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Abstract

This paper introduces a censored-outcome simultaneous-equation model with social in-
teractions. The construction of the microeconomics foundation for this model is from the
equilibrium in a large-network-based game with incomplete information, in which each agent
conducts multiple actions and interacts with other agents through a network through a linear
quadratic utility function. The sufficient condition of the unique Bayesian Nash Equilibrium
(BNE) existence is characterized. We also discuss the identification of the econometric model.
We propose a two-stage method to estimate the model in which we apply the nested pseudo-
likelihood (NPL) to estimate the reduced parameters and then derive the structural form
parameters by Amemiya Generalized Least Square estimator (AGLS). Monte Carlo simula~
tion shows that the estimation performs well in finite samples. The estimation also shows the
feasibility of the computation when the network size is large.

JEL classification: C31, C34
Key words: Censored Model, Limited Dependent, Networks, Spatial Autoregressive Models,
Simultaneous Equation Models, Social Interaction Models, Tobit model

1 Introduction

In many real economic situations, the outcomes of agents’ activities are censored. For example, the
spending amount of household annually traveling should be zero or some positive value. Researchers
of teenagers’ behaviors are interested in how many cigarettes a teenager smokes and how many
alcoholic beverages a teenager drinks. Both results are also zeros or positive values. Such result
of each agent’s certain activity can be influenced by the same agent’s other activities’ results and
also can be influenced by other agents’ activities’. From the household consumption example, a

household’s annual traveling spending will influence its annual entertainment spending and vice
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versa. And both spending can be impacted by their friends’ spending. As for the teenager behavior
research example, the number of cigarettes a teenager smokes also impacts how many alcoholic
beverages he/she drinks and vice versa. Both the number of cigarettes he/she smokes and the
number of alcoholic beverages he/she drinks are influenced by his/her friends. The multi-action
censored outcomes of different actions determined by the same agent inter-depend, and agents also
impact each other. This paper proposes a simultaneous equation model with censored outcomes and
social interactions to characterize the interdependence of an agent’s economic decision outcomes
both across agents and economic activities.

From the seminal literature, Amemiya (1974) proposed a multivariate Tobit model, which is
an extension of Tobin (1958) and Amemiya (1973), and build a simplified version of consistent
estimation by grouping agents into two types based on the outcomes of there activities. Nelson
and Olson (1978) generate a different multivariate Tobit model with latent endogenous variables
under a more general truncation structure, i.e., not all zeros, and also develop an estimator. The
model they propose has one completely observed endogenous variable and one truncated. They
derived a reduced-form-based two-stage estimation containing the application of the least square
method and likelihood method. Then, Amemiya (1979) extends the simultaneous-equation Tobit
model more generally, which combines truncated and non-truncated endogenous outcomes and
develops a GLS-based estimator. According to the variance-covariance matrix developing, the
estimation process Amemiya (1979) is more efficient than that in Nelson and Olson (1978). Our
econometric model is similar to the traditional simultaneous equation model, but the endogenous
variables of our structure model are dependent not on the observed outcomes but on the unobserved
reservation values.

Our paper is based on the intuition in which each agent conducts various activities at the
same time and shows the results, and each agent cannot observe others’ outcomes before making
decisions, however, their expectation of other agents’ outcomes will influence their behaviors. That
means the econometricians and economists need to figure out the Bayesian Nash Equilibrium in
the incomplete information network game. Liu (2019) discuss a simultaneous-equation binary
model with social interactions under incomplete information and conduct the estimation based
on maximum likelihood and nested pseudo-likelihood, which is introduced in Aguirregabiria and
Mira (2007). Yang et al. (2018) discuss the incomplete information situation of the single-equation

Tobit model with social interactions and compare it to the complete information case, which is an



extension of Xu and Lee (2015), in which a maximum likelihood estimator is developed to estimate
the single-equation SAR Tobit model. Other related literature, such as Lee et al. (2014), Lin and
Xu (2017), and Yang and Lee (2017) discuss the existence of Bayesian Nash Equilibrium under
incomplete information social network in which individuals share rational expectations on others’
outcomes.

The rest of this paper is organized as follows. Section 2 clarifies the microeconomic foundation
of this paper, a network multi-activity game under incomplete information case. Section 3 is the
generation of the econometric model of this paper. Section 4 is the estimation. Section 5 is the

Monte Carlo simulation. Section 6 concludes.

2 Incomplete Information Network Game

The microeconomic foundation of the econometric model in this paper is based on the network
game with incomplete information. First of all, we need to clarify the network structure. Suppose
there are n agents in a network. Each agent can interact with other agents. Then, without loss of
generality, we will have a row-normalized network matrix W = [w;;] for i and j from 1 to n, where
wy; = 0 for all 7, and w;; is known non-negative constant, representing agent j’s influence on agent
i. Therefore, w;; is not necessarily equal to wj;, and w;; can be zero meaning that agent j has no
direct influence on agent .

Suppose each agent 7 in the network participates in m activities. 1y, represents agent i’s
intention in the k-th activities. And vy, = vy, (y} > 0) where I(-) is an indicator function that
will be 1 if the inside statement is true and 0 otherwise. For other agent j # i, he/she can only
observe y;; for k = 1,...,m, and v}, is known only by agent i him/herself. Then from Ballester
et al. (2006), Calvo-Armengol et al. (2009) and Blume et al. (2015), we introduce a linear-quadratic

form utility function for agent i as

n

U = Z(Z Olk Wi Y51 + Wik — 57,k ym
j=1

k=1 =1

SO dnviys (1)

k=1 =1
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where ¥y = Uy, and Yy, # 0 for all k& from 1 to m. The utility function contains two items of
activities’ intention, the first item, > " (3", o 2?:1 WY1 + Wik — €k )Y, represents the payoff
from {y}. }7,. The second item, > ", >, Duysysh, represents the cost generated by {yj }r ;.



We could figure out that the utility function is a payoff-cost-structure linear-quadratic function of
{yh.}r,. Given this form of the utility function, for each agent i in this network, other agents
J’s activities’ outcome {y;};",, where w;; # 0, will influence the marginal benefit/payoff of agent
i’s activities’ intention {y} }7.,, the coefficient g in the first part of the utility function can be
interpreted as the spillover effect for peers’ activities outcomes on the marginal payoff of agent
i’s {y}, }1-,. Also, the marginal benefit/payoff is influenced by agent i’s characteristics w;, — €,
where @y, is public knowledge and known by all agents in the network, and €;;, is the random error
and only privately known by agent i. ;; are independent of {cw; } .2} h=1-

The utility (1) is proposed similarly to Liu (2019). The difference is the activities’ outcomes
in our model are censored instead of binary. The utility function we propose is also different from
that in Cohen-Cole et al. (2018). First, agents’ activities’ outcomes are censored instead of perfect
observable values. Second, there is an unobserved random error term (shock) for each activity of
each agent i.e., g;.

Given the network structure and the public knowledge that influences the activities’ intention,
each agent ¢ (i = 1,2, ...,n) conduct {y} }7-, simultaneously to maximize the conditional expected
utility

m n

EUN{ w2} k=1 {eirtizl) = Z Olk Z WijPji + Wik — Eik)Yix — Z Z VieYirYa (2)
1
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where

pit = E(yul{win} i 1)

From the first-order condition in maximizing conditional expected utility, we have

= Vi " Otk Wik — Eik
Sy = Z wapﬂ + == (3)
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without loss of generality, we denote 6;, = :9%, AN = ﬁ T = g’::, and €;, =

rewrite the first-order condition of maximizing conditional utility in the followmg form

Z Oy = Z Ak Z WijPjt + Tik — €ik (4)
-1 =1 =1



to write the vector form, we introduce the following notations,
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the vector form can be written as

> Owyr = MeWpy + m — & (6)
=1

=1

In the vector form equation (6), the 6y, represents the interdependence effect among activities
conducted by the same agent. In other words, an agent’s underlying intention in activity k& will
depend on his/her underlying intention in activity {. And obviously, we have @y = 1. Agx represents
the inner-activity’s peer effect, which means an agent’s intention of activity k& may be impacted
by the expected activities’ outcomes of the peers in the same activity. Ay, represents the inter-
activity’s peer effect, which means an agent’s intention of activity & may be impacted by the
expected activities’ outcomes of the peers in activity [. Then, we introduce the following notations

to write the matrix form
Y: [YI7y27”'7Ym}

P = [p17p27'“apm}
II=[m,mo, .., T
E=[e,€, ... €]

then the matrix form can be written as

Y'®©=WPA+II-E (8)
If ® is non-singular, we will have the reduced form of the matrix form of our model, which is

Y = WPA*"+1II" — E* 9)

where A* = A@~ ! II* = 110!, and E* = E®~!. According to the reduced matrix form of our



model, we can derive the scalar reduced form as

Vi = DNk D Wit + Ty — €5 (10)
=1 j=1
where (AR ]127 -y = A% [m )iy oy = I, and [ ]25 ) = E7. Then

pir =E(yil{wwi} ;2] 121)
=BE(yi{wi};21 =1 Yir > O)Pr(ya > O{ewu}ilh o))
+ E(yzkHwﬂ}J 1,l=1° Yik = O)Pr(ylk - O|{w]l}j 1,l= 1)

(yzk|{wﬂ}] 1,0=1> Yik > 0)Pr(y. > 0|{wyl}3 1= 1)

(11)

In the current stage, we can not derive a similar form as the equation followed by (2.6) in Liu

(2019). Therefore, we need to propose the following assumption.

Assumption 1. The simultaneous effect (interdependence effect) matriz © is nonsingular and has

a unit diagonal.

Assumption 2. For each agent i in our model, the structural form random shock vector (€;1,- -+ , €m)’
satisfies the multivariate normal distribution with zeros mean and ¥ = [pklakal]znz’%zl (pxr = 1 for

k=1,---,m) variance-covariance matriz, and are independently among agents.

With Assumption 1 and Assumption 2, we can derive that the reduced form random shock

*

vector of our model, i.e., (e, -, € ), are jointly normally distributed with zeros mean and

variance-covariance matrix 3* = @' '%*@~! = [o5],X7,_;, and all the diagonal elements of the

matrix 3* are finite. This can interpreted by the following proposition.

Proposition 2.1. If Assumption 1 and 2 hold, the reduced form random shock vector is jointly

normally distributed with zero means and finite value diagonal elements variance-covariance matriz.

Then equation 11 can be derived as

— N = N ZZ Ik ZT'L: WiiPji + T, N eril Ik Z@: WigPjit + T,
Dik = <Z Alk Zwijpjﬁﬂik)i’( : : *1 - +05® - *1 —
=1 j=1

Ok Ok

(12)



According to the expression of {p;;}.2} _;, we use the vec() function where p = vec(P) and we

have p = E(p) in the Bayesian Nash Equilibrium (BNE). Then p = (p!,--- ,p},)

. TN WD+ . m oA WP+
Pr = <Z/\lkwpl‘|‘ﬂ'k)®‘1)<2l_l t Y P k)—i—akkqﬁ(Zl_l ik Y Pt k) (13)
=1

* *
Ok Ok

then, we set the notation

h(p) = [h1(p), -+ hm(p) (14)

for each £k =1,--- ,m, we have

Ek(P) =(u1p Pk + O3 P1ks - Unk Pk + TprOnk)
:<Z>\7kWpl+7ﬁc> ®¢,<Zl=1 Ik pl+7Tk) +Uzk¢(2121 Ik pz—i—m)

* *
1 Okk Okk

where . .
Uik = Z Alk Z WiiPji + T
=1 j=1
B, — (Zl:l Ik Zj:l wigpji + ”ik) (16)

Ok
m * n *
B —@ (2121 Ak 2_j—1 WPt + 7%)
ik =

*
Ok

To propose a sufficient condition for the existence of the uniqueness of the solution to p = E(p),

we need to add the following assumption to our previous assumptions.

Assumption 3. The reduced form peer effect matriz A*, and the network structure matrix W
should satisfy either
AWl <1 or [|A"[|][W]]1 < 1

Where for any (n x m) matrix A, ||Al|| is the row-sum matrix norm and ||A||; is the column-

sum matrix norm

i=1,2,...,

Ao = maXnZ\aij!
= (17)
[|A[lL = max > lasl
=1

i=1,2,...,n 4

Suppose we denote p = vec(P), y* = vec(Y*), and 7" = vec(XB"), " = vec(E*), then we have



Proposition 2.2. If Assumption 1, 2, and 3 holds, then the incomplete information network game

has a unique pure strateqy BNFE, given the equilibrium strategy y* as
v = (A @ W)p* + 7 — ¢ (18)

where the vector of equilibrium beliefs p* is the unique solution of

p = h(p) (19)
where
h(p) = [l (p), k(D). hin(P))
and
hi(p) = [Fr(uir), Fe(uag), -+, Fr(ung)]
where . .
Uik = Z Al Z WijPjt + ik

=1 i

and

Fy(u) = “@<§;> + UZ;cb(U%)

where ®(+) and ¢(-) is C.D.F. and P.D.F. of standard normal distribution.

Proof: As Fi(-) is continuous for all £ € {1,2,---m}, therefore, f_i() is continuous, therefore,
according to Brouwer fixed-point theorem, there at least exist one solution to p = ﬁ(p) According

to the contraction mapping theorem, the solution to p = E(p) is unique if there exists some kind

of norm that the Hessian matrix norm less than one, i.c., ||0h(p)/dp’|| < 1 for some || - || then we
have
ohi(p) . Ohi(p)
5 op’ ap’
ohp) _ | " "
op’ ; _
Ohm(p) .. Ohm(p)
opy o,



then

F(u) Uik Wi; Uik wip 1, wik
= )\ Wi i p(— J U ¢ wl__(b
) ) + (%) - o, 2 Lo
Uik
= \Now;; ®(—
1k Wij (UZ)
< Wi
It follows
Oh(p) S - .
gp |l < max 3Nl max B fw| = [JA"]11][W]loc
=1 7j=1
Oh(p) S - .
I op' I < lﬂllf}?;llz_;|)\zk|jmﬁl_??n;|wz‘j|:||A ool [W |1

When all the previous assumptions hold, we can derive the uniqueness of the solution from proposi-
tion 2.2 according to the completeness and coherency of the model in Tamer (2003). The contraction
mapping (19) with a fixed point will guarantee the convergence to a consistent estimator in Kasa-
hara and Shimotsu (2012), hence suggesting the Nested Pseudo Likelihood estimation algorithm.
We will propose the econometric model based on the incomplete social network game and discuss

the identification and estimation in the next section.

3 Econometric Model

Suppose 7, = XS, where X = [x1, X, ..., X,,]' is an n X ¢ matrix, representing exogenous variables;
and [, is unknown g-dimension parameter vector reflect the direct effect in the model, then we can
consider a simultaneous-equation model with a censored outcome variable y;. = y¥ - 1(y}, > 0),

where

y:k == Z elkyzl Z Alk Z W;iPji + Xlﬁk €iks (20)

I=1,l#k j=1,j7#1

fori =1,---,nand k = 1,--- ;m. Let Y = [y}, y5,---,y.], P = [p1,p2, - ,Pm), X =

[X17X27"' 7XTL],7 E = [617627'” 7€m]7 and W = [wzj]a where y;; = (y{kuyglw 73/2]4;)/7 Pr =
(P1ks D2k > Pok), and €x = (€1, €21, -+, €nr)’. Let © = [O], an (m x m)-dimension matrix that
reflects the inner effect cross activities of the same agent, where 0, = 1 for all k, A = [Ay],



an (m X m)-dimension matrix that reflects the peer effects among agents and activities; and
B = [$1,- -, Bm], which reflects the direct effects. In matrix form, Equation (20) can be writ-
ten as

Y*® = WPA + XB - E. (21)

Based on our Assumption 2, we can extend our assumption that vec(E)|X ~ N(0,¥ ® I,,). The
(k,1)-th element of ¥ is pgo0, with pg, = 1 for all k = 1,--- ;m. If © is nonsingular, the reduced
form of Equation (21) is

Y* = WPA* + XB* — E*, (22)

where A* = A®@~!, B* = BO™!', and E* = E@'. As vec(E)|X ~ N(0,X ® I,), we have
vec(E*)|X ~ N(0,X* ® I,) where * = ©7'XO7!. The (k,[)-th element of X* is p},0;0;, with

pep = L forall k =1,--- m. From equation (22), we can derive the scalar reduced form of the
econometric model as . .
Vi = 2 Ak D wipi+Xif — € (23)
I=1  j=1j#i

Let dir, = 1 if yj;, > 0. Then,

Pr(dy = 1) = Pr(y;, > 0) = PT(Z Alk Z wipji + Xy, > €) = P,

=1  j=lj#i

where ®y = {30, Ny D7 wigpi + XiBy)/og]. And @(-) is the cdf of standard normal

distribution

Pik = E<yzk) = E[E(yzk’dzk)]
= BE(yjldix = 1) Pr(di = 1)

m n
= (Z Alk Z wiipji + XiBy,) Pik + 0P
=1 =1,
where ¢, = O[O 12 A Z?Zl i WijPjt + x;0;)/of]. Let us consider the identification of the re-
duced form parameter first, i.e., A* = [Ap]27,_;, B* = [B{]iL,, and {o}}],. As the network
agent connection matrix W and agents’ characteristics matrix X are given, exogenous, and ob-

servable, we propose the case that the parameter group (A*, B, {UZ}L”:I) and (K*, B*, {5;}}?:1)

10



are observational equivalent if

O N D wib+xB0) P+ 510w = O N D wipi +XiB)Pu + ofda (24
I=1 =1 =1 j=1,j#i
foralli=1,--- ,nand k=1,--- ,m. Based on our Assumption 1, 2, and 3, p;;, and p;; are fixed
point solutions to the contraction mapping, which should be identical to each other due to the
uniqueness. p; = pi foralli=1,--- . nand k= 1,---,m. Therefore we have
(WP, X][AY, B © ®(|[WP, X|[A”,B"]'D: 1) + ¢(|WP, X]|[A”, B¥'D: 1)D?,

25
—[WP,X]|[A", B © ®(|[WP, X][A¥, B*I'D: ") + ¢([WP, X][A*, B¥]'D: "D’ 2

where ® is the Hadamard (Schur) product of matrices explained in section 7.5 of Horn and Johnson
(2012). D, and D?, are diagonal matrices with diagonal elements {32}, {5:2}™,, and other

elements are zeros. Then we can derive the scalar form as

~x ¢Zk ¢Zl€
Z Al Z wigDji + xiBt) +0 k~ - Z ik Z wipj +xiBy) + o kq) " (26)

Jj=1,5#1 J j=1,5#1
Suppose we denote L = [¢i/Pi];2] —;, then if the matrix [WP, X, L] is full column rank, the
reduced form parameters [A*, B*, D | are identifiable. As
WP, X,LJ([A",B",D;] - [A", B, D;,]) =0 (27)

the scalar form results are

Z)\m Z wijpa + Xify) = Z)‘lk Z wi Pt + %i3)

j=1,5#1i j=1,57#1 (28)

*2 ~*2
Op = Ok

And in matrix form, it will be

WPA* + XB* = WPA* + XB*
- (29)
D;, =Dy,

11



If [WP, X, L] has full column rank, the observational equivalence of [A*’ ,B*, D:‘n} "and [X*’ , B* , ]S:ﬂ
implies that
[A¥,B*,D:] = [A*,B",D;,) (30)

means that the reduced form parameters can be identified. Therefore, the following assumption is

essential to our econometric model identification.
Assumption 4. [WP X L] has full column rank.

When the Assumption 4 holds, we will have the sufficient conditions for the identification of
the reduced form parameters [A*’, B”, D;J/, where A* = AO~!', B=BO ™! and D}, isan m xm
diagonal matrix whose diagonal elements are @' ~! and zeros in non-diagonal positions. To
figure out the sufficient condition for the identification of structural form parameters, we need to
propose some constraints to the structural form matrix T' = [@', —A’, —B’)’. Suppose -y is the
k-th column of I'; and Ry, is the matrix for the constraint that Ry, = 0 and rank(R;I')=m — 1
for k=1,--- ,m — 1, which is the sufficient rank condition to identify structural parameters from

reduced form parameters by Schmidt (1976).

Assumption 5. LetT' = [@', —A', —B'|’, and ~y, is the k-th column of T, and the Ry, is the matriz
for constraints Ryye = 0, and rank(RyT') =m —1 fork=1,--- m.

Under all the assumptions above, we can derive a two-stage estimation process of the econo-

metric model’s structural parameters in the next section.

4 Estimation

We will derive the estimation of the model based on the identification process in the previous
section. There are two steps of the estimation. The first step is to estimate the reduced form

parameters A*, B*, and (0}%,---,07?) by Nested Pseudo Likelihood (NPL) algorithm, which is
discussed in Aguirregabiria and Mira (2007). NPL is also applied in Lin and Xu (2017) in large
network games and adopted in Liu (2019) for multi-activity network games with discrete outcomes.
Suppose we denote U* = [A*,B*' L,,]’ and at ¢t = 0 the NPL starts from an initial vector p(® €

[0, 400)™" and conduct the following iterative steps:

12



Step 1 Given p*~b, obtain @Z(t)

In L(y;;p*Y)
k

" 1
Z dik In <—*¢
i=1 Tk

“ 1 1., 1 1)) u
where
(t ) ZAszwupﬁt Yt xi
=1 j#i
for k € {1,2,--- ,m}
e — R

Step 2 Given U*® = [{pi¥ ... 4xP] obtain p® = K (p*~V; ¥*®), where

= 1) s — 1) s — 1) 4

h(p® D, w®y = [h(pt Y wOY . (pt Y Oy

with

+o
— A*
ho(ptD; ) =

(Zm A o

1 (T
v

(t—
<yz‘k — Uy
0.*

*(t)
(Zl 1 Z; 1 Wi5Pj;

A x()  ax(t)
) )\mk 'y Mk ) g

1) (t—1)

A

)

m * t n t—
iy )‘ ( 21 wljp§l
Z(t>

1)+ 16*(1) )

(t-1)

+at i)

-1 )‘*(t) Ej 1 “’111’51
*(t>

m * 1 *
2 1)‘ e Z] 1wwp§l )+ 5 ®

*(t)¢<

/
A T wngpl Dl 510
o

(t—1)
n]p]l

for k € {1,2,--- ,m}. Update pt=!

As we have proved, the convergence of the contraction mapping in Bayesian Nash Equilibrium
and the unique fixed point exists. The convergence of the NPL algorithm will be guaranteed by
Kasahara and Shimotsu (2012). Given the convergence of the NPL algorithm, the estimator U =

[,

~ T~ = . . . .. .
p = h(p; ¥*). According to our previous assumptions and propositions, we can draw a conclusion
that our NPL algorithm estimation result is square-root n consistent and asymptotically normal.

There are similar arguments and deriving processes in Aguirregabiria and Mira (2007), Lin and

13

in Step 1 to p®.

,@E:n] is the result that satisfies arg maxIn L(¢},p) for k=1, - -

*(t)

(t-1)

Z(t))/ = argmax In L(z}; p*~V) where

ik

*
O

U—i—d:ﬁﬁz(t)/)

)

Repeat these two steps until convergence.

,m. And p is calculated as

)N



Xu (2017), and Liu (2019). The detailed steps of deriving the asymptotic distribution of the NPL
algorithm estimator are in Appendix.
Suppose we denote all the regressing variables as Z = [WP, X], then we can rewrite our reduced

form model as following

Y* = Z[A”,B"] — E* = Z¥ — E* (31)

After the estimation of reduced form parameters A*, B*, and based on the rank condition of
constraints of the structural form parameters, we can estimate the reduced form parameters ©,
A, and B by the Amemiya Generalized Least Square (ALGS) estimation in Amemiya (1974)
and Amemiya (1979) for simultaneous-equation Tobit model situation, and Amemiya (1978), Lee
(1981), and Liu (2019) for simultaneous-equation Probit model situation. After the estimation of
the structural form @, reduced form {o;?};", and {pj;};"1';_ ;, We can estimate the structural
form parameters for random shock among agents and activities, i.e., {3}, and {pu}'_) s
According to the constraints on the simultaneous effect matrix, we can derive the following model
for y1 = (y11,+ -+ ,ym) as

yi=-Y{0+Z1¢ — & (32)

where ¥ = [AY B*]', and 4, is the first column of W¥. 6, is the first column of @. And Y} =
(y5,+-+, ¥y’ ) as we introduce selection matrix Y, = YJy,, and Z; = ZJ z,. Then, the reduced-form

model can be written as

y; = —Y*Jylel + ZJZl’l,ZJl — €1 (33)

when we combine this form and the original reduced-form result, we can get

y; = — (Z‘I’ — E*)Jylel + ZJlel — €1 (34)
= — Z(‘I’Jylel — JZl’l,bl) + E*Jy191 — €1

then we can derive the relation between the first column of the structural form parameter W, i.e.,

1, and the first column of the reduced-form parameter ¥* i.e., 97, as following

P =0Ty, 0, + Iz (35)

14



and the regression equation is

Tpl = \Il*Jy101 + JZl'l,bl + vy (36)
and the regression-error item is

A~ % ~

vi = (Y — ) + (¥7 - ¥)Jy, 6, (37)

If the asymptotic variance-covariance matrix of vy is €2;1, and SAZH is the estimator. Then the

estimator of (67, 47) is

-~/ ANk A~

(6,9,) = (H1 Q) Hy) T H Q44 (38)
where ﬁ’l = [—@:JYNJ 7] The estimation of the m-activity equation system can be derived by

the same procedure. The detailed deriving process is in the Appendix.

5 Monte Carlo Simulation

5.1 Simulation Setup

We will simulate the performance of a finite sample based on the following two-equation model

yT = — 021}’; + )\11Wp1 + A21.‘N132 + Xlﬁl — €

(39)
ys = — 012y] + AaWp1 + Ao Wps + X5 — €
Then the matrix form of structural parameters are
1 0 Al A 0
o — 12 A | A B o (40)
O 1 Aa1 Az 0 B

If we denote Y* = [y],y3], P = [p1,p2), X = [X1,Xy], and E = [e, €], we can derive the matrix

form of the two-equation model as

Y*© = WPA + XB — E. (41)
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then we can derive the reduced form

Y"=WPA"+XB* - E". (42)
the matrix form of reduced-form parameters are
Bl By

Ny A
e B'=BO ' = (43)
A;l )‘;2 B;l 5;2

A*=AO"' =

and the relation between reduced-form parameters and structural parameters can be expressed as

921 _ _512 912 — _5_3{1 61 — 6;1 . /812*521 62 — /8;2 . 512*621
511 522 522 511 (44)
A = Xfl - B_zl/\iz Ag = Xf2 - 5_12>‘T1 Ag1 = /\31 - 5_11)\;2 Agg = )‘32 - 5_12/\;1
522 511 522 511

the equation (44) gives an arithmetic method that reflects the relation between reduced-form
parameters and structural-form parameters. That means if we know the true value of the reduced-
form parameters, we can use this arithmetic method to calculate the true value of structural-form
parameters. However, as we can only estimate the reduced-form parameters in our estimation and
simulation, we need the following discussion of our algorithm estimator to show the relation between
the reduced-form estimator and the structural-form estimator. All these details are included in the

Appendix. As for the random shock vec(E*)|X ~ N(0,3¥* ® I,,) where

0.*2 *O'*O'*
o 1 P 12 2 (45)
proioy 03
that means when we get the estimation results of reduced form parameters, then we can get all

structural parameters. The vector form of the reduced-form model can be written as

Vi =ALWD1 + A5 Wpo + X 87 + X5, — €

Vo =AWD1 + A Wps + X 875 + X855 — €

(46)

Note: As we will use the unconstrained toolbox during the optimization, therefore, both pa-

rameters and (p*, o7, 03) should be searched through the whole real line, however, we know that
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what we want to estimate (p*, o}, 05) are correlation and standard deviation, which means that
p e (—1,1), 07 € (0,400), and o; € (0, +00), therefore, we introduce the following transformation

during the optimization

2
14 e%s

op = fla) = e 05 = flag) =e™  p"=glag) =1 (47)

after this transformation, we can search a;, as, and a3 all along the whole real line. And for any
function, the first-order partial derivative with respect to ai, as, and a3 can be written as the

first-order partial derivative with respect to oj, o3, p*.

dlnL  OlnL doy L,O0InL

da1 o7 Oay ! Bot
OlnL OInLdo; OlnL

= = x 4
das o3 Oas % Doy (48)

OdlnL  dInL dp* L,O0InL

das  Op* Oas P ap*

The steps of the algorithm are the following.
e At step 0, suppose we initialize p§°) = pgo) € [0, 1], and initialize A0y = gxl — 0.1,
e At step t > 1 and we define d;; = 1(y;1 > 0), dia = 1(ys2 > 0), then we can write the log-likelihood

as

n

* n (t) * n (t) * *
L, — Z |:di1 In [_*¢< 11 Z;J iPi1 21 ZJJ iPi2 1571 2051 —y 1)]

*
0y

o
i=1 1

* n t * n t * *
Al 2o wijpz(l) + A% D wijpz('Z) + zu Bl + Ti2b5

*
01

—i(l—dﬁ)ln [1_@< } (49)

* n (t) * n (t) * *
In Ly — Z |:di2 ln[i*gb()\u D Wighiy  Asp Dy Wihiy TPy + Taaf3, — %2)]

*
o o
i=1 2 2

* n t * n t * *
Al Zj:l wijpgl) + A% Zj:l wijpz(‘z) + x5 87; + 901‘2522)}]

03

+ (1= dp)In [1 - cp(
the results are

*(t *(t *(t *(t *Zt * * * * *

()‘15))‘2976197 29701 ()) =argmaxIn Ly (A}, Ay, By, Ba1,07) (50)
*(t *(t *(t *(t *2(t * * * * *

()‘15)7)‘2§)>51§)7 2§)702 ()) :argmaX1nL2()‘12=)‘22751275227‘72)
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(t+1) —( (t4+1)

b1 s 7pn1> and p t+1)( A

then we have the p; Dig ,cc ,Pn2) as

pi = Z wigt + 350 S wp + B0 + )8 + 51060
" (51)
g+1 12 szﬂ?z + >\22 szgng + %1512 + xzzﬁ*(t ) 12 + *(t ¢
7j=1
fori=1,---  n and we have

n t *(t *(t
ZJ 1 wljpzl + )‘21 > i1 wijpz(Q) + xilﬁé '+ %252% )

Zl B < o )
975( ;L 1wl]p21 + )‘21 Z? 1wwp§2 +-T11611 +$z25*(t >
7,1 -
o7
(52)
t) *(t *(t
< ZJ 1 Z]pzl +)‘22 ZJ 1w”p§2 +xi151§) +~’17i252§)>
12 0_2
¢(t) (Aylﬁgt) Z =1 wszg) + A;g) Zn 1 wngEQ) + 1711612 + ffﬂﬂ*(t)>
g =
op)

the same as previous notation, ¢(-) and ®(-) represent the PDF and CDF of the standard normal
distribution. We repeat step ¢ and (¢ + 1) until the parameters estimated converge. Then, use
the estimated parameters, respectively, 5\{1, :\‘1‘2, 5\31, 5\32, Bfl, Bi‘Q, B;‘l, 55‘2 and o7, 05, calculated the

equilibrium, p; and ps; then use all these to estimate p*, the log-likelihood function is

. Ny S0 wigbi + Ny S wigbie + a By + B — v
InL(p*) = Z[dild121n¢2< 11251 Wighin + Ay Zy—16*ﬂp2 154 2051 yl’
i=1 1

\ * n ~ \ * n ~ Nk Dx
Al2 Zj:l WiPi + Ay Zj:l wijPiz + T By + Ti2lse — Ve, p*>
a.*
2
Y n N \ * n N Qs Q%
P (N1 225y wighi + Ay D5y wigbi + T By + 2205 — yar)
— 5
o1 —p*

N n A 3 * n A Dx Nk
A2 Zj:l WiiPin + Ay Zj:l wijPia + i1 Bia + $i2522>

+dy(1 = dg)In [cb(

a3+/1 — p*?
qb(Xfl Zn 1 WigDa + >‘21 Z _1 WijPiz + 3521511 + %2&21 yil)]
o1
(N 00 wighin + Ny S0 wighie + w1 By + o By — i
(1= dy)di In [q)(P( 122171 jPi1 22;]1 ]p22 1572 2030 — Yiz)
o3V 1 —=p
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AT1 Doy Wighia + A5y D5 Wighia + T By + 951‘2551)
a1/ 1 — p*?
(b()\TQ Z?:1 wijPin + Aso 2?11 wijPiz + Ti1 Bl + T2y — yi2):|
o

3 * n ~ \ * n N A* o
A1 ijl WiiPit + Ay Zjﬂ wijpiz + T By + Ti2f3y

+(1 — dll)(l — dzg) hl (I)Q( — :k ,
01
12 Z?:l WijPin + Ay Z?:l wijpi2 + TitBio + Ti2B30 .,
5_* 7017027p )]
2

where ¢+, -, 67,05, p*) and Po(-, -, 07,03, p*) are PDF and CDF of bivariate normal distributed

random variables with variance-covariance matrix

*2 k Ak Ak
o o]0
1 P 12 2 (53)
616y 63
and the estimation result of p*, i.e., p* can be written as
p* = argmaxlIn L(p") (54)

Suppose we denOte 7= [Wpla Wp27X]a and ¢T = ( >{17 ;la 6;17 ﬁ;l)l and ,lvbik - ( T27 ;%BT% 6;2)/7

then we have

yi1 =2y — €]
Yo =Za)y — €

then given the NPL algorithm, for each step, suppose the current equilibrium p = (p/, p5)’, and

(55)

we use Z = [Wp,, WD, X], then we have

(47,6%2) = argmaxIn L(¥], 072 p1)

A (56)
(15, 63%) = argmax In L(¥5, 037 Po)
where .
In L(4*, 0% pi) Zdzlln[ T¢,< ¢0* yu)] +(1—di1)ln[ @<zﬁ1>]
) (57)
In L(¢}, 03 2) Zdzm[ §¢(z %U; LY (1 - di)In [1 - @ U@ih)]
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the first-order conditions are

n

oL (Z/-l/)}: - yik)zi iz
oYy, 2 o}’ (1= @y)(032)2 (58)
oL - 1 (ziby — yik)2 (z0%) ik
_— = dir | — + (1 —d; = =10
9(03?) ;;k[ 2077 2(032)? ( kéu—éwwﬁa

where k = {1,2}, &4 = P(zj¢);/or) and ¢y = ¢(zib; /o)) then according to the results E(y; —
pir) = 0, ie.,
Elys — (20;) iy — 0] = 0 (59)
E[dyx — @] =0
this can be used to simplify the first-Taylor expansion of the first-order condition, which is the
approach to derive the asymptotic variance-covariance matrix of reduce-form parameters’ estimator

discussed in Amemiya (1973), Amemiya (1985), and Maddala (1986). Detailed steps for deriving

the variance-covariance matrix will be in the Appendix.

Remark 1. (Binary Dependent Variable Case) Liu (2019) proposes the case in which all the
decision outcomes are binary. There is no need to estimate the variance of reduced form error

terms o] and 0. Therefore, the first-order conditions of the NPL estimator degenerate to

Oln L(iﬁ,f;;f)) _ zn: di, — ‘I’(ZQ@)W( /7/’1@) 0 (60)
(%0 ;

o 21 — O (2jy)]

for £ = 1,2. The first-order Taylor expansion of the above equation around the ¢* can draw the

following equation

a 7 1 7 dz - (Dz 7 /% / * (9 *
Z %zi - Hzi(zﬂ/’ﬁ |:Zi + AMkWi D0 + A2k 31/) } (5 — ¥p)
2:1 K2 7 (2 K2
2 0 0
_Wf@)zi {Zi + )‘;kwi% + AW 852} (5 — ¥p)
( ik — zk)¢zk / 8p1 ap? "
(bik:(l _ (I)zk) {0 w*ﬂ ,¢ :| (¢k ¢k)
(dir — (I)zk) (1 Q@m) P 51)1 é’Pz .
o - ( ik T zk)¢zk 3]€ apl * %
T 2 e ) T Bl ) { AN G } (Vi =i
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= Op(l)

where ©;, = O(z[4)f) and ¢y = P(z[5)

5.2 Simulation Results

We conduct two types of normalized network structures in our simulation. The first type is the
random network, which means agent ¢ will be randomly affected by five other agents in the network.
And each of the five agents’ effects is identical. In this case, that is w;; = 1/5 if agent j can affect
agent ¢ in the network. The other type is the circular network structure. In this case, the agent ¢ will
only connect with agent i+ 1 and ¢ — 1, and the peer effects are the same, i.e., w; ;41 = w; ;-1 = 1/2.
And for agent 1, we have wys = wy,, = 1/2. And for agent n, we have w,; = w,,—1 = 1/2. The
network graph is similar to a big circle in which each node only connects its two neighbors. That
is where the network name ‘circular’ comes from. The parameter of the simulation are followings,
012 =05 = 0.5, B1 = B2 = 1, n = 2000, and rep = 1000, o = 05 =1, pj, = 0.1.

All the detailed simulation results are available in part B of the Appendix. In the following
discussion, we will focus on three typical scenarios
e Case 1: Weak peer effect A1 = Aoy = 0.2, Ajs = Ay = 0.1

* Random Network

é12 é21 5\11 5\12 >\21 >\22
0.500 | 0.502 | 0.226 | 0.121 | 0.126 | 0.230
(0.031) | (0.031) | (0.065) | (0.064) | (0.066) | (0.064)

~ ~

A~k

B Ba oy ) Pla
1.000 0.999 0.997 0.998 0.100
(0.046) | (0.047) | (0.029) | (0.028) | (0.033)

* Circular Network

A A~ ~ A~ ~ ~

912 021 /\11 )\12 >\21 )\22
0.500 | 0.500 | 0.225 | 0.122 | 0.123 | 0.227
(0.031) | (0.032) | (0.041) | (0.044) | (0.044) | (0.042)

ﬂl /82 5-1 5'2 pA12
1.001 | 1.001 | 0.997 | 0.997 | 0.100
(0.047) | (0.047) | (0.028) | (0.028) | (0.032)
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e Case 2: Medium peer effect A1 = Aoy = 0.5, Mg = Aoy = 0.3

*x Random Network

é12 é?l ;\11 5\12 5\21 >\22

0.500 | 0.502 | 0.542 | 0.329 | 0.332 | 0.546
(0.031) | (0.031) | (0.053) | (0.056) | (0.059) | (0.053)

A ~

ﬂl 52 5-1 5'2 ﬁ12

1.000 | 0.999 | 0.998 | 0.996 | 0.099
(0.047) | (0.047) | (0.029) | (0.029) | (0.029)

* Circular Network

(0.034) | (0.035) | (0.030) | (0.042) | (0.042) | (0.032)

B Ba o1 op; P12

0.975 | 0.974 | 0.994 | 0.995 | 0.101
(0.048) | (0.046) | (0.030) | (0.030) | (0.029)

e Case 3: Strong peer effect \j; = oo = 0.8, A\j3 = A1 = 0.5

* Random Network

é12 921 5\11 5\12 5\21 >\22

0.502 | 0.503 | 0.813 | 0.488 | 0.484 | 0.810
(0.034) | (0.034) | (0.045) | (0.057) | (0.057) | (0.045)

A ~

61 52 &1 62 ﬁ12

0.998 | 0.997 | 0.998 | 0.998 | 0.098
(0.051) | (0.052) | (0.032) | (0.031) | (0.024)

* Circular Network

~ ~ ~ ~ ~ ~

912 921 )\11 )\12 )\21 >\22

0.533 | 0.529 | 0.811 | 0.503 | 0.507 | 0.812
(0.044) | (0.044) | (0.017) | (0.050) | (0.049) | (0.017)

51 52 (3'1 62 ﬁ12

0.933 | 0.929 | 0.980 | 0.980 | 0.099
(0.049) | (0.051) | (0.039) | (0.037) | (0.025)
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From the results, we could find that the random network estimation of simultaneous effect matrix
parameters (#12 and #1;) performs better than those in circular networks. In a random network, the
estimator average accuracy of simultaneous effect matrix parameters (912 and 911) is always low,
and the coefficient of variation is about 6% ~ 7%. However, in a circular network, the estimator
average accuracy of the simultaneous effect matrix parameter can be lower than 95%, and the
coefficient of variation can be over 8%.

As the peer effect strengthens, the estimator’s accuracy and consistency increase. In a strong
peer effect case, the estimation average accuracy of the same-activity peer effect (01; and 6y9) is
over 98%, and the coefficient of variation is about 2% in a circular network and 4% in a random
network. As for the cross-activity peer effect, the accuracy is over 95%, and the coefficient of
variation is about 10%. Both perspectives show under a strong peer effect case, the estimator

works better.

6 Conclusion

This paper derives a simultaneous equation model with peer effects and rational expectations under
an incomplete information network. The econometric model and the microeconomic foundation
are discussed. The sufficient condition of the existence of a Bayesian Nash Equilibrium under an
incomplete information network game is derived. A nested pseudo-likelihood estimation process and
the estimator’s asymptotic distribution properties are developed. Monte Carlo simulation shows
the consistency of the estimation results when the sample size is finite and the network size is large.
In this current paper, the network is predetermined and has no relation with agents’ random shock
and attributes. However, in a real economic situation, an agent’s connection with other agents
in the network can partially reflect his/her observed and unobserved characteristics. Therefore,
the endogenous network structure can be a potential future extension. Another extension in our
current work is that our econometric model proposes the simultaneous effect from the intention of
different activities of each agent. However, it is very possible that the simultaneous effect is the
relation between the activity’s intention and other activities’ outcomes. This means the condition
of an option model is necessary to discuss, and the potential model-selection problem needs to be

handled in the future.
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Appendices

A. AGLS Estimator

Let m = 2, according to Lee (1978, 1979, 1981, 1982), Maddala and Lee (1976), Nelson and Olson
(1978), and Liu (2019), we have the structural model as

Y = —Yaban + Zi) — €
1 2 1— € (61)

Vs = —yithe + Zoy — €

where Z; = [Wpy1, Wps, X4|, Zy = [Wpy, Wps, Xy|, and Z = [Wp;, Wps, X]. Then, we can

write the reduced form as

y1=2Y7 — €
1764 (62)
Y2 =2y — €&
For agent i, z, = (w;p1, W;p2, X}) is the i-th row of Z. And w; = (w;, -+ ,w;,)" is the i-th row of

the network structure matrix W. As for the random error term of agent 7, (€1, €;2), it satisfies the

normal distribution N (0, 3*), where

*2 k% %k

o g1 P 0103
protos  of

And the random shock vector (e}, €3) ~ N(0,¥X* ® I,,) according to the identical independently

distribution (i.i.d.) assumption among all the agents in the network. The reduced form parameters

of the model of equation system (62), i.e., v* = (¢7’,3')" can be estimated by the NPL estimator.

(1,957

The estimation result is denoted as 15* = Suppose we denote p = (P}, Py) as the fixed

point result from NPL estimator for & = 1,2, where 7 = [Wp,, Wp,, X] and
pi = (Ziy) © ®(Zyy /o) + 00 (2 /oY) (63)

We can get the NPL estimation result by (A,’;’, o) = argmaxIn L(¢}, of; p) and

n L(f,07:B) = D {dun [(@01 — ya)/o})/o7]) + (1 — da) I [1 - @@i/op)] ] (60)

i=1
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Now, suppose we introduce the vectors of ones and zeros to form the selection matrices J; and J,

subject to Z; = ZJ, and Zy = ZJ,, we can rewrite the structural model as

Y1 = =Yyl +ZJ1Y1 —
(65)

Yo = —y1b12 + ZJI21)s — €9

then we put the reduced-form equations in the model (62) into the reorganized structural model

(65), we can get

Vi = —(Zy] — €))bo1 + ZI1)1 — €1 = Z(—]001 + J1901) + €161 — €
Yo = —(Zapy — €3)012 + LIy — €3 = Z(—P5012 + Jot)a) + 5012 — €2

(66)

then, we can derive the relation between reduced-form parameters and structural form parameters

as following
Y1 = =301 + J1thy

hy = —ibha + Jaty

then, we can derive the relation between the estimation of reduced-form parameters and the true

(67)

value of structural parameters as following

QZT = _1/?\;921 +J1¢1 + vy
@; = _AT912 + Jothy + vy
where
vi = (6 — ¥}) + (5 — ¥3)0n
va = (15— 05) + (] — ¥i)bne
Suppose we apply 2 as the notation of the asymptotic covariance matrix of v = (v}, v})’. Suppose

we have 01 = (021,17)" and 09 = (019, 15)". Then the estimator 6 = (47, d5)" is

(69)
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where

N H, 0
H = N (71)
0 H,

in which H, = [—’l:/}\;, J1] and H, = [—121\1‘, Js]. And Q is a consistent estimator of €. To derive the
detailed form of ©, we need to derive the asymptotic variance-covariance matrix of (¢}, 032)'. We

start with the first-order condition of our NPL estimator

T kL n 1 Tk o k! e
alnL( k; Ok p) _ Z { . dzk (Ziwli*2 yzk) . (1 . dzk) ¢/(\Zziﬂk{\0—k) — }/Z\z =0
OV p O (1 - 2(Z;/57) (1)
T kLD n Sl o \2 =~ o — T Jax
alnL(wli;JIm p) _ Z {dzk |: . 3*2 + (Zika*Qyzlk) :| + (1 o dzk;) (Zﬂﬂk)?(fz %/Uk/)\) _ } =0
Cr = 20} 2(577) 2(1 — @(z;'91/57))(07)>

~

The first-order Taylor expansion is

oL 9 [OL\, ~ 0 (0L,
2 () G o (G )@ - o) = 0,00 »

+
oy OUp\ 9y
Oln L 0 (O0InLY\ , ~, . O (OlnL\ ., o
80';22 + a¢z ( 80_;;2 )<wk wk) + 80_22 ( 80';22 )(Uk O ) - OP<]‘)

the matrix form is

5In L 0 dlnL o) dlnL ~ .
* * *2 * —
o |, |2\ i) e\ on Wi =40 | _ [Op(1) (73)
lnL o [ omrL o (oL o2 *2 0]
- 0" —0 1
9o i\ 902 | 902\ 902 (7% ©) p(1)
then the asymptotic results can be written as
-1
~ . 1.0 OlnL 1_0 OlnL 1 8InL
Vi —vp) | a no9f \ ovp | ndo? \ 9v; v ou (74)
~42 42 a 1 9InL
nlc~ — o 1 0 Oln L 1_0 OlnL — -
\/_( k k ) n 8¢Z 80’:2 n 80']:2 80’:2 \/ﬁ BO'kQ
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The second-order full-term derivatives are

0/ 0/
a Lk . Z 1/% yzk) o (bzk o
=D —da g | Wil | = (L di) g | Wy
drowy 4 ot Wiggy | — (1~ di) (1= D)oy | " iovi
i=1 0 2 0 2
Wzall;*/ Wl#};,
dzk 8 P1 8p2
- (2 )\ 7 )\
UZQZ <Z T AW Do + A2 W a¢
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According to py, = (X[} P + 0 dik, we can derive dpy, /O and Opy/do;?. (k=1,2and | = 1,2)
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where
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Ky =1, — M AoW — AL ASW(L, — A A W) TAW %0
A, = diag(Pq1, Doy, -+ - Ppy) (&0
A, = diag(Pqa, Pog, - - - Pp2)

Then we can derive 9(9In L/0vy}) /05, (0 In L/0vy;) /D02, (0 In L/Do;?)/0;, and (9 1n L/do;?) /Do?

by previous results. According to the algebra results, we can derive the asymptotic variance of

( 1/7/\;27 2/7852) is

Vll V12
Vi, Va

as for the diagonal element of V, i.e., Vi, can be derived as following
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all the elements to derive Vi, i.e., Ak, Bk, Cik, 9rk, Hiks Prk, Qik, and Sip can be derived as

following
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and the non-diagonal elements, i.e., V; can be derived as following
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and the elements Hy;, pr, qu, and sg; can be derived as following
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where ®s(-, -, p) is the standard bivariate normal distribution C.D.F. with a coefficient p. Then

we need to figure out the asymptotic variance-covariance matrix of v = (v}, v})". For notation
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convenience, we redefine the asymptotic covariance matrix of ¢* = (¢}, 3') is

_ Vi V
v - ~11 ~12 (95)
Vi, Vo
where {/kk is the upper-left corner sub-matrix of Vi, i.e., only remove the last column and the
last row from V.. And \N/'kl is the upper-left corner sub-matrix of Vi, i.e., only remove the last
column and the last row from Vy,;. Therefore, from Liu (2019), the asymptotic covariance matrix

of v =(v],vj) is

Q1 Q
0 — 11 12 (96)
2, O
where
Qll = {/11 + 6;1{}22 + 921 ({}12 + {///12) (97)
Qpy = Voo + 02, Vi 4 015(Via + V) (98)
Qgy = 019Vi1 + 05 Vg + Vg + 6)12921{/,/12 (99)
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B. Simulation Results

Random Network 015 = 031 = 0.5, 81 = 82 = 1, n = 2000, rep = 1000, o] = 035 =1, p]jy = 0.1.
Ai=Xaz | A2 =Xa1 | O 021 A1t A1z Aot A2 B Ba o1 g P12
0.500 0.502 0.117 0.115 0.120 0.120 1.000 0.999 0.997 0.998 0.100
o 1 0032) | (0031) | (0.067) | 0.065) | 0.067) | (0.066) | (0.046) | (0.047) | (0.029) | (0.028) | (0.033)
0.500 0.502 0.226 0.121 0.126 0.230 1.000 0.999 0.997 0.998 0.100
02 o (0.031) | (0.031) | (0.065) | (0.064) | (0.066) | (0.064) | (0.046) | (0.047) | (0.029) | (0.028) | (0.033)
0.500 0.501 0.229 0.228 0.234 0.234 1.000 0.998 0.997 0.998 0.099
02 02 (0.031) | (0.032) | (0.063) | (0.061) | (0.062) | (0.061) | (0.047) | (0.047) | (0.028) | (0.029) | (0.032)
0.501 0.501 0.336 0.230 0.235 0.340 1.000 0.998 0.998 0.998 0.099
03 "2 | 0.031) | 0.031) | 0.061) | (0.060) | (0.061) | (0.058) | (0.047) | (0.047) | (0.029) | (0.020) | (0.031)
0.500 0.501 0.336 0.336 0.339 0.340 1.001 0.999 0.998 0.997 0.100
03 03 (0.031) | (0.031) | (0.059) | (0.058) | (0.059) | (0.058) | (0.047) | (0.047) | (0.028) | (0.029) | (0.031)
0.500 0.501 0.443 0.231 0.233 0.444 1.001 0.998 0.998 0.998 0.099
04 %2 | 0031) | (0031) | (0.058) | 0.059) | (0.061) | (0.057) | (0.046) | (0.047) | (0.028) | (0.029) | (0.030)
0.500 0.501 0.441 0.335 0.336 0.442 1.001 0.999 0.998 0.997 0.100
04 03 (0.031) | (0.031) | (0.057) | (0.057) | (0.060) | (0.057) | (0.046) | (0.046) | (0.028) | (0.029) | (0.030)
0.500 0.502 0.436 0.436 0.438 0.438 1.000 0.998 0.998 0.997 0.100
o4 04 (0.031) | (0.031) | (0.056) | (0.056) | (0.058) | (0.057) | (0.047) | (0.047) | (0.028) | (0.029) | (0.029)
0.500 0.502 0.542 0.329 0.332 0.546 1.000 0.999 0.998 0.996 0.099
05 3| 0031) | (0031) | (0.053) | 0.056) | (0.059) | (0.053) | (0.047) | (0.047) | (0.029) | (0.020) | (0.020)
0.500 0.501 0.536 0.428 0.432 0.539 1.001 0.999 0.998 0.996 0.100
0o 04 (0.031) | (0.031) | (0.053) | (0.054) | (0.057) | (0.053) | (0.047) | (0.048) | (0.028) | (0.029) | (0.028)
0.500 0.501 0.526 0.526 0.529 0.530 1.001 0.999 0.998 0.997 0.101
05 05 (0.032) | (0.031) | (0.053) | (0.056) | (0.057) | (0.054) | (0.046) | (0.047) | (0.028) | (0.029) | (0.028)
0.500 0.502 0.643 0.321 0.324 0.647 1.000 0.998 0.998 0.996 0.099
00 03 (0.032) | (0.032) | (0.051) | (0.056) | (0.059) | (0.051) | (0.047) | (0.048) | (0.029) | (0.030) | (0.029)




0¥

Random Network 612 = 631 = 0.5, 51 = 2 = 1, n = 2000, rep = 1000, o] = 05 =1, pj, = 0.1 (Cont.)

A1 = A2 | A1z = Aoy b12 021 A1 A2 A21 A2 B B o1 05 Ji2p;
0.500 | 0.502 | 0.633 | 0.418 | 0.422 | 0.638 | 1.000 | 0.999 | 0.999 | 0.996 | 0.100
00 04 (0.032) | (0.031) | (0.050) | (0.054) | (0.057) | (0.050) | (0.047) | (0.048) | (0.028) | (0.029) | (0.028)
0.500 | 0.502 | 0.623 | 0.514 | 0.517 | 0.626 | 1.000 | 0.998 | 0.999 | 0.997 | 0.101
00 00 (0.032) | (0.031) | (0.050) | (0.054) | (0.057) | (0.051) | (0.046) | (0.048) | (0.029) | (0.029) | (0.027)
0.501 | 0.501 | 0.608 | 0.608 | 0.612 | 0.613 | 1.000 | 0.998 | 0.997 | 0.996 | 0.101
00 00 (0.033) | (0.032) | (0.050) | (0.053) | (0.055) | (0.050) | (0.048) | (0.050) | (0.031) | (0.030) | (0.026)
0.501 | 0.501 | 0.730 | 0.406 | 0.409 | 0.734 | 1.000 | 0.999 | 0.998 | 0.996 | 0.100
o7 04 (0.033) | (0.031) | (0.047) | (0.054) | (0.057) | (0.047) | (0.047) | (0.049) | (0.029) | (0.030) | (0.027)
0.501 | 0.502 | 0.717 | 0.500 | 0.503 | 0.721 | 1.000 | 0.998 | 0.998 | 0.996 | 0.100
07 00 (0.034) | (0.031) | (0.048) | (0.055) | (0.057) | (0.049) | (0.047) | (0.050) | (0.030) | (0.031) | (0.026)
0.501 | 0.501 | 0.702 | 0.593 | 0.597 | 0.706 | 1.000 | 0.998 | 0.996 | 0.996 | 0.100
07 00 (0.033) | (0.032) | (0.049) | (0.054) | (0.057) | (0.049) | (0.048) | (0.052) | (0.031) | (0.032) | (0.025)
0.502 | 0.500 | 0.688 | 0.686 | 0.691 | 0.690 | 1.001 | 0.998 | 0.994 | 0.996 | 0.100
o7 07 (0.036) | (0.035) | (0.050) | (0.053) | (0.055) | (0.050) | (0.052) | (0.055) | (0.034) | (0.033) | (0.024)
0.501 | 0.501 | 0.825 | 0.391 | 0.394 | 0.828 | 0.999 | 0.999 | 0.999 | 0.996 | 0.100
08 04 (0.034) | (0.032) | (0.045) | (0.054) | (0.058) | (0.043) | (0.047) | (0.051) | (0.030) | (0.032) | (0.026)
0.502 | 0.503 | 0.813 | 0.488 | 0.484 | 0.810 | 0.998 | 0.997 | 0.998 | 0.998 | 0.098
08 05 (0.034) | (0.034) | (0.045) | (0.057) | (0.057) | (0.045) | (0.051) | (0.052) | (0.032) | (0.031) | (0.024)
0.500 | 0.501 | 0.799 | 0.582 | 0.576 | 0.794 | 0.999 | 1.000 | 1.000 | 0.998 | 0.099
08 00 (0.036) | (0.036) | (0.046) | (0.057) | (0.056) | (0.046) | (0.054) | (0.055) | (0.033) | (0.034) | (0.025)
0.503 | 0.500 | 0.904 | 0.471 | 0.473 | 0.903 | 1.000 | 0.998 | 0.996 | 0.998 | 0.099
0 00 (0.037) | (0.035) | (0.042) | (0.057) | (0.060) | (0.042) | (0.054) | (0.057) | (0.034) | (0.035) | (0.025)




v

Circular Network 612 = 621 = 0.5, 81 = B2 = 1, n = 2000, rep = 1000, o7 = 05 =1, pjy = 0.1.

A1 = A2 | A1z = Aoy b12 021 A11 A12 A21 A2 B B o1 05 Ji2p;
0.500 | 0.501 | 0.118 | 0.117 | 0.117 | 0.119 | 1.001 | 0.999 | 0.997 | 0.997 | 0.100
o o (0.032) | (0.031) | (0.045) | (0.045) | (0.046) | (0.045) | (0.046) | (0.048) | (0.028) | (0.029) | (0.033)
0.500 | 0.500 | 0.225 | 0.122 | 0.123 | 0.227 | 1.001 | 1.001 | 0.997 | 0.997 | 0.100
02 o (0.031) | (0.032) | (0.041) | (0.044) | (0.044) | (0.042) | (0.047) | (0.047) | (0.028) | (0.028) | (0.032)
0.502 | 0.502 | 0.230 | 0.231 | 0.229 | 0.229 | 0.998 | 0.997 | 0.999 | 0.997 | 0.100
02 02 (0.032) | (0.030) | (0.042) | (0.044) | (0.043) | (0.041) | (0.046) | (0.047) | (0.030) | (0.029) | (0.031)
0.503 | 0.503 | 0.338 | 0.235 | 0.232 | 0.336 | 0.995 | 0.994 | 0.999 | 0.996 | 0.101
03 02 (0.032) | (0.033) | (0.039) | (0.044) | (0.044) | (0.040) | (0.049) | (0.049) | (0.029) | (0.028) | (0.031)
0.506 | 0.505 | 0.337 | 0.337 | 0.340 | 0.339 | 0.987 | 0.989 | 0.998 | 0.997 | 0.100
03 03 (0.032) | (0.033) | (0.038) | (0.043) | (0.041) | (0.038) | (0.049) | (0.047) | (0.028) | (0.028) | (0.030)
0.508 | 0.506 | 0.441 | 0.233 | 0.235 | 0.442 | 0.989 | 0.988 | 0.996 | 0.998 | 0.100
o4 02 (0.033) | (0.035) | (0.037) | (0.044) | (0.045) | (0.037) | (0.049) | (0.049) | (0.031) | (0.030) | (0.031)
0.508 | 0.510 | 0.440 | 0.338 | 0.338 | 0.440 | 0.983 | 0.983 | 0.997 | 0.997 | 0.101
04 03 (0.032) | (0.031) | (0.034) | (0.040) | (0.041) | (0.033) | (0.047) | (0.047) | (0.029) | (0.029) | (0.031)
0.512 | 0.511 | 0.435 | 0436 | 0440 | 0.439 | 0.979 | 0.977 | 0.997 | 0.999 | 0.101
04 04 (0.033) | (0.032) | (0.033) | (0.039) | (0.039) | (0.033) | (0.047) | (0.048) | (0.030) | (0.029) | (0.027)
0.515 | 0.513 | 0.540 | 0.333 | 0.338 | 0.544 | 0.975 | 0.974 | 0.994 | 0.995 | 0.101
05 03 (0.034) | (0.035) | (0.030) | (0.042) | (0.042) | (0.032) | (0.048) | (0.046) | (0.030) | (0.030) | (0.029)
0.517 | 0.515 | 0.537 | 0.431 | 0434 | 0.538 | 0.970 | 0.970 | 0.995 | 0.998 | 0.103
0o 04 (0.033) | (0.033) | (0.030) | (0.040) | (0.041) | (0.031) | (0.047) | (0.047) | (0.029) | (0.030) | (0.029)
0.519 | 0.521 | 0529 | 0.531 | 0.530 | 0.531 | 0.964 | 0.962 | 0.998 | 0.997 | 0.102
0o 00 (0.033) | (0.033) | (0.031) | (0.040) | (0.039) | (0.030) | (0.048) | (0.048) | (0.030) | (0.031) | (0.026)
0.517 | 0.517 | 0.640 | 0.331 | 0.330 | 0.639 | 0.965 | 0.966 | 0.990 | 0.993 | 0.098
00 03 (0.038) | (0.038) | (0.028) | (0.047) | (0.046) | (0.028) | (0.049) | (0.050) | (0.033) | (0.032) | (0.029)
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Circular Network 612 = 021 = 0.5, 1 = 2 = 1, n = 2000, rep = 1000, o] = 05 =1, pjs = 0.1. (Cont.)

A1 = A2 | A1z = Aoy b12 021 A1 A2 A21 A2 B B o1 05 Ji2p;
0.520 | 0.522 | 0.633 | 0.429 | 0.428 | 0.633 | 0.960 | 0.961 | 0.994 | 0.995 | 0.102
00 04 (0.035) | (0.037) | (0.027) | (0.046) | (0.043) | (0.028) | (0.050) | (0.048) | (0.032) | (0.032) | (0.027)
0524 | 0.525 | 0.628 | 0.525 | 0.522 | 0.626 | 0.953 | 0.955 | 0.995 | 0.995 | 0.102
00 0o (0.034) | (0.035) | (0.026) | (0.041) | (0.041) | (0.027) | (0.048) | (0.047) | (0.032) | (0.030) | (0.026)
0.529 | 0.528 | 0.617 | 0.617 | 0.619 | 0.618 | 0.948 | 0.948 | 0.997 | 0.995 | 0.104
00 00 (0.035) | (0.033) | (0.027) | (0.039) | (0.041) | (0.028) | (0.045) | (0.047) | (0.033) | (0.032) | (0.025)
0.527 | 0.527 | 0.727 | 0422 | 0421 | 0.727 | 0.943 | 0.944 | 0.988 | 0.987 | 0.100
o7 04 (0.039) | (0.040) | (0.023) | (0.047) | (0.046) | (0.023) | (0.049) | (0.050) | (0.035) | (0.036) | (0.025)
0.530 | 0.530 | 0.721 | 0.515 | 0.516 | 0.721 | 0.941 | 0.941 | 0.992 | 0.991 | 0.103
07 00 (0.038) | (0.040) | (0.022) | (0.045) | (0.046) | (0.023) | (0.049) | (0.050) | (0.034) | (0.034) | (0.025)
0.534 | 0.532 | 0.713 | 0.609 | 0.611 | 0.714 | 0.940 | 0.940 | 0.994 | 0.993 | 0.106
07 00 (0.038) | (0.037) | (0.024) | (0.043) | (0.046) | (0.023) | (0.046) | (0.046) | (0.035) | (0.035) | (0.024)
0.530 | 0.533 | 0.705 | 0.707 | 0.706 | 0.705 | 0.967 | 0.967 | 1.015 | 1.015 | 0.128
07 07 (0.039) | (0.040) | (0.025) | (0.046) | (0.045) | (0.025) | (0.046) | (0.045) | (0.039) | (0.038) | (0.027)
0.534 | 0.532 | 0.813 | 0.416 | 0419 | 0.813 | 0.921 | 0.921 | 0.969 | 0.970 | 0.088
08 04 (0.049) | (0.047) | (0.018) | (0.052) | (0.054) | (0.018) | (0.054) | (0.055) | (0.042) | (0.042) | (0.026)
0.533 | 0.529 | 0.811 | 0.503 | 0.507 | 0.812 | 0.933 | 0.929 | 0.980 | 0.980 | 0.099
08 05 (0.044) | (0.044) | (0.017) | (0.050) | (0.049) | (0.017) | (0.049) | (0.051) | (0.039) | (0.037) | (0.025)
0.530 | 0.526 | 0.808 | 0.595 | 0.599 | 0.808 | 0.964 | 0.964 | 1.001 | 1.002 | 0.125
08 00 (0.046) | (0.046) | (0.018) | (0.052) | (0.052) | (0.018) | (0.049) | (0.049) | (0.043) | (0.043) | (0.026)
0.517 | 0.517 | 0.898 | 0.490 | 0.491 | 0.899 | 0.956 | 0.954 | 0.975 | 0.974 | 0.106
0 00 (0.053) | (0.055) | (0.011) | (0.058) | (0.056) | (0.011) | (0.057) | (0.058) | (0.050) | (0.049) | (0.026)




