
 

 

 

DISCUSSION PAPERS IN ECONOMICS 

 

 

Working Paper No. 14-11 

 

A Class of Local Constant Kernel Estimators for a Regression 

in a Besov Space 
 

 

 

 

 

 
Na Kyeong Lee 

University of Colorado Boulder 

 

November 6, 2014 

Revised November 10, 2014 

 

 

 

 

 

 

Department of Economics 
 

 

 

 

University of Colorado at Boulder 

Boulder, Colorado 80309 

 
© November 2014 Na Kyeong Lee 

 

 

 



A CLASS OF LOCAL CONSTANT KERNEL ESTIMATORS FOR A REGRESSION IN
A BESOV SPACE ∗

NA KYEONG LEE †

University of Colorado, Boulder

November 2014

Abstract. The use of higher order kernels is a well-known method for bias reduction of density and regres-
sion estimators. This method of bias reduction has the disadvantage of potential negativity of the underlying
estimated density. To avoid this, Mynbaev and Martins-Filho (2010) pioneered a new set of nonparametric
kernel based estimators for a density that achieves bias reduction by using a new family of kernels. In addi-
tion, Mynbaev and Martins-Filho (2014) obtained much faster convergence of nonparametric prediction by
allowing fractional smoothness for the relevant densities. By extending both approaches, in this paper, we
propose local constant estimators for regression which are more general than the Nadaraya-Watson (NW)
estimator. The main contribution in this paper is that bias reduction may be achieved relative to the NW
estimator, and our proposed estimators attain faster uniform convergence without using higher-order kernels
and allowing for fractional smoothness for the relevant densities and regressions. We also provide consistency
and asymptotic normality of the estimators in the class we propose. A small Monte Carlo study reveals that
our estimator performs well relative to the NW estimator and the promised bias reduction is obtained, ex-
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1 Introduction

Let (X1, Y1), · · · , (Xn, Yn) be a random sample from a population having a density fX,Y (x, y). Let f(x) be

the marginal density of X. Consider the following nonparametric regression model

Y = m(X) + u (1)

where m is a real valued function with E[u|X = x] = 0 and V ar[u |X = x] = σ2. We call a kernel any

function K on R such that
∫∞
−∞K(t)dt = 1. Nadaraya (1964) and Watson (1964) introduced an estimator

for a regression m evaluated at x ∈ R based on the Rosenblatt-Parzen estimator f̂ for the density f which

is denoted by m̂(x) and is given by

m̂(x) =

1
nhn

∑n
t=1K

(
Xt−x
hn

)
Yt

1
nhn

∑n
t=1K

(
Xt−x
hn

) where f̂(x) = 1
nhn

∑n
t=1K

(
Xt−x
hn

)
, (2)

hn is a bandwidth sequence tending to zero as n goes to infinity. It is well known that if m has its sth

derivative bounded and continuous at x an interior point in the support of m and the kernel is of order s,

that is, K satisfies
∫ +∞
−∞ K(t)tjdt = 0 for j = 1, 2, · · · , s−1 then the bias of m̂ depends on the order s. In order

to attain bias reduction, higher-order kernels (s > 2) have been suggested (Gasser et al. (1985), Schucany

(1989)). However, this approach is inconvenient since the condition that the kernel density estimate f̂ should

be a true density must be relaxed. That is, higher order kernels assign negative weights which can result

in negative density estimates. There exist other approaches for bias reduction such as the design-adaptive

regression (Fan (1992)), data sharpening methods (Choi et al. (2000)), iterative method (Racine (2001)) and

parametrically guided nonparametric estimation (Glad (1998), Martins-Filho et al. (2008)) but for all these

methods m(x) ∈ Cs(R) where Cs(R) indicates the space of s-times differentiable, continuous and bounded

functions in R for s ∈ Z+. In this paper, this assumption is substantially weakened.

Mynbaev and Martins-Filho (2010) propose a new density estimator that achieves bias reduction relative

to the Rosenblatt-Parzen estimator by introducing a family of kernels {Mk(x)}k=1,2,···. For a seed kernel K,

natural number k and for any x ∈ R,

Mk(x) = − 1

ck,0

k∑
|s|=1

ck,s
|s|

K
(x
s

)
(3)
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where the binomial coefficients CN2k = (2k)!
(2k−N)!N ! , N = 0, · · · , 2k , k ∈ {1, 2, · · · } and ck,s = (−1)s+kCs+k2k ,

s = −k, · · · , k. Mynbaev and Martins-Filho (2014) obtain new results on nonparametric prediction by

relaxing the conditions in Carroll et al. (2009)1 and allowing fractional smoothness of the density. In this

paper, by extending the approaches of Mynbaev and Martins-Filho (2010) and Mynbaev and Martins-Filho

(2014) we propose a new family of local constant estimators. Based on the kernels Mk in (3) we define a

class of local constant estimators indexed by k such that

m̂k(x) =

∑n
t=1Mk

(
Xt−x
hn

)
Yt∑n

t=1Mk

(
Xt−x
hn

) . (4)

The estimators m̂k(x) form a general class of local constant estimators. When k = 1 and a seed kernel K is

symmetric, our estimator m̂1(x) coincides with m̂(x) which is given by (2). That is, the Nadaraya-Watson

estimator m̂ can be considered as a special case of our estimators m̂k.

Throughout this paper, we assume that the true regression m belongs to a Besov space Br∞,q where

1 ≤ q ≤ ∞ and r > 0. This assumption is desirable for the following reasons: (i) l-times continuous

differentiability and uniform boundedness of m is stronger than m ∈ Br∞,q where l < r, that is, Cl(R) ⊆ Br∞,q

where Cl(R) denotes the space of l times differentiable, continuous and bounded functions in R; (ii) the space

of higher order differentiable, continuous and bounded functions in R is a subset of the space of lower order

differentiable, continuous and bounded functions, that is, Cs(R) ⊆ Cl(R) where l ≤ s.

The first contribution of this paper is to show that the estimators m̂k(x) attain a reduction in the order

of the bias relative to the Nadaraya-Watson estimator while maintaining the same variance. We obtain

bias reduction without using higher-order kernels and potentially bypassing the disadvantage of negativity

of the estimated density. The second contribution of this paper is to show that the estimators m̂k are

uniformly consistent. We improve the rate of uniform consistency relative to the existing literatures (Devroye

(1978), Collomb (1981), Mack and Silverman (1982)) by imposing less restrictive assumptions. The third

contribution of this paper is to establish the asymptotic normality of m̂k(x). The expression for the variance

of the asymptotic distribution is similar to that of the Nadaraya-Watson estimator. Lastly, we conduct a
1 Mynbaev and Martins-Filho (2014) replaced conditions (4.2) and (4.3) from Carroll et al. (2009) with their lighter assump-

tions 2.1 and 2.2.
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Monte Carlo study to investigate the finite sample performance of the local constant estimators we propose

and compare it to that of the Nadaraya-Watson estimator using a Gaussian kernel. The simulation results

indicate improved performance, measured by the absolute average bias and the the absolute average root

mean squared error when the kernels proposed in Mynbaev and Martins-Filho (2010) are used.

The remainder of the paper is organized as follows. Section 2 provides a brief discussion of Besov spaces

and discusses properties of the density estimator. In section 3, we provide the main asymptotic properties

of local constant estimators. Section 4 contains a small Monte Carlo study that gives some evidence on the

finite sample performance of our estimators. Section 5 summarizes the findings. The appendices contain all

proofs, tables and figures that summarize the Monte Carlo simulation.

2 A Nonparametric density estimator

2.1 Finite differences and Besov Spaces

In this section, we define the class of density estimators {f̂k}k=1,2,··· using the family of kernels {Mk}k=1,2,···

introduced by Mynbaev and Martins-Filho (2010). We need a series of definitions that support the con-

struction of the class. The properties of nonparametric density estimators are traditionally obtained by

assumption on the smoothness of the underlying density. Smoothness can be regulated by finite differences,

which can be defined as forward, backward, or centered. Let Cls = s!
(s−l)!l! for l = 1, 2, · · · , s and s ∈ Z+ be

the binomial coefficients. A s-th order forward difference is defined by

∆̃s
hf(x) =

s∑
j=0

(−1)s−jCjsf(x+ jh) where s = 1, 2, · · · . and for h ∈ R. (5)

Lemma 1 relates forward differences to differentiability by means of a recursion.

Lemma 1 Let ∆̃0
hf(x) = f(x), (∆̃s

hf)(x) = ∆̃1
h(∆̃s−1

h f)(x) where x ∈ R, h ∈ R+, s ∈ N be the iterated

differences in R. For x ∈ R and s ∈ Z+, we have

∆̃s
hf(x) =

∫ h

0

· · ·
∫ h

0

∆̃s−l
h D

lf

(
x+

l∑
i=1

ui

)
l∏
i=1

dui where l = 1, 2, · · · , s. (6)

When we consider forward even-order difference, (5) can be written as

∆̃2k
h f(x) =

k∑
|s|=1

ck,sf(x+ kh+ sh) (7)
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where ck,s = (−1)s+kCs+k
2k for s = −k, · · · , k and k ∈ {1, 2, · · · }. It is easy to verify that for s = 2k,

∆̃2k
h f(x) =

∑2k
j=0(−1)2k−jCj2kf(x+ jh) =

∑k
|s|=1(−1)s+kCs+k2k f(x+ kh+ sh).

Next, we introduce Besov spaces Brp,q(R) where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, r > 0, and the norm in Brp,q(R) is

defined by ||f ||Brp,q = ||f ||brp,q + ||f ||p where the first part ||f ||brp,q characterizes smoothness of f and is given

by

||f ||brp,q =


∫
R


(∫

R

∣∣∣∆̃2k
h f(x)

∣∣∣p dx)1/p
|h|r


q

dh

|h|


1/q

for k ∈ Z+ satisfying 2k > r (Triebel (1985), Mynbaev and Martins-Filho (2014)). When p = ∞ and/or

q = ∞, the integral(s) is (are) replaced by supremum. C0(R) is defined as the collection of all real-valued,

bounded and uniformly continuous functions in R, equipped with the norm ||f |C0(R)|| = supx∈R |f(x)|. 2

The following lemma shows that the class Cl(R) is a subset of Br∞,q whenever l < r.

Lemma 2 If l = 1, 2, 3, · · · , we define Cl(R) = {f |Dlf ∈ Cl−1(R)}. Let 0 ≤ q ≤ ∞. For r > l, we have

Cl(R) ⊆ Br∞,q(R). (8)

A full description of the relationships between Cl(R) and a Besov space Brp,q can be found in Besov et al.

(1978). Since,

Mk(x) = − 1

ck,s

k∑
|s|=1

ck,s
|s|

K
(x
s

)
(9)

we can express the bias of our proposed estimators m̂k in terms of higher order finite differences. Let

λk,s = (−1)s+1(k!)2

(k+s)!(k−s)! where s = 1, 2, · · · , k and since − ck,sck,0
= − ck,−sck,0

= λk,s, s = 1, · · · , k, we can write

Mk(x) =
∑k
s=1

λk,s
s

(
K
(
x
s

)
+K

(
−xs
))
. Consequently,Mk(x) = Mk(−x) for x ∈ R, that isMk is symmetric.

Since the coefficients ck,s satisfy
∑k
|s|=0 ck,s = (1− 1)2k = 0, the following equation is true.

− 1

ck,0

k∑
|s|=1

ck,s = 1 or
k∑
s=1

λk,s =
1

2
(10)

Equation (10) and
∫
K(ψ)dψ = 1 imply that∫
Mk(ψ)dψ =

k∑
s=1

λk,s
s

[∫
K

(
ψ

s

)
dψ +

∫
K

(
−ψ
s

)
dψ

]
= 1,

2See Triebel (2010).
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which establishes that every Mk. The kernel Mk defines a new family of density estimators indexed by k as

follows,

f̂k(x) =
1

nhn

n∑
t=1

Mk

(
Xt − x
hn

)
(11)

where hn is a bandwidth sequence tending to zero as n → ∞.3 When k = 1 and K is symmetric, the

density estimator in (11) coincides with the Rosenblatt-Parzen density estimator. Since the kernel Mk(x) is

symmetric, by using forward even-order differences (7), for a function f we have

∆2k
h f(x) =

k∑
s=−k

ck,sf(x+ sh) for h ∈ R.

It is easy to verify that ∆̃2k
h f(x) = ∆2k

h [f(x + kh)] (Mynbaev and Martins-Filho (2014)). Hence, we use

centered even-order difference for a smoothness characteristic, and we have

||f ||brp,q =


∫
R

(∫R ∣∣∆2k
h f(x)

∣∣p dx)1/p
|h|r

q dh
|h|


1/q

.

2.2 Density Estimation

We now list assumptions that will be used throughout the paper.

Assumption 1 : {Yt, Xt}nt=1 is an IID sequence.

Assumption 2 : (1) f ∈ Br∞,q with r > 0 and 1 ≤ q ≤ ∞; (2) f ∈ C0(R); (3) f is bounded away from 0.

Assumption 3 : hn > 0 for all n , hn → 0 and nhn →∞ as n→∞.

Assumption 4 : For all x ∈ R,

(1)K(x) : R→ R is a measurable function. (2)
∫
K(x)dx = 1; (3)

∫
|K(x)|dx <∞; (4) supx∈R |K(x)| < M <∞;

(5) |K(x)−K(x′)| < c|x− x′| for some c <∞ and x 6= x′, x, x′ ∈ R.

The following theorem shows the bias for density estimator f̂k and gives its order.

Theorem 1 Suppose Assumption 1, Assumption 2(1) and Assumption 4(1)-(2) hold. In addition,

suppose that
[∫
|K(ψ)|q′ |ψ|(r+1/q)q′dψ

]1/q′
< ∞ where 1/q + 1/q′ = 1 for 1 ≤ q ≤ ∞. For all x ∈ R and

3 Mynbaev and Martins-Filho (2010) defined this alternative family of density estimator.
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k = 1, 2, · · · , we have

(a) Bias(f̂k(x)) =

∫
− 1

ck,0
K(ψ)∆2k

hψf(x)dψ

(b) |Bias(f̂k(x))| ≤ chrn
[∫
|K(ψ)|q

′
|ψ|(r+1/q)q′dψ

]1/q′
||f ||Br∞,q where 2k > r.

We note that the order of the bias for our estimator is similar to that attained by the Rosenblatt density

estimator constructed with a kernel of order r. Given Assumption 3 we have Bias(f̂k(x)) → 0 as n → ∞

which implies that f̂k is asymptotically unbiased. The following theorem deals with the consistency of f̂k.

Theorem 2 Suppose Assumptions 1, Assumption 2(1)-(2), Assumption 3 and Assumption 4(1)-(4)

hold. In addition, suppose that
[∫
|K(ψ)|q′ |ψ|(r+1/q)q′dψ

]1/q′
< ∞ where 1/q + 1/q′ = 1 for 1 ≤ q ≤ ∞.

Then, for all x ∈ R and k = 1, 2, · · · ,

f̂k(x)− f(x) = op(1).

It is of interest to establish the uniform consistency of f̂k. The following theorem provides conditions under

which f̂k(x) converges to f(x) uniformly in probability.

Theorem 3 Suppose Assumption 1, Assumption 2(1)-(2), Assumption 3 and Assumption 4(1)-(5)

hold. In addition, suppose that
[∫
|K(ψ)|q′ |ψ|(r+1/q)q′dψ

]1/q′
<∞ where 1/q+ 1/q′ = 1 for 1 ≤ q ≤ ∞. Let

G be a compact subset of R. For all x ∈ R and k = 1, 2, · · · , we have

sup
x∈G
|f̂k(x)− f(x)| = Op

((
log n

nhn

)1/2

+ hrn

)
. (12)

Uniform consistency of the density estimator requires
(

logn
nhn

)
→ 0 as n→∞. From (12), the order of f̂k is

similar to that attained by Rosenblatt density estimator with a kernel of order r. We achieve much faster

uniform convergence rate by imposing the less restrictive assumption f ∈ Br∞,q. The next theorem gives the

asymptotic normality of the density estimator f̂k(x) for all x ∈ R under suitable normalization.

Theorem 4 Suppose Assumption 1, Assumption 2(1)-(2), Assumption 3 and Assumption 4(1)-(4).

Then for all x ∈ R and k = 1, 2, · · · , we have

√
nhn

(
f̂k(x)− f(x) +O(hrn)

)
d−→N

(
0, f(x)

∫
M2
k (ψ)dψ

)
.
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Suppose, additionally, that nh1+2r
n → 0 as n→∞. Then

√
nhn

(
f̂k(x)− f(x)

)
d−→N

(
0, f(x)

∫
M2
k (ψ)dψ

)
. (13)

This result is similar to that attained for a Rosenblatt density estimator with the exception that K is

replaced by theMk kernel in the expression for the variance of the asymptotic distribution. In order to attain

the asymptotic normality of f̂k, we write
√
nhn(f̂k(x)− f(x)) =

√
nhn(f̂k(x)−E[f̂k(x)]) +

√
nhn(E[f̂k(x)−

f(x)]). From Theorem 1, we know the second term in the decomposition is of order
√
nhn O(hrn). The

quantity
√
nhn(f̂k(x)− f(x)) will only be asymptotically normally distributed with mean zero if the second

term in the decomposition tends to zero as n→∞. Thus, we need nh1+2r
n → 0 as n→∞. In this case we

obtain equation (13).

3 Local Constant Estimator

In this section, we establish the asymptotic normality of the estimators m̂k for k = 1, 2, · · · . We assume that

the conditional density of Yt given Xt = x exists and is denoted by fY |X(y) =
fY,X(y,x)
f(x) where fY,X denotes

the density of Z = (Y,X) and f(x) denotes the marginal density of X with f(x) 6= 0. If the conditional

expectation E[Yt|Xt = x] exists, we write

m(x) = E[Yt|Xt = x] =

∫
yfY |X(y)dy =

∫
y
fY,X(y, x)

f(x)
dy.

Assumption 5 : (1) m ∈ Bρ∞,∞ with ρ > r where r is as in Assumption 2 (1); (2) m ∈ C0(R).

Bρ∞,∞(R) is a Zygmund space Zρ(R)4. By Corollary 2.8.2 (i) in Triebel (1985), the multiplication by a

function m ∈ Zρ(R) is bounded in Brp,q if ρ > r, that is

||mf ||Brp,q ≤ c||m||Zρ ||f ||Brp,q . (14)

In the existing literature, for the Nadaraya-Watson estimator it is assumed that the regression function m(·)

is continuous, uniformly bounded and differentiable. From Lemma 2, Assumption 5 seems desirable since

Br∞,q is wider than Cl(R) where l ≤ r. That is, we impose less restrictive assumptions than the existing

4For a more detailed explanation, see Theorem on page 90 in Triebel (1985).
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literature for (2). We make the following additional assumption.

Assumption 6: E[|Y −m(X)|2+δ|X] <∞ for δ > 0 and V ar(Y |X = x) = σ2 <∞.

The estimators m̂k are similar to the Nadarya-Watson estimator with the exception that K is replaced by

Mk kernel. When k = 1 and a seed kernel K denoted by (9) is symmetric, the estimator m̂1(x) concides

with the Nadaraya-Watson estimator (henceforth NW). Thus, the NW estimator is an element of the class

defined in (4). To obtain an approximation to the finite sample properties of m̂k, we rewrite

m̂k(x) =

∑n
t=1Mk

(
Xt−x
hn

)
Yt∑n

t=1Mk

(
Xt−x
hn

) =

1
nhn

∑n
t=1Mk

(
Xt−x
hn

)
Yt

1
nhn

∑n
t=1Mk

(
Xt−x
hn

) =
ĝk(x)

f̂k(x)

where ĝk(x) ≡ m̂k(x)f̂k(x) = 1
nhn

∑n
t=1Mk

(
Xt−x
hn

)
Yt for x ∈ R. We put g(x) ≡ m(x)f(x). From (14),

Assumption 2(1) and Assumption 5(1), we know g ∈ Br∞,q since ||g||Brp,q ≤ c||m||Zρ ||f ||Brp,q for r < ρ

(Triebel (1985)). The class of local constant estimators in equation (4) derives from a nonparametric density

estimator. In the previous section, we already considered density estimation, so the only step needed to

investigate the properties of m̂k is to consider the properties of ĝk(x).

Theorem 5 Suppose Assumption 1-3, Assumption 4(1)-(4), Assumption 5, and Assumption 6 hold.

In addition, suppose that
[∫
|K(ψ)|q′ |ψ|(r+1/q)qdψ

]1/q′
<∞ where 1/q+1/q′ = 1 for 1 ≤ q ≤ ∞. For x ∈ R.

Then for x ∈ R and k = 1, 2, · · · , we have

(a) Bias(ĝk(x)) =

(
− 1

ck,0

)∫
K(ψ)∆2k

hnψm(x+ shnψ)f(x+ shnψ)dψ,

(b) |Bias(ĝk(x))| ≤ Chrn
[∫
|K(ψ)|q

′
|ψ|(r+1/q)q′dψ

]1/q′
||g||Br∞,q ,

(c) ĝk(x)− g(x) = op(1) for g(x) = m(x)f(x).

Avoiding higher-order restrictions and using fractional smoothness on m and f , we obtain the order

of the bias of m̂k(x)f̂k(x) to be O(hrn) where 2k > r. Since f ∈ C0(R), m ∈ C0(R),
∫
|K(ψ)|dψ < ∞

and supx∈R |K(ψ)| < ∞,
∫
M2
k (ψ)f(x + hnψ)dψ = O(1),

∫
M2
k (ψ)m2(x + hnψ)f(x + hnψ)dψ = O(1) and∫

Mk(ψ)m(x + hψ)f(x + hnψ)dψ = O(1). Given that nhn → ∞ as n → ∞ and from V ar[ĝk(x)] =

σ2

nhn

∫
M2
k (ψ)f(x + hnψ)dψ − 1

n

{∫
Mk(ψ)m(x+ hnψ)f(x+ hnψ)dψ

}2
+ 1

nhn

∫
M2
k (ψ)m2(x + hnψ)f(x +

hnψ)dψ, we have V ar[ĝk(x)] −→ 0 as n→∞. Hence ĝk(x)− g(x) = op(1).
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Theorem 6 Suppose Assumption 1, Assumption 2(2), Assumption 3, Assumption 4(1),(4),(5),

Assumption 5(2) and Assumption 6 hold. In addition, suppose that nhn
logn → ∞ as n → ∞. For k =

1, 2, · · · ,

sup
x∈G
|ĝk(x)− E[ĝk(x)] = Op

((
log n

nhn

)1/2
)

(15)

where G is a compact set in R.

We establish the asymptotic normality of ĝk(x) under a suitable normalization below.

Theorem 7 Suppose Assumption 1-3, Assumption 4(1)-(4), Assumption 6 hold. For x ∈ R and

k = 1, 2, · · · , we have

√
nh [ĝk(x)− E(ĝk(x)|Xt)]

d−→N
(

0, σ2f(x)

∫
M2
k (ψ)dψ

)
.

Given f̂k(x) such that f̂k(x) = f(x) + op(1) in Theorem 2, we have

E[m̂k(x)−m(x)] =
1

f(x)

(
− 1

ck,0

)∫
K(ψ)∆2k

hnψm(x)f(x)dψ.

Given the results on ĝk and f̂k, we obtain following properties for m̂k(x). First, Theorem 8 gives the order

of the bias for m̂k.

Theorem 8 Suppose Assumption 1-2, Assumption 4(1)-(4) and Assumption 5 hold. In addition,

suppose that
[∫
|K(ψ)|q′ |ψ|(r+1/q)q′dψ

]1/q′
< ∞ where 1/q + 1/q′ = 1 for 1 ≤ q ≤ ∞. For x ∈ R and

k = 1, 2, · · · , we have |Bias(m̂k(x))| = O(hrn).

Note that the order of bias for our estimator is similar to that attained by the NW estimator constructed

with a kernel of order r. It is interesting to compare the order of the bias for the estimator m̂k to that of

the NW estimator. It is worth noting that in Theorem 8 symmetry of K is not required, nor is compactness

of its support. The advantage of our estimator m̂k for k = 1, 2, · · · is that we achieve bias reduction by

avoiding the nonnegative density estimator and by imposing less restrictive conditions such that f ∈ Br∞,q

and m ∈ Bρ∞,∞ where ρ > r.

9



Next theorem states that m̂k(x) converges to m(x) uniformly in probability.

Theorem 9 Suppose Assumption 1-6 hold. In addition, suppose that
[∫
|K(ψ)|q′ |ψ|(r+1/q)q′dψ

]1/q′
<∞

where 1/q + 1/q′ = 1 for 1 ≤ q ≤ ∞. For x ∈ R, k = 1, 2, · · · ,

sup
x∈G
|m̂k(x)−m(x)| = Op

(
hrn +

(
log n

nhn

)1/2
)
.

Uniform consistency of m̂k requires
(

logn
nhn

)
→ 0 as n → ∞. We improve the rate of uniform consistency

relative to the existing literatures (Devroye (1978), Collomb (1981), Mack and Silverman (1982)) by avoiding

higher-order conditions on the kernel and imposing less restrictive conditions.

We now give sufficient condition for asymptotic normality of m̂k(x) under suitable centering and normal-

ization.

Theorem 10 Suppose Assumption 1-6 hold. In addition, suppose that
[∫
|K(ψ)|q′ |ψ|(r+1/q)qdψ

]1/q′
<∞

where 1/q + 1/q′ = 1 for 1 ≤ q ≤ ∞. For x ∈ R and k = 1, 2, · · · , we have

√
nhn

(
m̂k(x)−m(x) +Op(h

r
n)

)
d−→N

(
0, σ2f(x)−1

∫
M2
k (ψ)dψ

)
.

Suppose, additionally, that nh1+2r
n → 0 as n→∞.

√
nhn

(
m̂k(x)−m(x)

)
d−→N

(
0, σ2f(x)−1

∫
M2
k (ψ)dψ

)
.

For the local constant estimator the normalizing factor will be (nhn)1/2 and we will work with the de-

composition (nhn)1/2[m̂k(x) −m(x)] = (nhn)1/2 [m̂k(x)− E(m̂k(x)|Xt)] + (nhn)1/2 [E(m̂k(x)|Xt)−m(x)].

The first term in the decomposition is asymptotically normal and the second term is the conditional bias

[E(m̂k(x)|Xt)−m(x)] = O(hrn). To eliminate the asymptotic bias in the limiting distribution of the estima-

tor, we need an additional assumption such as nh1+2r
n → 0 as n→∞. Consistency follows from the fact that

(nhn)1/2(m̂k(x)−m(x)) has a limiting distribution. The expression for the variance term of the asymptotic

distribution is similar to that the NW estimator with exception that K is replaced by Mk kernel.

4 Monte Carlo Study

In this section we perform a small Monte Carlo study to investigate the finite sample performance of our

proposed local constant estimator. For comparison purpose, we also implement the Nadaraya-Watson kernel

10



estimator, which is given by m̂NW (x) ≡ m̂1(x) ≡
(nhn)

−1∑n
j=1K

(
Xj−x
hn

)
Yj

(nhn)−1
∑n
j=1K

(
Xj−x
hn

) with K(·) is Gaussian kernel. We

consider following data generating processes (DGPs),

DGP1 : y = m1(x) + ε, m1(x) = 3x+
20√
2π
exp

{
−100(x− 0.5)2

}
where X ∼ N(µX , σ

2
X), ε ∼ N(0, σ2

ε ), µX = 0.5, σ2
X = 1/3.922, σ2

ε = 0.673

DGP2 : y = m2(x) + ε, m2(x) = exp{x}sin(5x2),

where X ∼ N(µx, σ
2
X), ε ∼ N(0, σ2

ε ), µX = 0, σ2
X = 1, σ2

ε = 2

DGP3 : y = binornd(1,m3(x)), m3(x) = 0.5sin(10πx) + 0.5, X ∼ U [0, n]

DGP4 : y = binornd(1,m4(x)), m4(x) = 0.5sin(2πx) + 0.5, X ∼ U [0, n]

where y = binornd(1,m) generates random numbers from the binomial distribution with parameters specified

by the number of trials 1, and probability of success for each trial m. In each DGP, evaluate the regression

of 101 points from 0 to 1 with increments 0.01. At each point, we compute absolute bias, variance and root

mean square error. Then, we average the absolute bias, variance and root mean squared error across all 101

evaluation points. A Gaussian seed kernel is used to construct the estimators.

In our simulations, for each of these DGPs, 1000 samples of size n = 400 and 1000 were considered and

four estimators m̂NW , m̂2, m̂3 and m̂4 were obtained by using a Gaussian seed kernel. For values of x where

the denominator of the local constant estimator f̂k(x) closes to zero, the local constant estimator at x might

not be defined. To avoid this situation, we introduce a trimming parameter δ > 0. That is, we only consider

the observations where the density estimate f̂k is above δ. We select both bandwidth h and the trimming

parameter δ by minimizing a cross validation criterion. CV (h, δ) = 1
n

∑n
i=1

(
Yi − m̂−i(Xi)

)2 where

m̂−i(Xi) =

1
nhn

∑n
l 6=i YlMk

(
Xi−Xl
hn

)
[

1
nhn

∑n
l 6=iMk

(
Xi−Xl
hn

)]
I
([

1
nhn

∑n
l 6=iMk

(
Xi−Xl
hn

)]
≥ δ
)

+ δI
([

1
nhn

∑n
l 6=iMk

(
Xi−Xl
hn

)]
< δ
)

and I(·) is an indicator function. For each estimator at point x where the denominator was smaller than

δ, it was replaced by δ. Table 1 provides average absolute bias (B), average variance (V) and average root

MSE (R) for each estimator considered for n = 400, 1000, respectively.

Table 1, Figure 1 and 2 reveal the following general regularities. First, for all four DGPs the average
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absolute bias (B), average variance (V) and average root MSE (R) of our estimators m̂k decrease as the

sample size increases from 400 to 1000. Box plots also show that the root mean squared error falls as the

sample size increases. Second, as expected from the theoretical results, an increase in the value of k reduces

average absolute bias (B). Third, for k = 2 the case where the smallest bias reductions are attained, (B) can

be reduced by as much as 58% relative to m̂NW . Fourth, reduction in root mean square error (R) due to the

increase in k is much less pronounced. When we observe the true regression function m4, root mean squared

error (R) tends to increase as k rises but the largest difference of the root mean squared errors between m̂NW

and m̂k is negligible value. Finally, we observe that for DGP1, DGP2 and DGP3, our proposed estimators

m̂2, m̂3 and m̂4 outperform the Nadaraya-Watson estimator m̂NW in terms of both the average absolute

bias (B) and root mean squared error (R) and among all estimators, m̂2 achieves the smallest root mean

square error (R).

5 Summary

The use of higher order kernels is a well-known method for bias reduction of density and regression estimators.

This method of bias reduction has the disadvantage of potential negativity of the underlying estimated

density. To avoid this, Mynbaev and Martins-Filho (2010) pioneered a new set of nonparametric kernel

based estimators for a density that achieves bias reduction by using a new family of kernels. In addition,

Mynbaev and Martins-Filho (2014) obtained much faster convergence of nonparametric prediction by allowing

fractional smoothness for the relevant densities. By extending both approaches, in this paper, we propose

local constant estimators for regression which are more general than the Nadaraya-Watson (NW) estimator.

The main contribution in this paper is that bias reduction may be achieved relative to the NW estimator, and

our proposed estimators attain faster uniform convergence without using higher-order kernels and allowing for

fractional smoothness for the relevant densities and regressions. We also provide consistency and asymptotic

normality of the estimators in the class we propose. A small Monte Carlo study reveals that our estimator

performs well relative to the NW estimator and the promised bias reduction is obtained, experimentally in

finite samples.
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Appendix 1 - Proofs

Lemma 1

Proof. Let ∆̃0
hf(x) = f(x), (∆̃s+1

h f)(x) = ∆̃1
h(∆̃s

hf)(x) where x ∈ R, h ∈ R+, s ∈ N be the iterated

differences in R. From the definition of ∆̃s
hf(x) (5), we have

∆̃s
hf(x) =

s∑
j=0

(−1)s−jCjsf(x+ jh)

=

s−1∑
j=0

(−1)s−1−jCjs−1[f(x+ (j + 1)h)− f(x+ jh)].

Let Ds are classical derivatives. First, we need to verify the case : (i) s = 1.

∆̃1
hf(x) = f(x+ h)− f(x) =

∫ h

0

Df(x+ u1)du1

Consider (ii) s = 2.

∆̃2
hf(x) = ∆̃1

h[∆̃1
hf(x)] = ∆̃1

h

∫ h

0

Df(x+ u1)du1 =

∫ h

0

Df(x+ u1 + h)−Df(x+ u1)du1

=

∫ h

0

∫ h

0

D2f(x+ u1 + u2)du1du2

Assume that s = k is true such that

∆̃k
hf(x) =

∫ h

0

· · ·
∫ h

0

∆̃k−l
h D

lf

(
x+

l∑
i=1

ui

)
l∏
i=1

dui where l = 1, 2, · · · , k.

Now, we must prove the case (iii) s = k + 1.

∆̃k+1
h f(x) = ∆̃1

h[∆̃k
hf(x)] = ∆̃1

h

∫ h

0

∆̃k−1
h Df(x+ u1)du1 =

∫ h

0

∆̃k−1
h Df(x+ u1 + h)− ∆̃k−1

h Df(x+ u1)du1

=

∫ h

0

∫ h

0

∆̃k−1
h D2f(x+ u1 + u2)du1du2 =

∫ h

0

∫ h

0

∆̃1
h[∆̃k−2

h D2f(x+ u1 + u2)]du1du2

=

∫ h

0

∫ h

0

[∆̃k−2
h D2f(x+ u1 + u2 + h)− ∆̃k−2

h D2f(x+ u1 + u2 + h)]du1du2

=

∫ h

0

∫ h

0

∫ h

0

[∆̃k−2
h D3f(x+ u1 + u2 + u3)]du1du2du3 = · · · =

∫ h

0

· · ·
∫ h

0

Dk+1f

(
x+

k+1∑
i=1

ui

)
k+1∏
i=1

dui
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Lemma 2

Proof. Let s and l ∈ Z+ such that l < r < s.

∫
|h|−rq||∆̃s

hf(x)||q∞
dh

|h|
=

∫ ∞
0

h−rq||∆̃s
hf(x)||q∞

dh

h
+

∫ 0

−∞
(−h)−rq||∆̃s

hf(x)||q∞
dh

(−h)

=

∫ ∞
0

h−rq||∆̃s
hf(x)||q∞

dh

h
+

∫ ∞
0

γ−rq||∆̃s
γf(x)||q∞

dγ

γ
by change of variable by letting −h = γ

=

∫ 1

0

h−rq||∆̃s
hf(x)||q∞

dh

h
+

∫ ∞
1

h−rq||∆̃s
hf(x)||q∞

dh

h

+

∫ 1

0

γ−rq||∆̃s
−γf(x)||q∞

dγ

γ
+

∫ ∞
1

γ−rq||∆̃s
−γf(x)||q∞

dγ

γ

=

∫ 1

0

h−rq
[
||∆̃s

hf(x)||q∞ + ||∆̃s
−hf(x)||q∞

] dh
h

+

∫ ∞
1

h−rq
[
||∆̃s

hf(x)||q∞ + ||∆̃s
−hf(x)||q∞

] dh
h

=

∫ 1

0

h−rq

[∣∣∣∣∣
∣∣∣∣∣
∫ h

0

· · ·
∫ h

0

Dsf(x+

s∑
i=1

ui)

s∏
i=1

dui

∣∣∣∣∣
∣∣∣∣∣
q

∞

+

∣∣∣∣∣
∣∣∣∣∣
∫ −h
0

· · ·
∫ −h
0

Dsf(x+

s∑
i=1

ui)

s∏
i=1

dui

∣∣∣∣∣
∣∣∣∣∣
q

∞

]
dh

h

+

∫ ∞
1

h−rq
[ ∣∣∣∣∣
∣∣∣∣∣
∫ h

0

· · ·
∫ h

0

∆̃s−l
h D

lf(x+

l∑
i=1

ui)

l∏
i=1

dui

∣∣∣∣∣
∣∣∣∣∣
q

∞

]
dh

h

+

∫ ∞
1

h−rq
[ ∣∣∣∣∣
∣∣∣∣∣
∫ −h
0

· · ·
∫ −h
0

∆̃s−l
−hD

lf(x+

l∑
i=1

ui)

l∏
i=1

dui

∣∣∣∣∣
∣∣∣∣∣
q

∞

]
dh

h

≤
∫ 1

0

h−rq

{
sup
x∈R

[∫ h

0

· · ·
∫ h

0

∣∣∣∣Dsf(x+

s∑
i=1

ui)

∣∣∣∣ s∏
i=1

dui

]q}
dh

h

+

∫ 1

0

h−rq

{
sup
x∈R

[∫ −h
0

· · ·
∫ −h
0

∣∣∣∣Dsf(x+

s∑
i=1

ui)

∣∣∣∣ s∏
i=1

dui

]q}
dh

h

+

∫ ∞
1

h−rq

{
sup
x∈R

[∫ h

0

· · ·
∫ h

0

∣∣∣∣∆̃s−l
h D

lf(x+

l∑
i=1

ui)

∣∣∣∣ l∏
i=1

dui

]q}
dh

h

+

∫ ∞
1

h−rq

{
sup
x∈R

[∫ −h
0

· · ·
∫ −h
0

∣∣∣∣∆̃s−l
−hD

lf(x+

l∑
i=1

ui)

∣∣∣∣ l∏
i=1

dui

]q}
dh

h

≤ sup
x∈R
|Dsf(x)|q

∫ 1

0

h−rq

{[∫ h

0

· · ·
∫ h

0

s∏
i=1

dui

]q
+

[∫ −h
0

· · ·
∫ −h
0

s∏
i=1

dui

]q}
dh

h

+ c1 sup
x∈R
|Dlf(x)|q

∫ ∞
1

h−rq

[∫ h

0

· · ·
∫ h

0

l∏
i=1

dui

]q
dh

h

+ c2 sup
x∈R
|Dlf(x)|q

∫ ∞
1

h−rq

[∫ −h
0

· · ·
∫ −h
0

l∏
i=1

dui

]q
dh

h
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= sup
x∈R
|Dsf(x)|q

∫ 1

0

[
h−rq+sq−1 + h−rq−1(−h)sq

]
dh

+ sup
x∈R
|Dlf(x)|q

∫ ∞
1

[
c1h
−rq+lq−1 + c2h

−rq−1(−h)lq
]
dh

= sup
x∈R
|Dsf(x)|q

[
1

(s− r)q

]
(1 + (−1)sq) + sup

x∈R
|Dlf(x)|

[
1

(r − l)q

]
(c1 + c2(−1)lq)

where s > r > l and some c1, c2 <∞. Therefore, for some c3, c4 and c <∞, we have

[∫
|h|−rq||∆̃s

hf(x)||q∞
dh

|h|

]1/q
≤ c3 sup

x∈R
|Dsf(x)|+ c4 sup

x∈R
|Dlf(x)| ≤ c sup

x∈R
|Dlf(x)|

The last inequality follows from the fact that Cs(R) ⊆ Cl(R) for s > l. Hence, we have ||f ||Br∞,q ≤ C||f ||Cl .

That is, Cl(R) ⊆ Br∞,q(R) where l < r.

Theorem 1

Proof. (a)

E(f̂k(x)) =

∫
1

hn

− 1

ck,0

k∑
|s|=1

ck,s
|s|

K

(
y − x
shn

) f(y)dy =

∫ − 1

ck,0

k∑
|s|=1

ck,sK(ψ)

 f(x+ shnψ)dψ

Therefore, Bias(f̂k(x)) can be denoted as follows,

Bias(f̂k(x)) = E(f̂k(x))− f(x) =

∫
− 1

ck,0
K(ψ)∆2k

hnψf(x)dψ

by − 1
ck,0

∑k
|s|=1 ck,s = 1 and Assumption 3(2).

(b) We can proceed the order of Bias(f̂k(x)) using the result of (a).

Given that
[∫
|K(ψ)|q′ |ψ|(r+1/q)q′dψ

]1/q′
<∞, we have

|Bias(f̂k(x))| = |E(f̂k(x))− f(x)| =
∣∣∣∣∫ − 1

ck,0
K(ψ)∆2k

hnψf(x)dψ

∣∣∣∣
≤
∣∣∣∣− 1

ck,0

∣∣∣∣ ∣∣∣∣∫ K(ψ)|hnψ|r+1/q 1

|hnψ|r+1/q
∆2k
hψf(x)dψ

∣∣∣∣
≤
∣∣∣∣− 1

ck,0

∣∣∣∣ [∫ {|K(ψ)||hnψ|r+1/q
}q′

dψ

]1/q′ [∫ {supx∈R|∆2k
hnψ

f(x)|
|hnψ|r+1/q

}q
dψ

]1/q
by Holder’s inequality

=

∣∣∣∣− 1

ck,0

∣∣∣∣ [∫ {|K(ψ)||hnψ|r+1/q
}q′

dψ

]1/q′ [∫ {supx∈R|∆2k
hnψ

f(x)|
|hnψ|r

}q
1

|hnψ|
dψ

]1/q
by letting hnψ ≡ t
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=

∣∣∣∣− 1

ck,0

∣∣∣∣ [∫ |K(ψ)|q
′
|hnψ|(r+1/q)q′dψ

]1/q′ [∫ {
supx∈R|∆2k

t f(x)|
|t|r

}q
1

|t|
h−1n dt

]1/q
≤ hrn

∣∣∣∣− 1

ck,0

∣∣∣∣ [∫ |K(ψ)|q
′
|ψ|(r+1/q)q′dψ

]1/q′
||f ||Br∞,q = O(hrn)

where 1/q + 1/q′ = 1 and 1 ≤ q ≤ ∞.

Theorem 2

Proof.

V ar(f̂k(x)) = E[f̂k(x)2]− (E[f̂k(x)])2

=

∫ {
1

nhn

n∑
t=1

Mk

(
y − x
hn

)}2

f(y)dy −

{∫
1

nh

n∑
t=1

Mk

(
y − x
hn

)
f(y)dy

}2

=

∫
1

nhn
M2
k (ψ)f(x+ hnψ)dψ − 1

n

{∫
Mk(ψ)f(x+ hnψ)dψ

}2

given Assumption 1

≤ 1

nhn

∫
M2
k (ψ)f(x+ hnψ)dψ

Now provided that Assumption 2(2), Assumption 3 and Assumption 4(1),(3),(4) , we have

∫
M2
k (ψ)f(x+ hψ)dψ =

∫
M2
k (ψ) [f(x+ hψ)− f(x)] dψ +

∫
M2
k (ψ)f(x)dψ

≤
∫
|hψ|≤δ

M2
k (ψ)|f(x+ hψ)− f(x)|dψ +

∫
|hψ|>δ

M2
k (ψ)|f(x+ hψ)− f(x)|dψ + f(x)

∫
M2
k (ψ)dψ

≤ sup
|y|≤δ,x∈R

|f(x+ y)− f(x)|
∫
M2
k (ψ)dψ + 2 sup

x∈R
|f(x)|

∫
|hψ|>δ

M2
k (ψ)dψ + sup

x∈R
|f(x)|

∫
M2
k (ψ)dψ

since f ∈ C0(R) <∞ (16)

The inequality follows from
∫
M2
k (ψ)dψ ≤ C

∫
|K(ψ)|dψ < ∞ by Assumption 4(3)-(4) for some C < ∞

and supx∈R |f(x)| < ∞ by Assumption 2(2). If hn → 0 and nhn → ∞ as n → ∞ (Assumption 3), from

Theorem 1 and equation (16), f̂k(x)− f(x) = op(1) for all x ∈ R.

Theorem 3

Proof. Let {Xt}t=1,2,··· ,n be a sequence of IID random variables in R (Assumption 1). For x ∈ R,

f̂k(x) = 1
nhn

∑n
t=1Mk

(
Xt−x
hn

)
where hn > 0. Let G be a compact subset of R that is, G ⊆ R. The
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collection F = {B(x, r) : x ∈ G, r > 0} is an open covering of G. By the Heine-Borel theorem, the open

covering has a finite subcovering. That is, there exists a collection F ′ = {B(xτ , r) : xτ ∈ G, r > 0, τ =

1, 2, · · · ,m, where m is finite} such that G ⊆ F ′. Given that K satisfies a Lipschitz condition of order 1

Assumption 4(5), for x ∈ G, we have

|f̂k(x)− f̂k(xτ )| =
∣∣∣∣ 1

nhn

n∑
t=1

Mk

(
Xt − x
hn

)
− 1

nh

n∑
t=1

Mk

(
Xt − xτ
hn

) ∣∣∣∣
≤ 1

nhn

n∑
t=1

∣∣∣∣− 1

ck,0

∣∣∣∣ k∑
|s|=1

|ck,s|
|s|

∣∣∣∣K (Xt − x
shn

)
−K

(
Xt − xτ
shn

)∣∣∣∣
≤ c

nhn

n∑
t=1

k∑
|s|=1

∣∣∣∣ck,s|s|
∣∣∣∣ |xτ − x||shn|

≤ c

h2n
|x− xτ | for some contant c <∞.

Then, |E[f̂k(x)]− f̂k(xτ )| ≤ c 1
h2
n
|x− xτ |. If x ∈ B(xτ , r), then |x− xτ | < r. Then, by the triangle inequality

|f̂k(x)− E[f̂k(x)]| ≤ |f̂k(x)− f̂k(xτ )|+ |f̂k(xτ )− E[f̂k(xτ )]|+ |E[f̂k(xτ )]− E[f̂k(x)]|

≤ |f̂k(xτ )− E[f̂k(xτ )]|+ 2c
r

h2n
.

Since for each x ∈ G there exists B(xτ , r) that contains x

dn = sup
x∈G
|f̂k(x)− E[f̂k(x)]| ≤ 2c

r

h2n
+ max

1≤τ≤m
|f̂k(xτ )− E[f̂k(xτ )]|.

Let dn be a sequence of stochastic variables. If ∀ε > 0 there exists Mε > 0 and a non stochastic sequence

{an} such that P
[
|dn|
an

> Mε

]
< ε for all n. We write dn = Op(an)(Mann and Wald (1943) and Davidson

(1994)).

dn
an

=
|dn|
an
≤ 2cr

anh2n
+

1

an
max

1≤τ≤m
|f̂k(xτ )− E[f̂k(xτ )]| = 2cr

anh2n
+

1

an
d2,n

where d2,n ≡ max1≤τ≤m |f̂k(xτ )− E[f̂k(xτ )]|.

P

[
dn
an

> Mε

]
≤ P

[
2cr

anh2n
+
d2,n
an

> Mε

]
= P

[
d2,n
an

> Mε −
2cr

anh2n

]
= P

[
d2,n
an

> Mn,ε

]
where Mn,ε = Mε − 2cr

anh2
n
. Then, we have

P

[
d2,n
an

> Mn,ε

]
= P

[
1

an
max

1≤τ≤m
|f̂k(xτ )− E[f̂k(xτ )]| > Mn,ε

]
≤

m∑
τ=1

P

[
1

an
|f̂k(xτ )− E[f̂k(xτ )]| > Mn,ε

]
=

m∑
τ=1

P
[
|f̂k(xτ )− E[f̂k(xτ )]| > Mn,εan

]
.
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Hence, P
[
dn
an

> Mε

]
≤
∑m
τ=1 P

[
|f̂k(xτ )− E[f̂k(xτ )]| > Mn,εan

]
.

|f̂k(xτ )− E[f̂k(xτ )]| =

∣∣∣∣∣ 1n
n∑
t=1

[
1

hn
Mk

(
Xt − xτ
hn

)
− 1

hn
E

[
Mk

(
Xt − xτ
hn

)]]∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
t=1

Wtn

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
t=1

(Xtn − E[Xtn])

∣∣∣∣∣
where Wtn ≡

[
1
hn
Mk

(
Xt−xτ
hn

)
− 1

hn
E
[
Mk

(
Xt−xτ
hn

)]]
= Xtn − E[Xtn] and Xtn ≡ 1

hn
Mk

(
Xt−xτ
hn

)
.

Given that |K(x)| ≤ Bk for all x ∈ R (Assumption 4(4)), note that

|Xtn − E[Xtn]| =
∣∣∣∣ 1

hn
Mk

(
Xt − xτ
hn

)
− 1

hn

∫
Mk

(
α− x
hn

)
f(α)dα

∣∣∣∣
=

∣∣∣∣ 1

hn

[
− 1

ck,0

k∑
|s|=1

ck,s
|s|

K

(
Xt − x
shn

)]
− 1

hn

∫ [
− 1

ck,0

k∑
|s|=1

ck,s
|s|

K

(
α− x
shn

)]
f(α)dα

∣∣∣∣
≤ 1

hn

∣∣∣∣− 1

ck,0

k∑
|s|=1

ck,s
|s|

∣∣∣∣Bk +
1

hn

∣∣∣∣− 1

ck,0

k∑
|s|=1

ck,s
|s|

∣∣∣∣Bk ∫ |f(α)|dα ≤ 2
1

hn

∣∣∣∣− 1

ck,0

k∑
|s|=1

ck,s
|s|

∣∣∣∣Bk
since

∫
|f(α)|dα ≤ 1.

Then, we have |Wtn| ≤ 1
hn
BkC1 where C1 = 2

∣∣∣− 1
ck,0

∑k
|s|=1

ck,s
|s|

∣∣∣. Next we consider V ar(Wtn). Let σ2
tn =

V ar(Wtn). Given that E[Wtn] = 0, we have

σ2
tn = V ar(Wtn) = E[W 2

tn] =
1

h2n

∫
M2
k

(
α− xτ
hn

)
f(α)dα− 1

h2n

[∫
Mk

(
α− xτ
hn

)
f(α)dα

]2
=

1

hn

∫
M2
k (ψ)f(xτ + hnψ)dψ −

[∫
Mk(ψ)f(xτ + hnψ)dψ

]2
.

Given that IID sequence of {Xt}t=1,2,··· ,n,

n∑
t=1

σ2
tn =

n

hn

∫
M2
k (ψ)f(xτ + hnψ)dψ − n

[∫
Mk(ψ)f(xτ + hnψ)dψ

]2
.

Note that hnσ2
tn =

∫
M2
k (ψ)f(xτ + hnψ)dψ − hn

[∫
Mk(ψ)f(xτ + hnψ)dψ

]2
= gn(xτ ). By Bernstein’s

inequality (Bennett (1962)), we have

P

[
|f̂k(xτ )− E[f̂k(xτ )]| > anMn,ε

]
= P

[∣∣∣∣ 1n
n∑
t=1

Wtn

∣∣∣∣ > anMn,ε

]

≤ 2 exp

{
−

na2nM
2
n,ε

2 1
n

∑n
t=1 V ar(Wtn) + 2

3
Bk
hn
C1anMn,ε

}
where C1 = 2

∣∣∣− 1
ck,0

∑k
|s|=1

ck,s
|s|

∣∣∣
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= 2 exp

−n2a2nM2
n,ε/nE(W 2

tn)

2 + 2
3
Bk
hn
C1

nanMn,ε

nE(W 2
tn)

 by Assumption 1 and V ar(Wtn) = E(W 2
tn) (17)

= 2 exp

− na2nM
2
n,ε/E(W 2

tn)

2
E[W 2

tn]

E[W 2
tn]

+ 2
3
Bk
hn
C1

anMn,ε

E[W 2
tn]

 (18)

= 2 exp

{
−

a2nM
2
n,εnhn

2hnE[W 2
tn] + 2

3BkC1anMn,ε

}
(19)

P

[
1

an
max

1≤τ≤m
|f̂k(xτ )− E[f̂k(xτ )]| > Mn,ε

]
≤

m∑
τ=1

2 exp

{
−

a2nM
2
n,εnhn

2hnE[W 2
tn] + 2

3BkC1anMn,ε

}

≤ 2m max
1≤τ≤m

exp

{
−

a2nM
2
n,εnhn

2hnE[W 2
tn] + 2

3BkC1anMn,ε

}

≤ 2m max
1≤τ≤m

exp

{
−

a2nM
2
n,εnhn

2gn(xτ ) + 2
3BkC1anMn,ε

}
where gn(xτ ) = hnE[W 2

tn]

≤ 2m exp

{
−

a2nM
2
n,εnhn

2gn(xm) + 2
3BkC1anMn,ε

}
(20)

where xm corresponds to the point of the given function such that exp
{
− a2nM

2
n,εnhn

2hnE[W 2
tn]+

2
3BkC1anMn,ε

}
which the

function exp{·} attains its maximum value and gn(xm) =
∫
M2
k (ψ)f(xm+hnψ)dψ−hn

[∫
Mk(ψ)f(xm + hnψ)dψ

]2.
Let an =

(
logn
nhn

)1/2
and r =

(
h3
n

n

)1/2
. Note that anMn,ε = an

(
Mε − 2cr

anh2
n

)
= anMε − 2cr

h2
n
. Hence,

(anMn,ε)
2 =

(
anMε −

2cr

h2n

)2

= a2nM
2
ε +

4c2r2

h4n
− 4anMε

cr

h2n

=

(
log n

nhn

)
M2
ε +

4c2

h4n

(
h3n
n

)
− 4Mεc

1

h2n

(
h3n
n

)1/2(
log n

nhn

)1/2

=

(
log n

nhn

)
M2
ε +

4c2

nhn
− 4Mεc

(log n)1/2

nhn

−nhn(anMn,ε)
2 = −(log n)M2

ε − 4c2 + 4Mεc(log n)1/2 = − log n

[
M2
ε −

4Mεc

(log n)1/2
+

4c2

log n

]
= −4n log n

where 4n = M2
ε − 4Mεc

(logn)1/2
+ 4c2

logn .

anMn,ε = anMε −
2cr

h2n
=

(
log n

nhn

)1/2

Mε −
2c

h2n

(
h3n
n

)1/2

=

(
log n

nhn

)1/2

Mε −
2c

(nhn)1/2

=
1

(nhn)1/2

[
(log n)1/2Mε − 2c

]
Hence, if

(
logn
nhn

)
→ 0 as n→∞, then anMn,ε → 0. From equation (20),

2m exp

{
−

a2nM
2
n,εnhn

2gn(xm) + 2
3BkC1anMn,ε

}
= 2m exp

{
−4n log n

vn

}
= 2m exp

{
log n−4n/vn

}
= 2mn−4n/vn
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Hence, P
[

1
an

max1≤τ≤m |f̂k(xτ )− E[f̂k(xτ )]| > Mn,ε

]
≤ 2mn−4n/vn . The volume of B(xτ , r) for x ∈ R is

2r = 2
(
h3
n

n

)1/2
= 2rn . Since F ′ = {B(xτ , r) : xτ ∈ G, r > 0, τ = 1, 2, · · · ,m, where m is finite} such that

G ⊆ F ′ is a covering for G, it must be that r → 0 which implies m→∞ and since G is bounded, there exists

x0 ∈ R and r0 < ∞ such that G ⊆ B(x0, r0). Hence for every x ∈ R, 2mrn = 2m
(
h3
n

n

)1/2
≤ 2r0 which

implies that m ≤ r0r−1n = r0

(
h3
n

n

)−1/2
. Hence,

2mn−4n/vn ≤ 2r0

(
h3n
n

)−1/2
1

n4n/vn
= 2r0

(
n

h3nn
24n/vn

)1/2

= 2r0

(
1

h3nn
24n/vn−1

)1/2

= 2r0

(
1

nh3n

)1/2(
1

n2(4n/vn−1)

)1/2

= 2r0

(
1

nhn

)1/2
1

hn

1

n4n/vn−1

Since nhn →∞ it suffices to have n4n/vn−1hn bounded away from 0 as n→∞.

Given that 4n = M2
ε − 4Mεc

(logn)1/2
+ 4c2

logn and vn = 2gn(xm) + 2
3BkC1anMn,ε, 4n → M2

ε , gn(xm) →

f(xm)
∫
M2
k (ψ)dψ as n → ∞ and vn → 2f(xm)

∫
M2
k (ψ)dψ. Then, 4nvn − 1 =

M2
ε

2f(xm)
∫
M2
k(ψ)dψ

− 1. Since

nhn →∞ it suffices to choose Mε large enough to have M2
ε

2f(xm)
∫
M2
k(ψ)dψ

− 1 ≥ 1 or M2
ε

2f(xm)
∫
M2
k(ψ)dψ

≥ 2 to

obtain n
4n
vn
−1hn →∞.

Now,

sup
x∈G
|f̂k(x)− f(x)| ≤ sup

x∈G
|f̂k(x)− E[f̂k(x)]|+ sup

x∈G
|E[f̂k(x)]− f(x)|

=

(
log n

nhn

)1/2

Op(1) + sup
x∈G
|E[f̂k(x)]− f(x)| =

(
log n

nhn

)1/2

Op(1) + hrnO(1)

Theorem 4

Proof. We have for x ∈ R, f̂k(x)− E[f̂k(x)] =
∑n
t=1

[
1
nhn

Mk

(
Xt−x
hn

)
− 1

nhn

[
Mk

(
Xt−x
hn

)]]
Let Znt = 1

nhn
Mk

(
Xt−x
hn

)
, E[Znt] = µn and S2

n =
∑n
t=1E[Znt − µn]2. We have

S2
n =

n∑
t=1

E

[
1

nh
Mk

(
Xt − x
hn

)
− E

(
1

nh
Mk

(
Xt − x
hn

))]2
=

1

nh2n
V ar

(
Mk

(
Xt − x
hn

))
= V ar(f̂k(x)).

Hence, f̂k(x)−E[f̂k(x)]√
V ar(f̂k(x))

=
∑n
t=1

(
Znt−µn
Sn

)
=
∑n
t=1Xnt with E[Xnt] = 0, E[X2

nt] = 1
S2
n
E
[
(Znt − µn)2

]
and∑n

t=1E[X2
nt] = 1.
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In order to use Liapounov’s CLT , we need to verify lim
n→∞

∑n
t=1E|Xnt|2+δ = 0.

n∑
t=1

E|Xnt|2+δ =

n∑
t=1

E

[∣∣∣∣Znt − µnSn

∣∣∣∣2+δ
]

=

n∑
t=1

V ar(f̂k(x))−1−δ/2E
[
|Znt − µn|2+δ

]
= V ar(f̂k(x))−1−δ/2nE

[
|Znt − µn|2+δ

]
We need to show that |µn|2+δ ≤ C.

µn = E

[
1

nhn
Mk

(
Xt − x
hn

)]
=

∫
1

nhn
Mk

(
Xt − x
hn

)
f(Xt)dXt =

1

n

∫
Mk(ψ)f(x+ hnψ)dψ = O(n−1)

Therefore, |µ|2+δ ≤M2+δ
(
1
n

)2+δ. By the Cr inequality and the fact that µn = O(n−1), we have

E
[
|Znt − µn|2+δ

]
≤ 21+δE

[
|Znt|2+δ

]
+ 21+δE[|µn|2+δ].

Therefore,

n∑
t=1

E|Xnt|2+δ ≤ V ar(f̂k(x))−(1+δ/2)n
[
21+δE(|Znt|2+δ) + o(1)

]
= V ar(f̂k(x))−(1+δ/2)n

{
21+δE

[∣∣∣∣ 1

nhn
Mk

(
Xt − x
hn

)∣∣∣∣2+δ
]

+ o(1)

}

= V ar(f̂k(x))−(1+δ/2)21+δn−1−δ

{
E

[∣∣∣∣ 1

hn
Mk

(
Xt − x
hn

)∣∣∣∣2+δ
]

+ o(1)

}

=
1

nhV ar(f̂k(x))1+δ/2
21+δ

(nhn)δ/2
1

hn

{
E

[∣∣∣∣Mk

(
Xt − x
hn

)∣∣∣∣2+δ
]

+ o(1)

}
.

We have∣∣∣∣nhnV ar(f̂k(x))−
∫
M2
k (ψ)f(x)dψ

∣∣∣∣ =

∣∣∣∣ ∫ M2
k (ψ) [f(x+ hnψ)− f(x)] dψ − hn

{∫
Mk(ψ)f(x+ hnψ)dψ

}2 ∣∣∣∣
≤
∫
|hnψ|≤δ

M2
k (ψ) |f(x+ hnψ)− f(x)| dψ +

∫
|hnψ|>δ

M2
k (ψ) |f(x+ hnψ)− f(x)| dψ

+ hn

{∫
M2
k (ψ)f(x+ hnψ)dψ

}2

≤ sup
|t|≤δ,x∈R

|f(x+ t)− f(x)|
∫
M2
k (ψ)dψ + 2 sup

x∈R
[f(x)]

∫
|ψ|>δ/h

M2
k (ψ)dψ + hn

{
sup
x∈R

[f(x)]

∫
M2
k (ψ)dψ

}2

.

Consequently, nhnV ar(f̂k(x)) −→
∫
M2
k (ψ)f(x)dψ as n → ∞ by Assumption 1, Assumption 2(2) As-

sumption 3 and Assumption 4(3)-(4). Similarly,

1

hn
E

[∣∣∣∣Mk

(
Xt − x
hn

)∣∣∣∣2+δ
]

=

∫
|Mk(ψ)|2+δf(x+ hnψ)hdψ −→ f(x)

∫
|Mk(ψ)|2+δdψ <∞ as n→∞
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since
∫
|K(ψ)|2+δdψ < ∞. Therefore,

∑n
t=1E|Xnt|2+δ −→ 0 as n → ∞ provided that 1

(nh)δ/2
→ 0. Hence,

√
nh
(
f̂k(x)− E[f̂k(x)]

)
d−→N

(
0, f(x)

∫
M2
k (ψ)dψ

)
. In practice we are interested in the distribution of

√
nhn(f̂k(x)− f(x)) instead of

√
nh
(
f̂k(x)− E[f̂k(x)]

)
.

√
nhn

(
f̂k(x)− f(x)

)
=

√
nhn

(
f̂k(x)− E[f̂k(x)]

)
+
√
nhn

(
E[f̂k(x)]− f(x)

)
=

√
nhnO(hrn) +

√
nhn

(
f̂k(x)− E[f̂k(x)]

)
from Theorem 1(a)

Therefore,
√
nhn

(
f̂k(x)− f(x) +O(hrn)

)
d−→N

(
0, f(x)

∫
M2
k (ψ)dψ

)
. If nh1+2r

n → 0 as n → ∞, f̂k(x) has

an asymptotic normal distribution as
√
nhn

(
f̂k(x)− f(x)

)
d−→N

(
0, f(x)

∫
M2
k (ψ)dψ

)
.

Theorem 5

Proof. First, consider the proof of (a). Let ĝk(x) = 1
nhn

∑n
t=1Mk

(
Xt−x
hn

)
Yt.

E[ĝk(x)|Xt] =
1

nh

n∑
t=1

Mk

(
Xt − x
hn

)
E[Yt|Xt]

=
1

nh

n∑
t=1

Mk

(
Xt − x
hn

)
m(Xt) where E[Yt|Xt] = m(Xt)

Then, given Assumption 1 we have

E[ĝk(x)] =

∫
1

nhn

n∑
t=1

Mk

(
Xt − x
hn

)
m(Xt)f(Xt)dXt

=

(
− 1

ck,0

)∫ k∑
|s|=1

ck,sK(ψ)m(x+ shnψ)f(x+ shnψ)dψ.

Let g(x) = f(x)m(x). Bias(ĝk(x)) is denoted by

Bias(ĝk(x)) = E[ĝk(x)]− g(x)

=

(
− 1

ck,0

)∫ k∑
|s|=1

ck,s K(ψ)m(x+ shnψ)f(x+ shnψ)dψ − g(x)

=

(
− 1

ck,0

)∫ k∑
|s|=0

ck,s K(ψ)m(x+ shnψ)f(x+ shnψ)dψ

=

(
− 1

ck,0

)∫
K(ψ)∆2k

hnψm(x)f(x)dψ
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by Assumption 4(2) and − 1
ck,0

∑k
|s|=1 ck,s = 1.

Next, we prove (b); the order of Bias(ĝk(x)).

|Bias(ĝk(x))| =

∣∣∣∣∣∣
(
− 1

ck,0

)∫ k∑
|s|=0

ck,s K(ψ)m(x+ shnψ)f(x+ shnψ)dψ

∣∣∣∣∣∣
≤ C

∣∣∣∣∫ K(ψ)∆2k
hnψ g(x)dψ

∣∣∣∣ = C

∣∣∣∣∣
∫
K(ψ)|hψ|r+1/q

∆2k
hnψ

g(x)

|hnψ|r+1/q
dψ

∣∣∣∣∣
≤ C

{∫ [
|K(ψ)||hnψ|(r+1/q)

]q′
dψ

}1/q′ {∫ [
supx∈R |∆2k

hnψ
g(x)|

|hnψ|r+1/q

]q
dψ

}1/q

= C

[∫
|K(ψ)|q

′
|hnψ|(r+1/q)qdψ

]1/q′ {∫ [
sup |∆2k

t g(x)|
|t|r

]q
1

|t|
h−1n dψ

}1/q

= hrn

[∫
|K(ψ)|q

′
|ψ|(r+1/q)qdψ

]1/q′
||g||Br∞,q = O(hrn)

by Assumption 2(1), Assumption 5(1) and
[∫
|K(ψ)|q′ |ψ|(r+1/q)qdψ

]1/q′
< ∞ where 1/q + 1/q′ = 1 for

1 ≤ q ≤ ∞. From the result of (Triebel (1985)), we know that ||g||Br∞,q ≤ C||m||Zρ ||f ||Brp,q where ρ > r.

For (c) it is sufficient to show V ar[ĝk(x)] −→ 0 as n → ∞ to prove that ĝk(x) is consistent. Since,

V ar[ĝk(x)] = E[V arx(ĝk(x))] + V ar[EX(ĝk(x))] and V ar[Yt|Xt] = σ2, we have

V ar[ĝk(x)] = E

[
1

n2h2n

n∑
t=1

M2
k

(
Xt − x
hn

)
σ2

]
+ V ar

[
1

nhn

n∑
t=1

Mk

(
Xt − x
hn

)
m(Xt)

]

=
σ2

n2h2n
E

[
n∑
t=1

M2
k

(
Xt − x
hn

)]
+

1

n2h2n
E


[

n∑
t=1

Mk

(
Xt − x
hn

)
m(Xt)

]2
−

{
E

[
1

nhn

n∑
t=1

Mk

(
Xt − x
hn

)
m(Xt)

]}2

=
σ2

n2h2n

∫ n∑
t=1

M2
k

(
y − x
hn

)
f(y)dy +

1

nhn

∫
M2
k (ψ)m2(x+ hnψ)f(x+ hnψ)dψ

+
n(n− 1)

n2h2n

[∫
h2nM

2
k (ψ)m(x+ hnψ)f(x+ hnψ)dψ

]2
−
{∫

Mk(ψ)m(x+ hnψ)f(x+ hnψ)dψ

}2

=
σ2

nhn

∫
M2
k (ψ)f(x+ hnψ)dψ +

1

nhn

∫
M2
k (ψ)m2(x+ hnψ)f(x+ hnψ)dψ

− 1

n

{∫
Mk(ψ)m(x+ hnψ)f(x+ hnψ)dψ

}2

.
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Then,

V ar[ĝk(x)] =
σ2

nhn

∫
M2
k (ψ)f(x+ hnψ)dψ − 1

n

{∫
Mk(ψ)m(x+ hnψ)f(x+ hnψ)dψ

}2

+
1

nhn

∫
M2
k (ψ)m2(x+ hnψ)f(x+ hnψ)dψ (21)

Since f and m ∈ C0(R) and Assumption 4(3)-(4) , we have

∫
M2
k (ψ)f(x+ hψ)dψ ≤ sup

x∈G
|f(x)|

∫
M2
k (ψ)dψ ≤ sup

x∈G
|f(x)|C

∫
|K(ψ)|dψ = O(1)∫

M2
k (ψ)m2(x+ hψ)f(x+ hψ)dψ ≤ sup

x∈G
|m(x)|2 sup

x∈G
|f(x)|

∫
M2
k (ψ)dψ = O(1)∫

Mk(ψ)m(x+ hψ)f(x+ hψ)dψ ≤ sup
x∈G
|m(x)| sup

x∈G
|f(x)|C

∫
|K(ψ)|dψ = O(1)

Given that nhn →∞ as n→∞, we have V ar[ĝk(x)] −→ 0. Hence ĝk(x)
p−→g(x).

Theorem 6

Proof. Let {Xt}t=1,2,· be a sequence of IID random variable in R.

ĝk(x) =
1

nh

n∑
t=1

Mk

(
Xt − x
hn

)
[m(Xt) + ut] =

1

nh

n∑
t=1

Mk

(
Xt − x
hn

)
m(Xt) +

1

nhn

n∑
t=1

Mk

(
Xt − x
hn

)
ut

Let s1(x) = 1
nhn

∑n
t=1Mk

(
Xt−x
hn

)
m(Xt) and s2(x) = 1

nhn

∑n
t=1Mk

(
Xt−x
hn

)
ut.

Let G be a compact set in R. For every x ∈ G, define B(x, r) = {y : |x − y| < r}. The collection

F ′ = {B(x, r) : x ∈ G, r > 0} is an open covering of G. By the Heine-Borel Theorem, there exists a collection

F ′ = {B(xτ , r) : xτ ∈ G, r > 0, τ = 1, 2, · · · ,m,m finite} such that G ⊆ F ′. For x ∈ G and xτ ∈ G where

τ = 1, 2, · · · ,m,

|s1(x)− E[s1(x)]| ≤ |s1(x)− s1(xτ )|+ |s1(xτ )− E[s1(xτ )]|+ |E[s1(xτ )]− E[s1(x)]|. (22)

Note that

|s1(x)− s1(xτ )|

=

∣∣∣∣∣ 1

nh

n∑
t=1

Mk

(
Xt − x
h

)
m(Xt)−

1

nhn

n∑
t=1

Mk

(
Xt − xτ
hn

)
m(Xt)

∣∣∣∣∣
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≤ 1

nhn

n∑
t=1

∣∣∣∣Mk

(
Xt − x
hn

)
−Mk

(
Xt − xτ

hn

)∣∣∣∣ |m(Xt)|

≤ 1

nhn

n∑
t=1

[
− 1

ck,0

n∑
t=1

ck,s
|s|

] ∣∣∣∣K (Xt − x
shn

)
−K

(
Xt − xτ
shn

)∣∣∣∣ |m(Xt)|

by Lipschitz condition on K (Assumption 4(5)) and m ∈ C0(R)(Assumption 5(2)).

≤ C sup
x∈R
|m(x)| |xτ − x|

h2n
≤ C sup

x∈R
|m(x)| r

h2n
since x ∈ B(xτ , r) which implies |x− xτ | < r

and |E[s1(x)]− E[s1(xτ )]| ≤ c supx∈R |m(x)| rh2
n
.

Thus, from (22) we have

|s1(x)− E[s1(x)]| ≤ 2cr

h2n
+ |s1(xτ )− E[s1(xτ )]|.

Since for each x ∈ G, there exists B(xτ , r) that contains x,

dn = sup
x∈R
|s1(x)− E[s1(x)]| = 2cr

h2n
+ max

1≤τ≤m
|s1(xτ )− E[s1(xτ )]|

where dn is a sequence of stochastic variables. If every ε > 0 there exists Mε > 0 and a non stochastic

sequence {an} such that P
[
|dn|
an

> Mε

]
< ε for all n. We write dn = Op(an).

Let d2,n = max1≤τ≤m |s1(xτ )− E[s1(xτ )]|.

P

[
dn
an

> Mε

]
≤ P

[
2cr

anh2n
+
d2,n
an

> Mε

]
= P

[
d2,n
an

> Mε −
2rc

anh2n

]
= P

[
1

an
max

1≤τ≤m
|s1(xτ )− E[s1(xτ )]| > Mn,ε

]
≤

m∑
τ=1

P

[
1

an
|s1(xτ )− E[s1(xτ )]| > Mn,ε

]
=

m∑
τ=1

P

[
|s1(xτ )− E[s1(xτ )]| > anMn,ε

]

|s1(xτ )− E[s1(xτ )]| =
∣∣∣∣ 1n

n∑
t=1

{
1

hn
Mk

(
Xt − xτ
hn

)
m(Xt)−

1

hn
E

[
Mk

(
Xt − xτ
hn

)
m(Xt)

]} ∣∣∣∣
=

∣∣∣∣ 1n
n∑
t=1

Wtn

∣∣∣∣ (23)

where Wtn = 1
hn
Mk

(
Xt−xτ
hn

)
m(Xt)− 1

hn
E

[
Mk

(
Xt−xτ
hn

)
m(Xt)

]
.
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|Wtn| =

∣∣∣∣ 1

hn
Mk

(
Xt − xτ
hn

)
m(Xt)−

1

hn
E

[
Mk

(
Xt − xτ
hn

)
m(Xt)

]∣∣∣∣
=

∣∣∣∣ 1

hn

(
− 1

ck,0

k∑
|s|=1

ck,s
|s|

)
K

(
Xt − xτ
shn

)
m(Xt)−

1

hn

(
− 1

ck,0

k∑
|s|=1

ck,s
|s|

)
E

[
K

(
Xt − xτ
shn

)
m(Xt)

]∣∣∣∣
≤ 1

hn
cB1 sup

x∈R
|m(x)|

[
1 +

∫
|f(α)|dα

]
≤ 2cB1

1

hn
sup
x∈R
|m(x)| where c =

∣∣∣∣− 1
ck,0

∑k
|s|=1

ck,s
|s|

∣∣∣∣.
since

∫
|f(α)| ≤ 1, m ∈ C0(R) and supx∈R |K(x)| ≤ B1 for all x ∈ R .

V ar(Wtn) = E(W 2
tn)

=
1

h2n

∫
M2
k

(
α− xτ
hn

)
m(α)f(α)dα− 1

h2n

[ ∫
Mk

(
α− xτ
hn

)
m(α)f(α)dα

]2
=

1

hn

∫
M2
k (ψ)m2(xτ + hnψ)f(xτ + hnψ)dψ −

[ ∫
Mk(ψ)m(xτ + hnψ)f(xτ + hnψ)dψ

]2
hnV ar(Wtn)

=

∫
M2
k (ψ)m2(xτ + hnψ)f(xτ + hnψ)dψ − hn

[ ∫
Mk(ψ)m(xτ + hnψ)f(xτ + hnψ)dψ

]2
(24)

From (23), we have

P [|s1(xτ )− E[s1(xτ )]| > anMn,ε] = P

[∣∣∣∣ 1n
n∑
t=1

Wtn

∣∣∣∣ > anMn,ε

]
= P

[∣∣∣∣ n∑
t=1

Wtn

∣∣∣∣ > nanMn,ε

]

≤ 2 exp

{
−

a2nM
2
n,εnhn

2hnV ar(Wtn) + 2
3B1c supx∈R |m(x)|anMn,ε

}
by Bernstein’s inequality.

Let gn(xτ ) = hV ar(Wtn). Then,

P

[
1

an
max

1≤τ≤m
|s1(xτ )− E[s1(xτ )]| > Mn,ε

]
≤

m∑
τ=1

2 exp

{
−

a2nM
2
n,εnhn

2hnV ar(Wtn) + 2
3B1c supx∈R |m(x)|anMn,ε

}

≤ 2m max
1≤τ≤m

exp

{
−

a2nM
2
n,εnhn

2gn(xτ ) + 2
3B1c supx∈R |m(x)|anMn,ε

}

= 2m exp

{
−

a2nM
2
n,εnhn

2gn(xm) + 2
3B1c supx∈R |m(x)|anMn,ε

}
(25)

where xm corresponds to the point of the given function such that exp
{
− a2nM

2
n,εnhn

2hnE[W 2
tn]+

2
3B1c supx∈R |m(x)|anMn,ε

}
which the function exp{·} attains its maximum value. Thus we have

gn(xm) =

∫
M2
k (ψ)m2(xm + hnψ)f(xm + hnψ)dψ − hn

[ ∫
Mk(ψ)m(xm + hnψ)f(xm + hnψ)dψ

]2
(26)
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Let an =
(

logn
nhn

)1/2
and r =

(
h3
n

n

)1/2
. We have

anMn,ε = anMε −
2cr

h2n
=

1

(nhn)2

[
(log n)1/2Mεc− 2c

]
(anMn,ε)

2 =

(
log n

nhn

)
M2
ε +

4c2

nhn
− 4Mεc

(log n)1/2

nhn

Hence, to obtain anMn,ε → 0 we want logn
nhn
→ 0 as n→∞.

−nhn(anMn,ε)
2 = −M2

ε log n− 4c2 + 4Mεc(log n)1/2 = − log n

[
M2
ε +

4c2

log n
− 4Mεc

(log n)2

]
= −4n(log n)

where 4n = M2
ε + 4c2

logn −
4Mεc

(logn)2 . Let vn = 2gn(xm) + 2
3B1c supx∈R |m(x)|anMn,ε.

From (25),

P

[
1

an
max

1≤τ≤m
|s1(xτ )− E[s1(xτ )]| > Mn,ε

]
≤ 2m exp

{
−4n log n

vn

}
= 2mn−4n/vn (27)

From (24) and (26), gn(xm) → m2(xm)f(xm)
∫
M2
k (ψ)dψ as n → ∞ since f ∈ C0(R), m ∈ C0(R), hn → 0

and nhn →∞ as n→∞. The volume of B(xτ , r) for xτ ∈ R is 2r. Since F ′ is a covering for G, it must be

that m → ∞ since r → 0. Since G is bounded, there exists x0 ∈ R and r0 < ∞ such that G ⊆ B(x0, r0).

Hence, 2mr ≤ 2r0 which implies m ≤ r0
(
n
h3
n

)1/2
. From (27),

2mn−4n/vn ≤ 2

(
n

h3n

)1/2

r0
1

n4n/vn
≤ 2

(
1

nhn

)1/2
r0
hn

[
1

n4n/vn−1

]

Since nhn → ∞ as n → ∞ it suffices to have n4n/vn−1hn bounded away from 0 as n → ∞. Note that

4n → M2
ε and vn → 2m2(xm)f(xm)

∫
M2
k (ψ)dψ. Since nhn → ∞ it suffices to choose Mε large enough to

have

4n
vn
− 1 −→ M2

ε

2m2(xm)f(xm)
∫
M2
k (ψ)dψ

≥ 2

to obtain n4n/vn−1hn →∞.

Hence, we have supx∈R |s1(x)− E[s1(x)]| = Op

((
logn
nhn

)1/2)
.
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Now consider s2(x) = 1
nhn

∑n
t=1Mk

(
Xt−x
hn

)
ut. For x, xτ ∈ G τ = 1, 2, · · · ,m, by triangle inequality

|s2(x)− E[s2(x)]| ≤ |s2(x)− s2(xτ )|+ |s2(xτ )− E[s2(xτ )]|+ |E(s2(xτ ))− E[s2(x)]|

Note that

|s2(x)− s2(xτ )| =

∣∣∣∣∣ 1

nhn

n∑
t=1

Mk

(
Xt − x
hn

)
ut −

1

nhn

n∑
t=1

Mk

(
Xt − xτ
hn

)
ut

∣∣∣∣∣
≤ 1

nhn

n∑
t=1

∣∣∣∣Mk

(
Xt − x
hn

)
−Mk

(
Xt − xτ
hn

)∣∣∣∣ |ut|
≤ c

|x− xτ |
h2n

1

n

n∑
t=1

|ut| by Lipschitz condition on K

≤ c

(
r

h2n

)
Op(1) by x ∈ B(xτ , r)

where c =
∣∣∣− 1

ck,0

∑k
|s|=1

ck,s
|s|

∣∣∣. We have that {|ut|}t=1,2,··· is IID. By condition E[|ut|a] <∞ for some a ≥ 2

and 1
n

∑n
t=1 (|ut| − E[|ut|]) = op(1) by Kolmogorov’s LLN we have |s2(x)− s2(xτ )| ≤ c

(
r
h2
n

)
Op(1) .

Then,

|E(s1(x))− E(s1(xτ ))| ≤ c
(
r

h2n

)
Op(1) and |E(s2(x))− E(s2(xτ ))| ≤ c

(
r

h2n

)
Op(1)

By the Triangle inequality,

|s2(x)− E[s2(x)]| ≤ |s2(x)− s2(xτ )|+ |s2(xτ )− E[s2(xτ )]|+ |E(s2(xτ ))− E[s2(x)]|

≤ |s2(xτ )− E[s2(xτ )]|+ 2c

(
r

h2n

)
Op(1) (28)

Let ŝ2(x) = 1
nhn

∑n
t=1Mk

(
Xt−x
hn

)
utχ{|ut|≤Bn} with B1 ≤ B2 ≤ · · · such that

∑∞
t=1B

−a
t < ∞ for some

a > 1. Note that

|s2(xτ )− E[s2(xτ )]| ≤ |ŝ2(xτ )− E[ŝ2(xτ )]|+ |s2(xτ )− ŝ2(xτ )|+ |E[s2(xτ )]− E[ŝ2(xτ )]| (29)

From (28) and (29) for each x ∈ G, there exists B(xτ , r) that contains x

γn = sup
x∈G
|s2(x)− E[s2(x)]| ≤ 2cr

h2n
Op(1) + sup

x∈G
|s2(xτ )− E[s2(xτ )]|

≤ 2cr

h2n
Op(1) + sup

x∈G
|ŝ2(xτ )− E[ŝ2(xτ )]|+ sup

x∈G
|s2(xτ )− ŝ2(xτ )|+ sup

x∈G
|E[s2(xτ )]− E[ŝ2(xτ )]|
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Let T1 = sup
x∈G
|s2(x) − ŝ2(x)| and T2 = sup

x∈G
|E[s2(x) − ŝ2(x)]|. We show that (1) T1 = oa.s(1) and (2) T2 =

O(B1−a
n ) for a > 1. Note that T1 = sup

x∈G

∣∣∣ 1
nhn

∑n
t=1Mk

(
Xt−x
hn

)
utχ{|ut|>Bn}

∣∣∣. Assume E[|ut|a] < C.

By Chebyshev’s inequality, for a > 0, P [|ut| > Bt] <
E[|ut|a]
Bat

< C 1
Bta

and
∑∞
t=1 P [|ut| > Bt] <

∑∞
t=1

C
Bat

<

∞.

By the Borel-Cantelli Lemma,
∑∞
t=1 P [|ut| > Bt] <∞ , which implies P [|ut| > Bt i.o] = 0. Hence, for any

ε > 0 and for all m satisfying m′ < m we have P [|um| ≤ Bm] > 1 − u since {Bt}t=1,2,··· is an increasing

sequence, for n > m > m′ we have P [|um| ≤ Bn] > 1−u. Hence, there existsN such that for n > max{m,N}

we have that for all t ≤ n, P [|ut| ≤ Bn] > 1− ε which implies χ{|ut|>Bn} = 0 with probability 1. Therefore

T1 = oa.s(1).

For T2,

E[s2(x)− ŝ2(x)] =
1

nhn

n∑
t=1

∫ ∫
|ut|>Bn

Mk

(
α− x
hn

)
ut f(α)fu(ut)dαdut

=
1

n

n∑
t=1

∫
Mk(ψ)f(x+ hnψ)dψ

∫
|ut|>Bn

utfu(ut)dut

=

∫
Mk(ψ)f(x+ hnψ)dψ

∫
u fu(u)χ{|u|>Bn}du

By Holder’s inequality,

∫
|ut|f(ut)χ{|ut|>Bn}dut ≤

[∫
|ut|af(ut)dut

]1/a [∫
χ{|ut|>Bn}fu(ut)dut

]1−1/a
=

[
E [|ut|a]

]1/a [∫
χ{|ut|>Bn}fu(ut)dut

]1−1/a
where

[∫
χ{|ut|>Bn}fu(ut)dut

]1−1/a
= [P (|ut| > Bn)]

1−1/a ≤ C
[
E(|ut|a)
Ban

]1−1/a
≤ CB1−a

n by using Cheby-

chev’s inequality. Hence, T2 = O(B1−a
n ) for a > 1. Given the results of T1 = oa.s(1) and T2 = O(B1−a

n ) we

have

γn = sup
x∈G
|s2(x)− E[s2(x)]| ≤ 2cr

h2n
Op(1) + T1 + T2 + sup

xτ∈G
|ŝ2(xτ )− E[ŝ2(xτ )]|

≤ 2cr

h2n
Op(1) +O(B1−a

n ) + max
1≤τ≤m

|ŝ2(xτ )− E[ŝ2(xτ )]|

Let γn be a sequence of stochastic variables and γ2,n = max1≤τ≤m |ŝ2(xτ )− E[ŝ2(xτ )]|. For all ε > 0, there
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exists M̃ε > 0 and a nonstochastic sequence {bn} such that P
[
|γn|
bn

> M̃ε

]
< ε for all n.

P

[
γn
bn

> M̃ε

]
≤ P

[
2cr

h2n
Op(1) +O(B1−a

n ) +
γ2,n
bn

> M̃ε

]
≤ P

[
γ2,n
bn

> M̃ε −
2cr

h2n
Op(1)−O(B1−a

n )

]
≤ P

[
1

bn
max

1≤τ≤m
|ŝ2(xτ )− E[ŝ2(xτ )]| > M̃n,ε

]
where M̃n,ε = M̃ε − 2cr

h2
n
Op(1)−O(B1−a

n ).

≤
m∑
τ=1

P

[
1

bn
|ŝ2(xτ )− E[ŝ2(xτ )]| > M̃n,ε

]
≤

m∑
τ=1

P
[
|ŝ2(xτ )− E[ŝ2(xτ )]| > bnM̃n,ε

]
(30)

Note that

|ŝ2(xτ )− E[ŝ2(xτ )]| =

∣∣∣∣∣ 1n
n∑
t=1

{
1

hn
Mk

(
Xt − xτ
hn

)
utχ{|ut|≤Bn} −

1

hn
E

[
Mk

(
Xt − xτ
hn

)
utχ{|ut|≤Bn}

]}∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
t=1

Ztn

∣∣∣∣∣
where Ztn =

{
1
hn
Mk

(
Xt−xτ
hn

)
utχ{|ut|≤Bn} − 1

hn
E
[
Mk

(
Xt−xτ
hn

)
utχ{|ut|≤Bn}

]}
. Note that

|Ztn| =

∣∣∣∣∣ 1n
n∑
t=1

{
1

hn
Mk

(
Xt − xτ
hn

)
utχ{|ut|≤Bn} −

1

hn
E

[
Mk

(
Xt − xτ
hn

)
utχ{|ut|≤Bn}

]}∣∣∣∣∣
=

∣∣∣∣ 1

hn

[
− 1

ck,0

k∑
|s|=1

ck,s
|s|

K

(
Xt − xτ
shn

)]
utχ{|ut|≤Bn}

− 1

hn
E

[− 1

ck,0

k∑
|s|=1

ck,s
|s|

K

(
Xt − xτ
shn

)]
utχ{|ut|≤Bn}

 ∣∣∣∣
≤ 1

hn
cB1

[∣∣utχ{|ut|≤Bn}∣∣+

∫
|fX(α)|dα

∫ ∣∣utχ{|ut|≤Bn}∣∣|fu|X(u)|du
]

≤ 1

hn
cB1

[
Bn +Bn

∫ ∫
|fu|X(u)|du

]
≤ 2cB1Bn

1

hn

since c =

[
− 1

ck,0

∑k
|s|=1

ck,s
|s|

]
,|K(·)| ≤ B1 (Assumption 4(4)) and |utχ{|ut|≤Bn}

∣∣ ≤ Bn.
V ar(Ztn) = E[Z2

tn] = 1
h2
n

∫ ∫
M2
k

(
α−xτ
hn

)
u2χ{|u2|≤Bn}f(α)fu|X(u)dαdu

−
[

1
hn

∫ ∫
Mk

(
α−xτ
hn

)
uχ{|u|≤Bn}f(α)fu|X(u)dαdu

]2
= 1

hn

∫ ∫
M2
k (ψ)u2χ{|u2|≤Bn}f(xτ + hnψ)fu|X(u)dψdu −

[∫ ∫
Mk(ψ)uχ{|u|≤Bn}f(xτ + hnψ)fu|X(u)dψdu

]2
Letting ln(xτ ) = hV ar(Ztn), we have

ln(xτ ) =

∫ ∫
M2
k (ψ)u2χ{|u2|≤Bn}f(xτ + hnψ)fu|X(u)dψdu

− hn
[∫ ∫

Mk(ψ)uχ{|u|≤Bn}f(xτ + hnψ)fu|X(u)dψdu

]2
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P
[
|ŝ2(xτ )− E[ŝ2(xτ )]| > bnM̃n,ε

]
= P

[∣∣∣∣∣ 1n
n∑
t=1

Ztn

∣∣∣∣∣ > bnM̃n,ε

]
= P

[∣∣∣∣∣
n∑
t=1

Ztn

∣∣∣∣∣ > nbnM̃n,ε

]

≤ 2 exp

{
− b2nM̃n,εnhn

2hnV ar[Ztn] + 2
3cB1BnbnM̃n,ε

}

by Bernstein’s inequality. Then,

P

[
1

bn
max

1≤τ≤m
|ŝ2(xτ )− E[ŝ2(xτ )]| > M̃n,ε

]
≤

m∑
τ=1

2 exp

{
− b2nM̃n,εnhn

2hnV ar[Ztn] + 2
3cB1BnbnM̃n,ε

}

≤ 2m max
1≤τ≤m

exp

{
− b2nM̃n,εnhn

2hnV ar[Ztn] + 2
3cB1BnbnM̃n,ε

}

= 2m exp

{
− b2nM̃n,εnhn

2ln(xm) + 2
3cB1BnbnM̃n,ε

}
(31)

where xm corresponds to the point of the given function such that exp
{
− b2nM̃n,εnhn

2hnV ar[Ztn]+
2
3 cB1BnbnM̃n,ε

}
which

the function exp{·} attains its maximum value. Thus we have

ln(xm) =

∫ ∫
M2
k (ψ)u2χ{|u2|≤Bn}f(xm + hnψ)fu|X(u)dψdu

− hn
[∫ ∫

Mk(ψ)uχ{|u|≤Bn}f(xm + hnψ)fu|X(u)dψdu

]2
(32)

Let bn =
(

logn
nhn

)1/2
and r =

(
h3
n

n

)1/2
. Given M̃n,ε = M̃ε − 2cr

h2
n
Op(1)−O(B1−a

n ) we have

bnMn,ε =

(
log n

nhn

)1/2

M̃ε −
2c

(nhn)1/2
Op(1)−O(B1−a

n ) (33)

BnbnM̃n,ε =

(
log n

nhn

)1/2

BnM̃ε −
2c

(nhn)1/2
BnOp(1)−O(B2−a

n ) where a > 2. (34)

We want
(

logn
nhn

)
−→ 0 as n→∞ that implies bnMn,ε → 0 for a > 2 as n→∞. From (33),

(bnMn,ε)
2 =

[(
log n

nhn

)1/2

M̃ε −
2c

(nhn)1/2
Op(1)−O(B1−a

n )

]2

=
log n

nhn
M̃2
ε +

4c2

nhn
Op(1) +O(B2(1−a)

n )− 2

(
log n

nhn

)1/2

M̃ε
2c

(nhn)1/2
Op(1)

− 2

(
log n

nhn

)1/2

M̃εO(B1−a
n ) + 4c

(
1

(nhn)1/2

)
Op(1)O(B1−a

n ).
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Note that

− nhn(b2nM̃
2
n,ε)

= − log n

[
M̃2
ε +

4c2

log n
Op(1) +

nhn
log n

O(B2(1−a))− 4c

(log n)1/2
Op(1)

− 2

(
nhn
log n

)1/2

M̃εO(B1−a
n ) + 4c

(
nhn
log n

)1/2

O(B1−a
n )

]
= −4n log n

where 4n = M̃2
ε + 4c2

lognOp(1) + nhn
lognO(B2(1−a))− 4c

(logn)1/2
Op(1)− 2

(
nhn
logn

)1/2
M̃εO(B1−a

n )

+ 4c
(
nhn
logn

)1/2
O(B1−a

n ). Choose Bn such that
(

logn
nhn

)1/2
O(B1−a

n ) → 0 and
(
nhn
logn

)1/2
O(B1−a

n )O(1) →

0 as n → ∞ for a > 2. Let Bn = O
( (

nh
logn

) )
. Then,

(
logn
nhn

)1/2
O(B1−a

n ) =
(

logn
nhn

)a−1/2
→ 0 and(

nhn
logn

)1/2
O(B1−a

n ) =
(
nhn
logn

)2/3−a
O(1) → 0 as n → ∞ for a > 2. In addition,

(
logn
nhn

)1/2
O(B1−a

n ) = o(1)

implies that
(

1
nhn

)1/2
O(B1−a

n ) = o(1). Let vn = 2ln(xm) + 2
3cB1BnbnM̃n,ε. From (31), we have

P

[
1

bn
max

1≤τ≤m
|ŝ2(xτ )− E[ŝ2(xτ )]| > M̃n,ε

]
≤ 2mn−4n/vn ≤ 2r0

(
1

nhn

)1/2
1

hn

1

n4n/vn−1

The last inequality follows from that since F ′ is a covering for G, it must be that m → ∞ and since G is

bounded there exists x0 ∈ R and r0 < ∞ such that G ⊆ B(x0, r0). That is, 2mr ≤ 2r0 which implies that

m ≤ r0
(
n
h3
n

)1/2
.

From (32), ln(xm)→ f(xm)
∫
M2
k (ψ)dψE[u2|X] <∞ by Assumption 6. Since nhn →∞ it suffices to have

n4n/vn−1hn bounded away from 0 as n→∞. We have 4n → M̃2
ε and vn → 2f(xm)

∫
M2
k (ψ)dψσ2

u. Choose

M̃ε large enough to have 4nvn − 1 → M̃2
ε

2f(xm)
∫
M2
k(ψ)dψσ

2
u
≥ 2 to obtain n4n/vn−1hn → ∞ as n → ∞. Then,

we have supx∈G |s2(x)− E[s2(x)]| = Op

((
logn
nhn

)1/2)
.

Hence, supx∈G |ĝk(x)− E[ŝk(x)]| = Op

((
logn
nhn

)1/2)
.

Theorem 7

Proof. Note that ĝk(x) = 1
nhn

∑n
t=1Mk

(
Xt−x
hn

)
Yt and E [ĝk(x)|Xt] = 1

nhn

∑n
t=1Mk

(
Xt−x
hn

)
m(Xt). We

have ĝk(x)−E[ĝk(x)|Xt] = 1
nhn

∑n
t=1Mk

(
Xt−x
hn

)
[Yt−m(Xt)]. Let Ztn = 1

nhn
Mk

(
Xt−x
hn

)
[Yt−m(Xt)] with

32



E[Ztn] = 0 where m(Xt) = E[Yt|Xt].

V ar(Ztn) = E[Z2
tn] = E

[{
1

nhn
Mk

(
Xt − x
hn

)
(Yt −m(Xt))

}2
]

=
σ2

n2h2n
E

[
M2
k

(
Xt − x
hn

)]
=

σ2

n2h2n

∫
M2
k

(
y − x
hn

)
f(y)dy

Let S2
n =

∑n
t=1E[Z2

tn] and Xtn = Ztn
Sn

=
1

nhn
Mk(Xt−xhn

)[Yt−m(Xt)][
σ2

nh2n

∫
M2
k(Xt−xhn

)f(Xt)dXt
]1/2 . Then

S2
n =

σ2

n2h2n

n∑
t=1

∫
M2
k

(
y − x
hn

)
f(y)dy =

σ2

nh2n

∫
M2
k

(
y − x
hn

)
f(y)dy.

By Liapounov’s CLT
∑n
t=1Xtn

d−→N (0, 1) provided that lim
n→∞

∑n
t=1E

[
|Xtn|2+δ

]
= 0 for some δ > 0. Note

that |Xtn| =
|Mk(Xt−xhn

)||Yt−m(Xt)|
(nhn)1/2(c(n))1/2

with c(n) = σ2

hn

∫
M2
k

(
y−x
hn

)
f(y)dy.

Therefore,

|Xtn|2+δ =

∣∣∣Mk

(
Xt−x
hn

)∣∣∣2+δ |Yt −m(Xt)|2+δ

(nhn)1+δ/2(c(n))1+δ/2
where c(n) is non stochastic.

E
[
|Xtn|2+δ

]
= (nhc(n))−1−δ/2E

[∣∣∣∣Mk

(
Xt − x
h

)∣∣∣∣2+δ |Yt −m(Xt)|2+δ
]

and

n∑
t=1

E
[
|Xtn|2+δ

]
= (nhnc(n))−1−δ/2

n∑
t=1

E

[∣∣∣∣Mk

(
Xt − x
hn

)∣∣∣∣2+δ |Yt −m(Xt)|2+δ
]
.

Now given that E
[
|Yt −m(Xt)|2+δ|Xt

]
<∞, for some C <∞,

E

[∣∣∣∣Mk

(
Xt − x
hn

)∣∣∣∣2+δ |Yt −m(Xt)|2+δ
]

= E

[∣∣∣∣Mk

(
Xt − x
hn

)∣∣∣∣2+δ E (|Yt −m(Xt)|2+δ|Xt

)]

≤ CE

[∣∣∣∣Mk

(
Xt − x
hn

)∣∣∣∣2+δ
]

= C

∫ ∣∣∣∣Mk

(
y − x
hn

)∣∣∣∣2+δ f(y)dy.

Consequently,

n∑
t=1

E
[
|Xtn|2+δ

]
≤ (nhn c(n))−1−δ/2n C

∫ ∣∣∣∣Mk

(
y − x
hn

)∣∣∣∣2+δ f(y)dy

= (nhn)−δ/2(c(n))−1−δ/2C

∫
|Mk(ψ)|2+δf(x+ hnψ)dψ.
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According to assumptions that supx∈R |K(x)| <∞,
∫
|K(x)|dx <∞ and f ∈ Br∞,q, we have∫

|Mk(ψ)|2+δf(x+ hnψ)dψ =

∫ ∣∣∣∣− 1

ck,0

k∑
|s|=1

ck,s
|s|

K

(
ψ

s

) ∣∣∣∣2+δf(x+ hnψ)dψ

≤ C21+δ
∫ k∑
|s|=1

∣∣∣∣ck,s|s| K
(
ψ

s

) ∣∣∣∣2+δ|f(x+ hnψ)|dψ by Cr inequality

= C21+δ
k∑
|s|=1

∣∣∣∣ck,s|s|
∣∣∣∣2+δ ∫ ∣∣∣∣K (ψs

)∣∣∣∣2+δ |f(x+ hnψ)|dψ ≤ C21+δ
k∑
|s|=1

|ck,s|2+δ sup
x∈R
|f(x)|

∫
|K(t)|2+δdt <∞

since f ∈ C0(R) (Assumption 2(2)) and Assumption 4(3)-(4).

Thus, lim
n→∞

∑n
t=1E

[
|Xtn|2+δ

]
= 0. Then,

∑n
t=1Xtn

d−→N (0, 1) which implies∑n
t=1

1
nhn

Mk(Xt−xhn
)[Yt−m(Xt)][

σ2

nh2n

∫
M2
k(Xt−xhn

)f(Xt)dXt
]1/2 d−→N (0, 1). Thus,

√
nhn [ĝk(x)− E (ĝk(x)|Xt)]

d−→N
(
0, σ2f(x)

∫
M2
k (ψ)dψ

)
.

Theorem 8

Proof. For x ∈ R, we have

E[m̂k(x)]−m(x) = E[m̂k(x)−m(x)] = E

[
ĝk(x)

f̂k(x)
− g(x)

f(x)

]
=

1

f(x)
E

[
ĝk(x)

1 + 1
f(x)Op

(
hrn + (nhn)−1/2

)]− g(x)

f(x)

since E[|f̂k(x)− f(x)|2] = O(h2rn + (nhn)−1) which implies |f̂k(x)− f(x)| = Op(h
r
n + (nhn)−1/2).

=
1

f(x)
E

[
ĝk(x)

(
1 +

1

f(x)
Op

(
hrn + (nhn)−1/2

))]
− g(x)

f(x)
(35)

=
1

f(x)
E[ĝk(x)− g(x)] +

1

f(x)2
E[ĝk(x)Op(h

r + (nh)−1/2)]

since E[|f̂k(x)− f(x)|] ≤
(
E[|f̂k(x)− f(x)|2]

)1/2
= O(hr + (nhn)−1/2).

≤ O(hrn) +
1

f(x)2
(E[ĝk(x)2])1/2

(
E[|f̂k(x)− f(x)|2]

)1/2
(36)

= O(hrn) +O(hrn + (nhn)−1/2) since Bias(ĝk(x)) = O(hrn) and E[ĝk(x)2] <∞.

= O(hrn)

For the equation(35), we use the fact that sum of the infinite series 1
1+a = 1 + (−a) + (−a)2 + · · · such that

1
1+ 1

f(x)
Op(hrn+(nhn)−1/2)

= 1− 1
f(x)Op(h

r + (nhn)−1/2) +
(

1
f(x)Op(h

r + (nhn)−1/2)
)2

+ · · · . For the equation

(36), we use the inequality as follows, for 1 ≤ p ≤ q ≤ ∞, (E|X|p)1/p ≤ (E|X|q)1/q where X is a random

variable.
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Theorem 9

Proof. For x ∈ R and k = 1, 2, · · · , we have

E[m̂k(x)]− m̂k(x) = E

[
ĝk(x)

f̂k(x)

]
− ĝk(x)

f̂k(x)
= E

[
ĝk(x)

f(x) +Op(hrn + (nhn)−1/2)

]
− ĝk(x)

f(x) +Op(hrn + (nhn)−1/2)

=
1

f(x)
E

[
ĝk(x)

(
1 +

1

f(x)
Op(h

r
n + (nhn)−1/2)

)]
− 1

f(x)
ĝk(x)

(
1 +

1

f(x)
Op(h

r
n + (nhn)−1/2)

)
=

1

f(x)

(
E[ĝk(x)]− ĝk(x)

)
− 1

f(x)2

(
E
[
ĝk(x)Op(h

r
n + (nhn)−1/2)

]
− ĝk(x)Op(h

r
n + (nhn)−1/2)

)
=

1

f(x)

(
E[ĝk(x)]− ĝk(x)

)
+ o(1) since hn → 0 and nhn →∞ as n→∞.

since E
[
|ĝk(x)Op(h

r
n + (nhn)−1/2)|

]
≤ E

[
|ĝk(x)||f̂k(x)− f(x)|

]
≤ (E[|ĝk(x)|2])1/2(E[|f̂k(x)− f(x)|]2)1/2 =

o(1) since (E[|f̂k(x)] − f(x)|2)1/2 = O(hrn + (nhn)−1/2). From equation (15) supx∈G |E[ĝk(x)] − ĝk(x)| =

Op

((
logn
nhn

)1/2)
, we conclude as follows,

sup
x∈G
|E[m̂k(x)]− m̂k(x)| = Op

((
log n

nhn

)1/2
)

where k = 1, 2, · · · .

Hence, supx∈G |m̂k(x)−m(x)| ≤ supx∈G |m̂k(x)− E[m̂k(x)]|+ supx∈G |E[m̂k(x)]−m(x)|.

From Theorem 8, we have supx∈G |m̂k(x)−m(x)| = Op

(
hrn +

(
logn
nhn

)1/2)
.

Theorem 10

Proof. Note that m̂k(x)−E[m̂k(x)|Xt] = ĝk(x)−E[ĝk(x)|Xt]
f̂k(x)

. From Theorem 2, we know that f̂k(x)− f(x) =

op(1) for all x ∈ R. Consequently, we have the following result.

√
nh

(
ĝk(x)− E[ĝk(x)|Xt]

)
/f̂k(x)

d−→N
(

0, σ2f(x)−1
∫
M2
k (ψ)dψ

)
(37)

√
nhn (m̂k(x)−m(x)) =

√
nhn (m̂k(x)− E[m̂k(x)|Xt]) +

√
nhn [E(m̂k(x)|Xt)−m(x)]

From (37), we know
√
nhn (m̂k(x)− E[m̂k(x)|Xt])

d−→N
(

0, σ2 1
f(x)

∫
M2
k (ψ)dψ

)
. Thus, we need to consider
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√
nhn [E(m̂k(x)|Xt)−m(x)]. Note that

E[m̂k(x)|Xt]−m(x) =

1
nhn

∑n
t=1Mk

(
Xt−x
hn

)
m(Xt)

1
nhn

∑n
t=1Mk

(
Xt−x
hn

) −m(x)

=
1

f̂k(x)

[
1

nhn

n∑
t=1

Mk

(
Xt − x
hn

)(
m(Xt)−m(x)

)]

E

[
1

nhn

n∑
t=1

Mk

(
Xt − x
hn

)(
m(Xt)−m(x)

)]

=

∫
1

nhn

n∑
t=1

− 1

ck,0

k∑
|s|=1

ck,s
|s|

K

(
y − x
shn

)(m(y)−m(x)
)
f(y)dy

=

∫ − 1

ck,0

k∑
|s|=1

ck,sK(ψ)

 [m(x+ shnψ)−m(x)]f(x+ shnψ)dψ

=

∫ − 1

ck,0

k∑
|s|=1

ck,sK(ψ)

m(x+ shnψ)f(x+ shnψ)dψ

−
∫ − 1

ck,0

k∑
|s|=1

ck,sK(ψ)

m(x)[f(x+ shnψ)− f(x)]dψ −
∫ − 1

ck,0

k∑
|s|=1

ck,sK(ψ)

m(x)f(x)dψ

=

∫ − 1

ck,0

k∑
|s|=1

ck,sK(ψ)

 [m(x+ shnψ)f(x+ shnψ)−m(x)f(x)]dψ

−
∫ − 1

ck,0

k∑
|s|=1

ck,sK(ψ)

m(x)[f(x+ shnψ)− f(x)]dψ

= − 1

ck,0

∫ K(ψ)

k∑
|s|=0

ck,sm(x+ shnψ)f(x+ shnψ)dψ −
∫
K(ψ)

k∑
|s|=0

ck,sm(x)f(x+ shnψ)dψ


= − 1

ck,0

[∫
K(ψ)[∆2k

hnψm(x)f(x)]dψ −m(x)

∫
K(ψ)[∆2k

hnψf(x)]dψ

]
= O(hrn)

Therefore E
[

1
nhn

∑n
t=1Mk

(
Xt−x
hn

)(
m(Xt)−m(x)

)]
= O(hrn) since f̂(x) = f(x) + Op(h

r
n + (nhn)−1/2)

and E(E[m̂k(x)|Xt]−m(x)) = E(m̂k(x))−m(x), we have Bias(m̂k(x)) = O(hrn). Hence

1

nhn

n∑
t=1

Mk

(
Xt − x
hn

)(
m(Xt)−m(x)

)
= Op(h

r
n)

Note that E[m̂k(x)|Xt]−m(x) = 1
f(x)Op(h

r
n).
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Consequently,

√
nhn(m̂k(x)−m(x)) =

√
nhn (m̂k(x)− E[m̂k(x)|Xt]) +

√
nhn (E[m̂k(x)|Xt]−m(x))

=
√
nhn (m̂k(x)− E[m̂k(x)|Xt]) +

√
nhn Op(h

r
n) =

√
nhn (m̂k(x)− E[m̂k(x)|Xt] +Op(h

r))

d−→N
(

0, σ2f(x)−1
∫
M2
k (ψ)dψ

)

If nh1+2r
n → 0 as n→∞, we have

√
nhn(m̂k(x)−m(x))

d−→N
(
0, σ2f(x)−1

∫
M2
k (ψ)dψ

)
.

Appendix 2 - Tables and figures

Table 1

Local constant estimators with cross validation bandwidth hCV ; Trimmed average absolute Bias (B);

Trimmed average Variance (V ); Trimmed average Root Mean Squared Error (R).

m1(x) m2(x)
n = 400 B V R B V R
m̂NW 0.0517 0.0470 0.2320 0.0384 0.1500 0.3909
m̂2 0.0395 0.0430 0.2164 0.0151 0.1622 0.4032
m̂3 0.0355 0.0453 0.2194 0.0123 0.1675 0.4095
m̂4 0.0334 0.0473 0.2227 0.0114 0.1703 0.4128

m3(x) m4(x)
n = 400 B V R B V R
m̂NW 0.0369 0.0078 0.0993 0.0171 0.0032 0.0618
m̂2 0.0268 0.0076 0.0960 0.0120 0.0034 0.0619
m̂3 0.0232 0.0077 0.0960 0.0110 0.0035 0.0624
m̂4 0.0213 0.0077 0.0963 0.0108 0.0035 0.0627

m1(x) m2(x)
n = 1000 B V R B V R
m̂NW 0.0360 0.0203 0.1534 0.0183 0.0761 0.2775
m̂2 0.0270 0.0172 0.1373 0.0076 0.0787 0.2807
m̂3 0.0225 0.0183 0.1392 0.0070 0.0795 0.2821
m̂4 0.0207 0.0188 0.1402 0.0071 0.0797 0.2825

m3(x) m4(x)
n = 1000 B V R B V R
m̂NW 0.0251 0.0036 0.0681 0.0127 0.0014 0.0426
m̂2 0.0168 0.0034 0.0646 0.0087 0.0015 0.0421
m̂3 0.0139 0.0033 0.0642 0.0082 0.0015 0.0422
m̂4 0.0124 0.0033 0.0643 0.0083 0.0015 0.0424
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Figure 1: These figures are box plots of trimmed RMSE from estimators m̂NW , m̂2, m̂3 and m̂4 and four
DGPs. DGP1, DGP2, DGP3 and DGP4 indicate m1(x), m2(x), m3(x) and m4(x) respectively. We consider
the sample size n = 400 and n = 1000
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Figure 2: These figures represent four data generating processes with four local constant regression estima-
tors. 5 is a true line, the blue line is NW regression estimator, the red line is a local constant estimator
based on M2 kernel. The yellow line indicates a local constant estimator baed on M3 kernel. The green line
represents a local constant estimator based on M4. + is an observed data points.
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