.2042 -0.0052 -0.1324 0.0704

Variance 4 0.0022 0.0009 0.0259 0.0086 0.0086 0.0038 0.0251 0.0140 0.0150 0.0067 0.0239 0.0104

Asymptotic Bias and Variance from theory
NW- NW+ LL- LL+ H00- H00+ H10- H10+ H11- H11+ H21- H21+

Bias 1 -0.6967 0.0290 -0.0545 0.0346 -0.3934 0.3670 -0.0314 0.0409 -0.0951 0.1238 0.0583 -0.0759

Variance 1 0.0013 0.0022 0.0083 0.0258 0.0053 0.0089 0.0157 0.0267 0.0090 0.0153 0.0136 0.0231

Bias 2 -0.3852 -0.3842 0.0346 0.0226 -0.4615 0.2317 0.0409 0.0391 0.1238 0.1184 -0.0759 -0.0726

Variance 2 0.0022 0.0020 0.0258 0.0129 0.0089 0.0082 0.0267 0.0244 0.0153 0.0140 0.0231 0.0211

Bias 3 -0.2671 -0.0551 -0.0545 -0.0237 0.4658 -0.1102 -0.0314 -0.0273 -0.0951 -0.0828 0.0583 0.0507

Variance 3 0.0013 0.0010 0.0083 0.0126 0.0053 0.0040 0.0157 0.0119 0.0090 0.0068 0.0136 0.0103

Bias 4 0.3852 -0.5893 -0.0346 -0.0545 0.4615 -0.1786 -0.0409 -0.0314 -0.1238 -0.0951 0.0759 0.0583

Variance 4 0.0022 0.0013 0.0258 0.0083 0.0089 0.0053 0.0267 0.0157 0.0153 0.0090 0.0231 0.0136
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Table 2: Using the whole sample to estimate four different regression functions

Jump estimators
Experiment NW LL H00 H10 H11 H21

Bias 1 0.0289 0.1857 0.7488 0.1535 0.5147 0.0061
Variance 1 0.0067 0.0489 0.0268 0.0924 0.0490 0.0853
RMSE 1 0.0868 0.2888 0.7665 0.3404 0.5602 0.2921

REL RMSE 1 1.0000 3.3253 8.8264 3.9203 6.4512 3.3637
AMSE 1 0.1626 0.1724 0.1472 0.1792 0.1539 0.1742

REL AMSE 1 1.1044 1.1711 1.0000 1.2172 1.0451 1.1833
Bias 2 -0.0155 0.1242 0.6599 0.1075 0.3719 -0.1262

Variance 2 0.0039 0.0281 0.0156 0.0523 0.0285 0.0492
RMSE 2 0.0643 0.2087 0.6716 0.2528 0.4084 0.2552

REL RMSE 2 1.0000 3.2474 10.4489 3.9323 6.3543 3.9711
AMSE 2 0.1378 0.1371 0.1162 0.1384 0.1174 0.1359

REL AMSE 2 1.1859 1.1797 1.0000 1.1913 1.0105 1.1698
Bias 3 -0.0367 0.1018 0.6176 0.0897 0.3100 -0.1620

Variance 3 0.0029 0.0206 0.0114 0.0381 0.0209 0.0356
RMSE 3 0.0648 0.1761 0.6268 0.2147 0.3420 0.2487

REL RMSE 3 1.0000 2.7150 9.6661 3.3111 5.2737 3.8351
AMSE 3 0.1256 0.1188 0.1013 0.1184 0.0998 0.1166

REL AMSE 3 1.2590 1.1908 1.0153 1.1863 1.0000 1.1683
Bias 4 -0.0537 0.0844 0.5836 0.0755 0.2663 -0.1806

Variance 4 0.0023 0.0160 0.0090 0.0305 0.0164 0.0280
RMSE 4 0.0717 0.1519 0.5912 0.1902 0.2955 0.2462

REL RMSE 4 1.0000 2.1195 8.2481 2.6540 4.1223 3.4344
AMSE 4 0.1185 0.1075 0.0918 0.1064 0.0891 0.1051

REL AMSE 4 1.3296 1.2066 1.0303 1.1938 1.0000 1.1790
Sample Bias and Variance of regresion estimators

NW- NW+ LL- LL+ H00- H00+ H10- H10+ H11- H11+ H21- H21+

Bias 1 -0.3908 -0.3619 -0.1255 0.0602 -0.4725 0.2762 -0.0540 0.0995 -0.2928 0.2219 0.0402 0.0464

Variance 1 0.0039 0.0031 0.0337 0.0160 0.0156 0.0125 0.0453 0.0438 0.0269 0.0226 0.0428 0.0388

Bias 2 -0.3626 -0.3782 -0.0796 0.0446 -0.4163 0.2437 -0.0319 0.0755 -0.2030 0.1689 0.1335 0.0073

Variance 2 0.0022 0.0017 0.0192 0.0092 0.0089 0.0070 0.0260 0.0238 0.0155 0.0128 0.0246 0.0221

Bias 3 -0.3493 -0.3860 -0.0634 0.0385 -0.3897 0.2280 -0.0258 0.0639 -0.1653 0.1447 0.1560 -0.0059

Variance 3 0.0016 0.0013 0.0138 0.0066 0.0063 0.0052 0.0188 0.0174 0.0108 0.0095 0.0172 0.0162

Bias 4 -0.3381 -0.3919 -0.0498 0.0345 -0.3673 0.2163 -0.0189 0.0566 -0.1375 0.1288 0.1678 -0.0127

Variance 4 0.0012 0.0010 0.0106 0.0052 0.0049 0.0041 0.0146 0.0140 0.0086 0.0073 0.0136 0.0124

Asymptotic Bias and Variance from theory
NW- NW+ LL- LL+ H00- H00+ H10- H10+ H11- H11+ H21- H21+

Bias 1 -0.4236 -0.3708 0.0895 0.0623 -0.5381 0.2584 0.0539 0.0515 0.1634 0.1563 -0.1002 -0.0958

Variance 1 0.0039 0.0035 0.0320 0.0155 0.0155 0.0142 0.0465 0.0425 0.0267 0.0244 0.0402 0.0367

Bias 2 -0.3852 -0.3842 0.0678 0.0472 -0.4615 0.2317 0.0409 0.0391 0.1238 0.1184 -0.0759 -0.0726

Variance 2 0.0022 0.0020 0.0184 0.0089 0.0089 0.0082 0.0267 0.0244 0.0153 0.0140 0.0231 0.0211

Bias 3 -0.3656 -0.3916 0.0577 0.0402 -0.4221 0.2169 0.0347 0.0332 0.1053 0.1007 -0.0646 -0.0617

Variance 3 0.0016 0.0015 0.0133 0.0065 0.0064 0.0059 0.0193 0.0177 0.0111 0.0101 0.0167 0.0152

Bias 4 -0.3527 -0.3966 0.0514 0.0358 -0.3964 0.2068 0.0310 0.0296 0.0939 0.0897 -0.0575 -0.0550

Variance 4 0.0013 0.0012 0.0106 0.0051 0.0051 0.0047 0.0153 0.0140 0.0088 0.0081 0.0132 0.0121
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Table 3: Using half of the sample to estimate four different regression functions

Jump estimators
NW LL H00 H10 H11 H21

Bias 1 0.7496 0.1858 2.1901 0.9927 1.7160 0.6928
Variance 1 0.0229 0.0490 0.0916 0.3245 0.1668 0.2986
RMSE 1 0.7647 0.2889 2.2110 1.1445 1.7639 0.8824

REL RMSE 1 2.6470 1.0000 7.6531 3.9617 6.1058 3.0543
AMSE 1 0.1510 0.1725 0.3214 0.3081 0.3135 0.2865

REL AMSE 1 1.0000 1.1422 2.1288 2.0403 2.0763 1.8976
Bias 2 0.6605 0.1242 2.0121 0.9036 1.4322 0.4325

Variance 2 0.0132 0.0281 0.0527 0.1836 0.0959 0.1695
RMSE 2 0.6704 0.2087 2.0251 1.0001 1.4653 0.5972

REL RMSE 2 3.2121 1.0000 9.7025 4.7913 7.0205 2.8610
AMSE 2 0.1205 0.1371 0.2808 0.2666 0.2670 0.2480

REL AMSE 2 1.0000 1.1378 2.3309 2.2134 2.2161 2.0584
Bias 3 0.6176 0.1017 1.9263 0.8680 1.3082 0.3617

Variance 3 0.0095 0.0206 0.0379 0.1331 0.0691 0.1212
RMSE 3 0.6253 0.1760 1.9361 0.9416 1.3344 0.5020

REL RMSE 3 3.5531 1.0000 11.0017 5.3505 7.5824 2.8526
AMSE 3 0.1057 0.1188 0.2610 0.2466 0.2452 0.2298

REL AMSE 3 1.0000 1.1239 2.4684 2.3321 2.3191 2.1732
Bias 4 0.5836 0.0844 1.8581 0.8402 1.2215 0.3261

Variance 4 0.0074 0.0160 0.0298 0.1055 0.0542 0.0949
RMSE 4 0.5899 0.1519 1.8661 0.9007 1.2434 0.4486

REL RMSE 4 3.8830 1.0000 12.2835 5.9290 8.1848 2.9529
AMSE 4 0.0962 0.1075 0.2477 0.2341 0.2316 0.2189

REL AMSE 4 1.0000 1.1178 2.5753 2.4334 2.4072 2.2752
Sample Bias and Variance of regresion estimators

NW- NW+ LL- LL+ H00- H00+ H10- H10+ H11- H11+ H21- H21+

Bias 1 -0.4736 0.2760 -0.1255 0.0603 -0.6382 1.5519 0.2022 1.1949 -0.2758 1.4402 0.3942 1.0870

Variance 1 0.0158 0.0072 0.0337 0.0160 0.0633 0.0290 0.1808 0.1459 0.1079 0.0587 0.1754 0.1213

Bias 2 -0.4168 0.2437 -0.0795 0.0447 -0.5246 1.4874 0.2454 1.1490 -0.0962 1.3360 0.5787 1.0112

Variance 2 0.0090 0.0042 0.0192 0.0092 0.0361 0.0170 0.1033 0.0806 0.0621 0.0342 0.1007 0.0698

Bias 3 -0.3901 0.2276 -0.0633 0.0384 -0.4711 1.4551 0.2581 1.1262 -0.0208 1.2875 0.6237 0.9853

Variance 3 0.0063 0.0030 0.0138 0.0066 0.0253 0.0121 0.0747 0.0583 0.0436 0.0250 0.0707 0.0506

Bias 4 -0.3676 0.2160 -0.0498 0.0345 -0.4261 1.4321 0.2714 1.1115 0.0346 1.2561 0.6463 0.9724

Variance 4 0.0050 0.0024 0.0106 0.0052 0.0199 0.0097 0.0578 0.0466 0.0343 0.0194 0.0554 0.0388

Asymptotic Bias and Variance from theory
NW- NW+ LL- LL+ H00- H00+ H10- H10+ H11- H11+ H21- H21+

Bias 1 -0.5062 0.2981 0.0895 0.0623 -0.5381 0.2584 0.0539 0.0515 0.1634 0.1563 -0.1002 -0.0958

Variance 1 0.0039 0.0035 0.0320 0.0155 0.0155 0.0142 0.0465 0.0425 0.0267 0.0244 0.0402 0.0367

Bias 2 -0.4373 0.2618 0.0678 0.0472 -0.4615 0.2317 0.0409 0.0391 0.1238 0.1184 -0.0759 -0.0726

Variance 2 0.0022 0.0020 0.0184 0.0089 0.0089 0.0082 0.0267 0.0244 0.0153 0.0140 0.0231 0.0211

Bias 3 -0.4016 0.2425 0.0577 0.0402 -0.4221 0.2169 0.0347 0.0332 0.1053 0.1007 -0.0646 -0.0617

Variance 3 0.0016 0.0015 0.0133 0.0065 0.0064 0.0059 0.0193 0.0177 0.0111 0.0101 0.0167 0.0152

Bias 4 -0.3781 0.2296 0.0514 0.0358 -0.3964 0.2068 0.0310 0.0296 0.0939 0.0897 -0.0575 -0.0550

Variance 4 0.0013 0.0012 0.0106 0.0051 0.0051 0.0047 0.0153 0.0140 0.0088 0.0081 0.0132 0.0121
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Table 4: Choosing Sample size from 1000, 2000, 3000, to 4000

Jump estimators
NW LL H00 H10 H11 H21

Bias 1 0.0154 0.1858 0.7219 0.1223 0.4861 -0.0175
Variance 1 0.0076 0.0490 0.0305 0.0913 0.0546 0.0857
RMSE 1 0.0887 0.2889 0.7427 0.3260 0.5393 0.2933

REL RMSE 1 1.0000 3.2562 8.3711 3.6739 6.0790 3.3058
AMSE 1 0.1858 0.1725 0.1675 0.1974 0.1733 0.1939

REL AMSE 1 1.1090 1.0294 1.0000 1.1783 1.0346 1.1577
Bias 2 -0.0250 0.1242 0.6410 0.0833 0.3512 -0.1445

Variance 2 0.0044 0.0281 0.0176 0.0520 0.0314 0.0491
RMSE 2 0.0709 0.2087 0.6546 0.2429 0.3934 0.2644

REL RMSE 2 1.0000 2.9458 9.2384 3.4277 5.5516 3.7318
AMSE 2 0.1552 0.1371 0.1323 0.1535 0.1336 0.1521

REL AMSE 2 1.1736 1.0361 1.0000 1.1608 1.0098 1.1497
Bias 3 -0.0449 0.1017 0.6011 0.0690 0.2924 -0.1776

Variance 3 0.0032 0.0206 0.0127 0.0377 0.0226 0.0353
RMSE 3 0.0720 0.1760 0.6116 0.2061 0.3288 0.2586

REL RMSE 3 1.0000 2.4425 8.4888 2.8611 4.5635 3.5887
AMSE 3 0.1400 0.1188 0.1148 0.1315 0.1138 0.1306

REL AMSE 3 1.2299 1.0439 1.0088 1.1555 1.0000 1.1470
Bias 4 -0.0609 0.0844 0.5693 0.0573 0.2510 -0.1944

Variance 4 0.0025 0.0160 0.0100 0.0303 0.0178 0.0278
RMSE 4 0.0788 0.1519 0.5780 0.1833 0.2842 0.2561

REL RMSE 4 1.0000 1.9282 7.3358 2.3262 3.6069 3.2502
AMSE 4 0.1310 0.1075 0.1040 0.1185 0.1020 0.1178

REL AMSE 4 1.2839 1.0540 1.0193 1.1612 1.0000 1.1547
Sample Bias and Variance of regresion estimators

NW- NW+ LL- LL+ H00- H00+ H10- H10+ H11- H11+ H21- H21+

Bias 1 -0.3899 -0.3745 -0.1255 0.0603 -0.4708 0.2511 -0.0569 0.0654 -0.2936 0.1925 0.0347 0.0172

Variance 1 0.0038 0.0039 0.0337 0.0160 0.0153 0.0155 0.0444 0.0468 0.0264 0.0279 0.0407 0.0438

Bias 2 -0.3622 -0.3872 -0.0795 0.0447 -0.4155 0.2255 -0.0338 0.0496 -0.2038 0.1475 0.1297 -0.0147

Variance 2 0.0022 0.0022 0.0192 0.0092 0.0088 0.0088 0.0258 0.0259 0.0152 0.0160 0.0236 0.0252

Bias 3 -0.3490 -0.3939 -0.0633 0.0384 -0.3890 0.2121 -0.0274 0.0416 -0.1662 0.1263 0.1527 -0.0250

Variance 3 0.0015 0.0016 0.0138 0.0066 0.0062 0.0066 0.0187 0.0190 0.0107 0.0117 0.0166 0.0184

Bias 4 -0.3379 -0.3988 -0.0498 0.0345 -0.3668 0.2024 -0.0205 0.0368 -0.1383 0.1126 0.1649 -0.0296

Variance 4 0.0012 0.0013 0.0106 0.0052 0.0049 0.0051 0.0145 0.0153 0.0085 0.0091 0.0131 0.0142

Asymptotic Bias and Variance from theory
NW- NW+ LL- LL+ H00- H00+ H10- H10+ H11- H11+ H21- H21+

Bias 1 -0.4236 -0.3708 0.0895 0.0623 -0.5381 0.2584 0.0539 0.0515 0.1634 0.1563 -0.1002 -0.0958

Variance 1 0.0039 0.0035 0.0320 0.0155 0.0155 0.0142 0.0465 0.0425 0.0267 0.0244 0.0402 0.0367

Bias 2 -0.3852 -0.3842 0.0678 0.0472 -0.4615 0.2317 0.0409 0.0391 0.1238 0.1184 -0.0759 -0.0726

Variance 2 0.0022 0.0020 0.0184 0.0089 0.0089 0.0082 0.0267 0.0244 0.0153 0.0140 0.0231 0.0211

Bias 3 -0.3656 -0.3916 0.0577 0.0402 -0.4221 0.2169 0.0347 0.0332 0.1053 0.1007 -0.0646 -0.0617

Variance 3 0.0016 0.0015 0.0133 0.0065 0.0064 0.0059 0.0193 0.0177 0.0111 0.0101 0.0167 0.0152

Bias 4 -0.3527 -0.3966 0.0514 0.0358 -0.3964 0.2068 0.0310 0.0296 0.0939 0.0897 -0.0575 -0.0550

Variance 4 0.0013 0.0012 0.0106 0.0051 0.0051 0.0047 0.0153 0.0140 0.0088 0.0081 0.0132 0.0121
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Table 5: Choosing Bandwidth by Cross-Validation vs. Plug-in

Plug-in Method to obtain optimal h (with 10,000 repetitions) Cross-Validation to obtain optimal h(with 2,000 repetitions)

NW LL H00 H10 H11 H21

Bias 1 0.6848 0.2144 0.6785 0.1038 0.4724 0.0956

Variance 1 0.0038 0.0277 0.0152 0.0447 0.0257 0.0386

RMSE 1 0.6875 0.2715 0.6897 0.2355 0.4988 0.2186

REL RMSE 1 3.1457 1.2422 3.1554 1.0774 2.2824 1.0000

AMSE 1 0.1805 0.1294 0.1264 0.1589 0.1307 0.1550

REL AMSE 1 1.4273 1.0236 1.0000 1.2569 1.0335 1.2260

Bias 2 -0.0149 0.1249 0.6612 0.1077 0.3734 -0.1246

Variance 2 0.0039 0.0287 0.0156 0.0529 0.0285 0.0496

RMSE 2 0.0642 0.2104 0.6729 0.2539 0.4098 0.2551

REL RMSE 2 1.0000 3.2798 10.4885 3.9578 6.3868 3.9760

AMSE 2 0.1376 0.1369 0.1162 0.1384 0.1173 0.1357

REL AMSE 2 1.1846 1.1780 1.0000 1.1913 1.0096 1.1681

Bias 3 0.2007 0.0191 -0.5985 -0.1111 -0.2905 0.1308

Variance 3 0.0023 0.0180 0.0090 0.0302 0.0168 0.0307

RMSE 3 0.2063 0.1357 0.6060 0.2063 0.3182 0.2188

REL RMSE 3 1.5204 1.0000 4.4667 1.5207 2.3451 1.6123

AMSE 3 0.1060 0.0597 0.1365 0.1192 0.1068 0.1172

REL AMSE 3 1.7750 1.0000 2.2858 1.9968 1.7881 1.9625

Bias 4 -0.9433 -0.1065 -0.5776 0.0049 -0.2124 0.1989

Variance 4 0.0032 0.0284 0.0129 0.0384 0.0217 0.0330

RMSE 4 0.9450 0.1993 0.5887 0.1961 0.2586 0.2693

REL RMSE 4 4.8196 1.0165 3.0022 1.0000 1.3186 1.3732

AMSE 4 0.1704 0.1333 0.1097 0.1362 0.1117 0.1339

REL AMSE 4 1.5523 1.2142 1.0000 1.2409 1.0179 1.2205

NW LL H00 H10 H11 H21

0.5063 0.0569 0.4014 0.0053 0.1390 -0.1031

0.0099 0.0478 0.0236 0.0787 0.0424 0.0578

0.5160 0.2259 0.4297 0.2805 0.2483 0.2616

2.2845 1.0000 1.9026 1.2417 1.0992 1.1582

0.1099 0.0789 0.0861 0.0854 0.0811 0.0838

1.3935 1.0000 1.0911 1.0829 1.0286 1.0627

-0.1490 0.0294 0.4208 0.0307 0.1291 -0.1029

0.0092 0.0516 0.0212 0.0787 0.0381 0.0562

0.1772 0.2290 0.4452 0.2821 0.2339 0.2582

1.0000 1.2923 2.5121 1.5916 1.3197 1.4570

0.1082 0.0786 0.0873 0.0857 0.0812 0.0837

1.3759 1.0000 1.1104 1.0895 1.0327 1.0647

0.3167 -0.0154 -0.2870 -0.0200 -0.0908 0.0423

0.0082 0.0148 0.0104 0.0330 0.0180 0.0224

0.3294 0.1225 0.3047 0.1828 0.1619 0.1554

2.6885 1.0000 2.4864 1.4917 1.3215 1.2684

0.0822 0.0503 0.0655 0.0627 0.0585 0.0609

1.6341 1.0000 1.3029 1.2471 1.1620 1.2107

-0.7948 -0.0368 -0.3599 0.0460 -0.0331 0.1382

0.0079 0.0402 0.0162 0.0550 0.0296 0.0398

0.7997 0.2038 0.3818 0.2390 0.1751 0.2427

4.5664 1.1635 2.1798 1.3645 1.0000 1.3857

0.1135 0.0756 0.0830 0.0809 0.0771 0.0799

1.5018 1.0000 1.0986 1.0703 1.0205 1.0578
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Table 6: Choosing Kernels with or without Compact Support

a standard Gussian kernel an Epanechnikov kernel

NW LL H00 H10 H11 H21

Bias 1 0.6952 0.1304 0.6995 0.1610 0.5092 0.1515

Variance 1 0.0037 0.0347 0.0147 0.0426 0.0250 0.0374

RMSE 1 0.6978 0.2274 0.7099 0.2617 0.5332 0.2458

REL RMSE 1 3.0692 1.0000 3.1220 1.1512 2.3450 1.0810

AMSE 1 0.1864 0.0967 0.1327 0.1558 0.1332 0.1515

REL AMSE 1 1.9275 1.0000 1.3721 1.6112 1.3774 1.5668

Bias 2 -0.0249 0.0438 0.6412 0.0803 0.3509 -0.1456

Variance 2 0.0043 0.0396 0.0173 0.0524 0.0309 0.0486

RMSE 2 0.0704 0.2038 0.6546 0.2425 0.3926 0.2642

REL RMSE 2 1.0000 2.8954 9.3022 3.4465 5.5783 3.7543

AMSE 2 0.1549 0.0958 0.1318 0.1532 0.1330 0.1516

REL AMSE 2 1.6167 1.0000 1.3762 1.5997 1.3889 1.5825

Bias 3 0.2274 0.0356 -0.5451 -0.0489 -0.2345 0.1771

Variance 3 0.0025 0.0212 0.0101 0.0308 0.0190 0.0315

RMSE 3 0.2329 0.1501 0.5543 0.1821 0.2720 0.2506

REL RMSE 3 1.5522 1.0000 3.6939 1.2135 1.8129 1.6702

AMSE 3 0.1394 0.0635 0.1424 0.1504 0.1272 0.1574

REL AMSE 3 2.1937 1.0000 2.2422 2.3680 2.0028 2.4779

Bias 4 -0.9565 -0.0493 -0.6040 -0.0515 -0.2544 0.1421

Variance 4 0.0032 0.0348 0.0129 0.0389 0.0220 0.0333

RMSE 4 0.9582 0.1931 0.6146 0.2038 0.2945 0.2313

REL RMSE 4 4.9632 1.0000 3.1833 1.0556 1.5253 1.1979

AMSE 4 0.1788 0.0919 0.1163 0.1342 0.1134 0.1316

REL AMSE 4 1.9456 1.0000 1.2652 1.4608 1.2337 1.4325

NW LL H00 H10 H11 H21

0.7163 0.0951 0.7416 0.1599 0.5423 0.0891

0.0036 0.0392 0.0143 0.0443 0.0263 0.0434

0.7188 0.2196 0.7512 0.2642 0.5660 0.2266

3.2727 1.0000 3.4202 1.2031 2.5770 1.0316

0.1944 0.0981 0.1375 0.1645 0.1393 0.1693

1.9816 1.0000 1.4009 1.6766 1.4195 1.7249

-0.0068 0.0251 0.6775 0.0766 0.3522 -0.2820

0.0044 0.0438 0.0174 0.0555 0.0341 0.0630

0.0663 0.2107 0.6902 0.2478 0.3977 0.3776

1.0000 3.1786 10.4103 3.7372 5.9987 5.6954

0.1577 0.0960 0.1334 0.1592 0.1355 0.1670

1.6434 1.0000 1.3896 1.6584 1.4116 1.7397

0.2142 0.0289 -0.5717 -0.0428 -0.2260 0.2789

0.0026 0.0244 0.0102 0.0333 0.0218 0.0465

0.2200 0.1588 0.5806 0.1875 0.2700 0.3526

1.3856 1.0000 3.6560 1.1805 1.7003 2.2202

0.1421 0.0644 0.1462 0.1581 0.1304 0.1793

2.2077 1.0000 2.2717 2.4557 2.0257 2.7858

-0.9722 -0.0336 -0.6354 -0.0481 -0.2502 0.2641

0.0031 0.0404 0.0123 0.0403 0.0226 0.0393

0.9738 0.2038 0.6450 0.2065 0.2919 0.3302

4.7787 1.0000 3.1653 1.0132 1.4325 1.6202

0.1857 0.0925 0.1184 0.1402 0.1158 0.1460

2.0069 1.0000 1.2793 1.5150 1.2509 1.5776
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Table 7: Choosing Density Functions

Density of x is a standard normal distribution Density of x is a normal with mu = 0.5

NW LL H00 H10 H11 H21

Bias 1 0.6848 0.2144 0.6785 0.1038 0.4724 0.0956

Variance 1 0.0038 0.0277 0.0152 0.0447 0.0257 0.0386

RMSE 1 0.6875 0.2715 0.6897 0.2355 0.4988 0.2186

REL RMSE 1 3.1457 1.2422 3.1554 1.0774 2.2824 1.0000

AMSE 1 0.1805 0.1294 0.1264 0.1589 0.1307 0.1550

REL AMSE 1 1.4273 1.0236 1.0000 1.2569 1.0335 1.2260

Bias 2 -0.0149 0.1249 0.6612 0.1077 0.3734 -0.1246

Variance 2 0.0039 0.0287 0.0156 0.0529 0.0285 0.0496

RMSE 2 0.0642 0.2104 0.6729 0.2539 0.4098 0.2551

REL RMSE 2 1.0000 3.2798 10.4885 3.9578 6.3868 3.9760

AMSE 2 0.1376 0.1369 0.1162 0.1384 0.1173 0.1357

REL AMSE 2 1.1846 1.1780 1.0000 1.1913 1.0096 1.1681

Bias 3 0.2007 0.0191 -0.5985 -0.1111 -0.2905 0.1308

Variance 3 0.0023 0.0180 0.0090 0.0302 0.0168 0.0307

RMSE 3 0.2063 0.1357 0.6060 0.2063 0.3182 0.2188

REL RMSE 3 1.5204 1.0000 4.4667 1.5207 2.3451 1.6123

AMSE 3 0.1060 0.0597 0.1365 0.1192 0.1068 0.1172

REL AMSE 3 1.7750 1.0000 2.2858 1.9968 1.7881 1.9625

Bias 4 -0.9433 -0.1065 -0.5776 0.0049 -0.2124 0.1989

Variance 4 0.0032 0.0284 0.0129 0.0384 0.0217 0.0330

RMSE 4 0.9450 0.1993 0.5887 0.1961 0.2586 0.2693

REL RMSE 4 4.8196 1.0165 3.0022 1.0000 1.3186 1.3732

AMSE 4 0.1704 0.1333 0.1097 0.1362 0.1117 0.1339

REL AMSE 4 1.5523 1.2142 1.0000 1.2409 1.0179 1.2205

NW LL H00 H10 H11 H21

0.7033 0.2322 0.7156 0.2091 0.6604 0.4858

0.0046 0.0313 0.0186 0.0530 0.0316 0.0466

0.7066 0.2920 0.7285 0.3109 0.6839 0.5316

2.4202 1.0000 2.4953 1.0649 2.3425 1.8207

0.1787 0.1351 0.1439 0.1939 0.1667 0.1916

1.3229 1.0000 1.0651 1.4349 1.2342 1.4184

0.1976 0.1342 1.0862 0.3080 0.9110 0.3606

0.0030 0.0307 0.0118 0.0407 0.0213 0.0368

0.2050 0.2207 1.0916 0.3681 0.9226 0.4084

1.0000 1.0769 5.3262 1.7960 4.5014 1.9927

0.1712 0.1424 0.1962 0.2179 0.2026 0.2125

1.2020 1.0000 1.3774 1.5297 1.4227 1.4919

0.2460 0.0163 -0.5081 -0.1763 -0.4098 -0.1335

0.0021 0.0214 0.0086 0.0288 0.0155 0.0268

0.2503 0.1471 0.5164 0.2448 0.4283 0.2113

1.7020 1.0000 3.5119 1.6647 2.9124 1.4367

0.2101 0.0624 0.1755 0.2502 0.2076 0.2412

3.3671 1.0000 2.8136 4.0110 3.3277 3.8664

-0.9714 -0.1100 -0.6339 0.0305 -0.3286 0.0202

0.0027 0.0312 0.0108 0.0314 0.0183 0.0273

0.9728 0.2081 0.6424 0.1799 0.3553 0.1664

5.8474 1.2510 3.8610 1.0812 2.1356 1.0000

0.2127 0.1386 0.1500 0.2165 0.1769 0.2162

1.5344 1.0000 1.0822 1.5613 1.2761 1.5592
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Table 8: Regression Discontinuity Estimates on Treatment and Outcome Variables

Hestenes Estimation From Litschig & Morrison

Bandwidth

Pretreatment covariates

Rule-of-thumb

No

Cross-validation

No

Cross-validation

Yes

log FPM transfers per capita 0.210 0.198 0.197

log total spending per capita 0.218 0.217 0.155

log other revenue per capita 0.078 -0.033 -0.052

log own revenue per capita 0.407 0.316 0.128

schooling, 19 to 28 age group in 1991 0.686 0.678 0.453

literacy rate, 19 to 28 age group in 1991 0.078 0.079 0.053

poverty rate in 1991 -0.051 -0.040 -0.018

party reelection rate 0.052 0.079 0.058

Fixed

No

Fixed

Yes

0.0197 0.167

0.516 0.301

0.062 0.049

-0.06 -0.051

0.086 0.106

Hestenes Estimation From Litschig & Morrison

Bandwidth Rule-of-thumb Cross-validation Cross-validation

log FPM transfers per capita 1.58 2.37 2.08 2.14 2.07 2.14

log total spending per capita 1.58 2.37 5.38 3.53 4.79 6.42

log other revenue per capita 1.58 2.37 1.09 3.28 1.47 3.75

log own revenue per capita 1.58 2.37 4.04 3.30 3.84 2.88

schooling, 19 to 28 age group in 1991 1.58 2.37 3.48 2.78 3.11 2.43

literacy rate, 19 to 28 age group in 1991 1.58 2.37 3.46 2.46 3.24 2.29

poverty rate in 1991 1.58 2.37 3.40 2.70 3.33 2.24

party reelection rate 1.58 2.37 3.56 7.42 3.75 7.63

Fixed Fixed

4 4

3 3

3 3

3 3

4 4

Table 9: Density Estimates on Population

The Cutoffs Local Linear Hestenes McCrary (SE of McCrary)

10188 -0.0288 0.0456 -0.0720 0.095
13584 0.0331 0.0291 0.0110 0.111
16980 -0.4656 -0.3222 0.1800 0.136
23772 0.1955 0.0393 0.0540 0.174
30564 0.1336 -0.1626 -0.0110 0.269
37356 -0.6823 -0.5325 0.3500 0.357
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A Supporting lemmas

Lemma 1. Suppose the assumptions of Theorem 3 are holding and h → 0 and nh → ∞ as n → ∞. The

covariance of ĝ(x) and f̂(x) for x ≥ 0 has the following representation

Cov(ĝ(x), f̂(x)) =

{
1
nh

{
m+(0)f(0)

∑s+1
,j=0

kj
wj

∫∞
0
K (u)K

(
u
wj

)
du+ o(1)

}
, x = 0

1
nh

{
m+(x)f(x)

∫
R
K2(u)du+ o(1)

}
, x > 0

Proof. Let ĝ(x) = 1
nh

∑n
i=1

[
K
(
Xi−x
h

)
+
∑s+1
j=1

kj
wj
K

( Xi
wj

+x

h

)]
Yidi, w0 = −1, k0 = −1, ui =

∑s+1
j=0

kj
wj
K

( Xi
wj

+x

h

)
and K(Xi−xh ) = Ki. Then, since {Xi}i=1,2,··· forms an i.i.d. sequence and E(Y |X = x) = m+(x) for x ≥ 0

Cov(ĝ(x), f̂(x)) =
n

(nh)2
E
[
m+(X1)u1d1K1

]
+
n(n− 1)

(nh)2
E
[
m+(X1)u1d1

]
E [K1]− 1

h2
E
[
m+(X1)u1d1

]
E [K1]

=
1

nh2
E
[
m+(X1)u1d1K1

]
− 1

nh2
E
[
m+(X1)u1d1

]
E [K1]

Put 1
hE [m+(X1)u1d1K1] = T1 and 1

h2E [m+(X1)u1d1]E [K1] = T2, then Cov(ĝ(x), f̂(x)) = 1
nhT1−

1
nT2. As

with the variance, the covariance will be different for x = 0 and x > 0.

Case (x > 0):

T1 =
1

h

∫ ∞
0

K2

(
X1 − x
h

)
m+(X1)f(X1)dX1 +

1

h

∫ ∞
0

K

(
X1 − x
h

) s+1∑
j=1

kj
wj
K

(
X1

wj
+ x

h

)
m+(X1)f(X1)dX1

letting
x−X1

h
= u in the first term and

X1

wj
+ x

h
= u in the second

=

∫ x
h

−∞
K2(u)m+(x− hu)f(x− hu)du

+

s+1∑
j=1

kj

∫ ∞
x
h

K
(
wju− (wj + 1)

x

h

)
K(u)m+(wj(hu− x))f(wj(hu− x))du = I00 +

s+1∑
j=1

kjI0j

where I00 =
∫ x
h

−∞K2(u)m+(x − hu)f(x − hu)du and I0j =
∫∞
x
h
K
(
wju− (wj + 1)xh

)
K(u)m+(wj(hu −

x))f(wj(hu− x))du. Now,∣∣∣∣I00 −m+(x)f(x)

∫
R

K2(u)du

∣∣∣∣ =

∣∣∣∣∣
∫
R

K2(u)
[
m+(x− hu)f(x− hu)−m+(x)f(x)

]
du−

∫ ∞
x
h

K2(u)m+(x− hu)f(x− hu)du

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|u|≤C

K2(u)
[
m+(x− hu)f(x− hu)−m+(x)f(x)

]
du

∣∣∣∣∣
+

∣∣∣∣∣
∫
|u|>C

K2(u)
[
m+(x− hu)f(x− hu)−m+(x)f(x)

]
du

∣∣∣∣∣
+

∣∣∣∣∣
∫ ∞
x
h

K2(u)m+(x− hu)f(x− hu)du

∣∣∣∣∣ , for C > 0

≤ Cp̄(Ch, x)

∫
|u|≤C

K2(u)du+ C

∫
|u|>C

K2(u)du+ C

∫ ∞
x
h

K2(u)du
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where the last equality follows from the uniform boundedness of K, f and m+ and where p̄(Ch, x) is as

defined in the proof of Theorem 2. By continuity of f and the fact that
∫
K2(u)du < C, for all ε > 0,∣∣∣∣I00 −m+(x)f(x)

∫
R

K2(u)du

∣∣∣∣ ≤ ε. (31)

Similarly,

|I0j | ≤ C
∫ ∞
x
h

K (u) du < ε for all n sufficiently large. (32)

Consequently,
∣∣T1 −m+(x)f(x)

∫
R
K2(u)du

∣∣ ≤ ε.
Turning to T2, we first observe that from standard properties of f̂ we have

1

h
E

(
K

(
X1 − x
h

))
→ f(x). (33)

Now, letting x−X1

h = u and
X1
wj

+x

h = u we have

h−1E
[
m+(X1)u1d1

]
= h−1E

(
m+(X1)u1

)
=

1

h

∫ ∞
0

K

(
X1 − x
h

)
m+(X1)f(X1)dX1

+
1

h

s+1∑
j=1

kj
wj

∫ ∞
0

K

(
X1

wj
+ x

h

)
m+(X1)f(X1)dX1

=

∫ x
h

−∞
K(u)m+(x− hu)f(x− hu)du+

s+1∑
j=1

kj

∫ ∞
x
h

K(u)m+(wj(hu− x))f(wj(hu− x))du

= I1 +

s+1∑
j=1

I2j

Using arguments similar to those used in the study of T1 we have∣∣∣∣I1 −m+(x)f(x)

∫
R

K(u)du

∣∣∣∣ ≤ Cp̄(Ch, x)

∫
|u|≤C

K(u)du+ 2C

∫
|u|>C

K(u)du

+ C

∫ ∞
x
h

K(u)du

By continuity of f(x) we have, for all ε > 0,
∣∣I1 −m+(x)f(x)

∫
R
K2(u)du

∣∣ ≤ ε. Similarly,

|I2j | ≤ C
s+1∑
j=0

kj

∫ ∞
x
h

|K(u)| du ≤ ε

for sufficiently large n. Therefore,∣∣∣∣ 1hE (m+(X1)u1
)
−m+(x)f(x)

∫
R

K2(u)du

∣∣∣∣ ≤ ε. (34)

Thus for x > 0, Cov(ĝ(x), f̂(x)) = 1
nhT1 −

1
nT2 = 1

nh

(
m+(x)f(x)

∫
R
K2(u)du+ o(1)

)
.

Case (x = 0): Repeating the change in variables used above, we have

T1 = I00 +

s+1∑
j=1

kj
wj
I0j
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where I00 =
∫ 0

−∞K2(u)m+(−hu)f(−hu)du and I0j =
∫∞
0
K
(
u
w0

)
K
(
u
wj

)
m+(hu)f(hu)du. Now,∣∣∣∣I00 −m+(0)f(0)

∫ 0

−∞
K2(u)du

∣∣∣∣ =

∣∣∣∣∣
∫ −C
−∞

K2(u)
[
m+(−hu)f(−hu)−m+(0)f(0)

]
du

+

∫ 0

−C
K2(u)

[
m+(−hu)f(−hu)−m+(0)f(0)

]
du

∣∣∣∣
≤ C

∫ −C
−∞

K2(u)du+ p̄(Ch, 0)

∫ C

0

K2(u)du

For n sufficiently large and all ε > 0,∣∣∣∣I00 −m+(0)f(0)

∫ 0

−∞
K2(u)du

∣∣∣∣ ≤ ε. (35)

Similar arguments give, ∣∣∣∣I0j −m+(0)f(0)

∫ ∞
0

K (u)K

(
u

wj

)
du

∣∣∣∣ < ε. (36)

Consequently, (35) and (36) give∣∣∣∣∣∣T1 −m+(0)f(0)

s+1∑
,j=0

kj
wj

∫ ∞
0

K (u)K

(
u

wj

)
du

∣∣∣∣∣∣ < ε.

Turning to T2 = 1
h2E [m+(X1)u1d1]E

[
K(X1

h )
]

we have from the properties of f̂ that 1
hE
(
K
(
X1

h

))
→ f(0).

Now, again changing variables,

1

h
E
(
m+(X1)u1d1

)
=

1

h

∫ ∞
0

K

(
X1

h

)
m+(X1)f(X1)dX1 +

1

h

s+1∑
j=1

kj
wj

∫ ∞
0

K

(
X1

wjh

)
m+(X1)f(X1)dX1

= I1 +

s+1∑
j=1

kj
wj
I2j

where I1 =
∫ 0

−∞K(u)m+(−hu)f(−hu)du and I2j =
∫∞
0
K(u)m+(wjhu)f(wjhu)du. Using, the same argu-

ments as in the first case (x > 0) we have,∣∣∣∣I1 −m+(0)f(0)

∫ 0

−∞
K(u)du

∣∣∣∣ ≤ C ∫ −C
−∞

K(u)du+ p̄(Ch, 0)

∫ C

0

K(u)du.

For h be sufficiently small and continuity of f we have, for all ε > 0,
∣∣∣I1 −m+(0)f(0)

∫ 0

−∞K(u)du
∣∣∣ ≤ ε.∣∣∣∣I2 −m+(0)f(0)

∫ ∞
0

K

(
u

wj

)
du

∣∣∣∣ =

∣∣∣∣∫ ∞
0

K

(
u

wj

)[
m+(hu)f(hu)−m+(0)f(0)

]
du

∣∣∣∣
=

∣∣∣∣∣
∫ C

0

K

(
u

wj

)[
m+(hu)f(hu)−m+(0)f(0)

]
du

+

∫ ∞
C

K

(
u

wj

)[
m+(hu)f(hu)−m+(0)f(0)

]
du

∣∣∣∣
≤ p̄(hC, 0)

∫ C

0

∣∣∣∣K ( u

wj

)∣∣∣∣ du+ C

∫ ∞
C

K

(
u

w0

)
K

(
u

wj

)
du
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where for all ε > 0,
∣∣∣∫∞C K

(
u
wj

)
du
∣∣∣ < ε and for sufficiently small h, p̄(hC, 0) < ε. Thus,∣∣∣∣I2 −m+(0)f(0)

∫ ∞
0

K

(
u

wj

)
du

∣∣∣∣ < ε.

Consequently, ∣∣∣∣∣∣ 1hE (m+(X1)u1
)
−m+(0)f(0)

s+1∑
j=0

kj
wj

∫ ∞
0

K

(
u

wj

)
du

∣∣∣∣∣∣ < ε. (37)

Thus for x = 0, Cov(ĝ(x), f̂(x)) = 1
nhT1 −

1
nT2 = 1

nh

[
m+(0)f(0)

∑s+1
,j=0

kj
wj

∫∞
0
K (u)K

(
u
wj

)
du+ o(1)

]
. In

summary, we have

Cov(ĝ(x), f̂(x)) =

{
1
nh

{
m+(0)f(0)

∑s+1
,j=0

kj
wj

∫∞
0
K (u)K

(
u
wj

)
du+ o(1)

}
, x = 0

1
nh

{
m+(x)f(x)

∫
R
K2(u)du+ o(1)

}
, x > 0.

Lemma 2. Under the assumptions of Theorem 3, E (|Zn(x)|) = O
(

( 1
nh )

3
2

)
.

Proof.

Zn(x) = 3(ĝ(x)− Eĝ(x))(f̂(x)− Ef̂(x))2
∫ 1

0

(1− t)2

[Ef̂(x) + t(f̂(x)− Ef̂(x))]3
dt

− 3(f̂(x)− Ef̂(x))3
∫ 1

0

(1− t)2 [Eĝ(x) + t(ĝ(x)− Eĝ(x))]

[Ef̂(x) + t(f̂(x)− Ef̂(x))]4
dt = 3(J1 − J2).

Letting, sn = E (ĝ(x)− Eĝ(x)|X1 · · · , Xn) = 1
nh

∑n
i=1 (zi,n − E(zi,n)) where zi,n = K

(
Xi−x
h

)
I{Xi≥0}m

+(xi),

we have that

E(J1) =

∫
sn(f̂(x)− Ef̂(x))2

∫ 1

0

(1− t)2

[Ef̂(x) + t(f̂(x)− Ef̂(x))]3
dtf(X)dX

and

E(J2) = (f̂(x)− Ef̂(x))3E(ĝ(x))

∫ 1

0

(1− t)2

[Ef̂(x) + t(f̂(x)− Ef̂(x))]4
dtf(X)dX

+ sn(f̂(x)− Ef̂(x))3
∫ 1

0

t(1− t)2

[Ef̂(x) + t(f̂(x)− Ef̂(x))]4
dtf(x)dx.

By the Cauchy-Schwartz inequality

|EJ1| ≤
(∫

s2n(f̂(x)− Ef̂(x))4f(X)dX

) 1
2

∫ (∫ 1

0

(1− t)2

[Ef̂(x) + t(f̂(x)− Ef̂(x))]3
dt

)2

f(X)dX

 1
2

.

Now, since (1− t)2 ≤ 1 for 0 ≤ t ≤ 1, letting d = (1− t)Ef̂(x) + tf̂(x) we see that d > 0 since E(f̂(x)) ≥ 0.

Consequently,
∫ 1

0
1
d3 (1 − t)2dt ≤

∫ 1

0
1
d3 dt. But,

∫ 1

0
1
d3 dt = f̂(x)+Ef̂(x)

2f̂(x)2(Ef̂(x))
2 = 1

2f̂(x)Ef̂(x)2
+ 1

2f̂(x)2Ef̂(x)
. Now,
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since 0 < B ≤ Ef̂(x) we have
∫ 1

0
1
d3 dt ≤

1
B max

{
1

f̂(x)2B
, 1
f̂(x)2

}
. Taking max

{
1

f̂(x)B
, 1
f̂(x)

}
= 1

f̂(x)B
we have

|EJ1| ≤
(∫

s2n(f̂(x)− Ef̂(x))4f(X)dX

) 1
2

 1

B2

∫ (
1

f̂(x)

)2

f(X)dX

 1
2

.

Now,

|E(J2)| ≤ |J2,1|+ |J2,2|

≤
(∫ (

(f̂(x)− Ef̂(x))3Eĝ(x)
)2
f(X)dX

) 1
2

∫ (∫ 1

0

(1− t)2

[Ef̂(x) + t(f̂(x)− Ef̂(x))]4
dt

)2

f(X)dX

 1
2

+

(∫ (
sn(f̂(x)− Ef̂(x))3

)2
f(X)dX

) 1
2

∫ (∫ 1

0

t(1− t)2

[Ef̂(x) + t(f̂(x)− Ef̂(x))]4
dt

)2

f(X)dX

 1
2

Now, t(1− t)2 ≤ t ≤ 1, hence∫ 1

0

1

[Ef̂(x) + t(f̂(x)− Ef̂(x))]4
dt =

(Ef̂(x))2 + Ef̂(x)f̂(x) + f̂(x)2

3Ef̂(x)3f̂(x)3
=

1

3Ef̂(x)f̂(x)3
+

1

3Ef̂(x)2f̂(x)2

+
1

3Ef̂(x)3f̂(x)

≤ 1

B
max

{
1

f̂(x)3
,

1

Bf̂(x)2
,

1

B2f̂(x)

}

Suppose max
{

1
f̂(x)3

, 1
Bf̂(x)2

, 1
B2f̂(x)

}
= 1

f̂(x)B2
. Then,

|EJ2| ≤

{(∫ (
(f̂(x)− Ef̂(x))3Eĝ(x)

)2
f(x)dx

) 1
2

+

(∫ (
sn(f̂(x)− Ef̂(x))3

)2
f(X)dX

) 1
2

}

×

 1

B4

∫ (
1

f̂(x)

)2

f(X)dX

 1
2

Now,
∫ (

1
f̂(x)

)2
f(X)dX =

∫∞
0

∫
e−λf̂(x)

2

f(X)dXdλ =
∫∞
0
E
(
e−λf̂(x)

2
)
dλ. Under the conditions of Theo-

rem 3, and by Slutsky Theorem, f̂(x)2
p−→ f(x)2. Thus, by Lebesgue’s dominated convergence Theorem

hn(x, λ) = E
(
e−λf̂(x)

2
)
→ E

(
e−λf(x)

2
)

=
(
e−λf(x)

2
)

= h(x, λ).

since |hn(x, λ)| ≤
∫
|e−λf̂(x)2 |f(x)dx ≤ 1 for all n, λ. Thus, hn(x, λ) is bounded and convergent on [0,∞).

Then, by Arzèla’s Theorem (Apostol, 1974, p. 228)

lim
n→∞

∫ ∞
0

hn(x, λ)dλ→
∫ ∞
0

E
(
e−λf̂(x)

2
)
dλ =

1

f(x)2
≤ C
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since 0 < B < f(x). Thus,

|E(J1) + E(J2)| ≤ C

((∫
s2n(f̂(x)− Ef̂(x))4f(X)dX

) 1
2

+

(∫ (
(f̂(x)− Ef̂(x))3Eĝ(x)

)2
f(X)dX

) 1
2

+

(∫ (
sn(f̂(x)− Ef̂(x))3

)2
f(x)dx

) 1
2

)

Now, E|f̂−Ef̂ |3 ≤
(
E|f̂ − Ef̂ |2

)
1
2

(
E|f̂ − Ef̂ |4

) 1
2

=
(
V f̂
) 1

2

(
E
(
f̂ − Ef̂

)4) 1
2

= O((nh)−1)
1
2 (O((nh)−2))

1
2

by Hölder’s Inequality and the fact that E
(
f̂ − Ef̂

)4
= O((nh)−2) from Ziegler (2001). Then, E|f̂−Ef̂ |3 ≤

(nh)−
1
2 (nh)−1O(1) = (nh)−

3
2O(1), Eĝ(x) = O(1) and sn = (ĝ(x)− E(ĝ(x)|X1, · · · , Xn) = Op((nh)−

1
2 .

Thus, E(Zn((x)) = O
(

( 1
nh )

3
2

)
.
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