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Generalizing or making claims that extend beyond particular situations is a central mathematical prac-
tice and a focus of classroom mathematics instruction. This study examines how aspects of generality
are produced through the situated activities of a group of middle school mathematics students working
on an 8-week population-modeling project. The project involved creating and analyzing mathematical
models of population growth. Two classroom episodes are presented that focus on students’ activities
across curricular tasks in which they discuss the category of sensible models of population growth and
describe a pattern of guppy population growth in a natural environment. Participation frameworks in-
troduced in the context of the episodes describe how students compare situations to determine if they
belong to the same general category and predict and justify the behavior of modeled phenomena. The
analysis suggests that mathematical generalizing is the outcome of processes distributed across stu-
dents, tasks, embodied activity, and modeling tools.

“They’re always growing at the fifty-seven percent birth rate but since there’s more guppies it’s always
like—it’s always like changing the population … it’s gonna be a larger amount of guppies born every,
every season.”

—Max, an eighth grade mathematics student, explaining why
a linear model is not a sensible model of population growth

In the above statement, Max describes why the number of guppies born “every” season would “al-
ways” increase as the size of the population increases. In essence, he is describing a general pattern
of exponential growth. Focusing on the generalization that was made in this particular moment is to
only look at a final product; it does not help us understand the process through which general
claims such as this one are made. The aim of this article is to examine how aspects of generality are
produced through the talk and activities of one group of eighth grade mathematics students as they
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worked on an extended population-modeling unit called Guppies (Middle School Mathematics
Through Applications Project, 1997).

Being able to see and describe general patterns is a central mathematical practice and it is
widely agreed that students should learn to generalize from pre-K to the 12th grade (National
Council of Teachers of Mathematics, 2000). Seeing mathematical patterns is not, however, a
transparent activity; it requires figuring out what is important to pay attention to and what to ig-
nore in and across situations and how to use mathematical forms, such as graphs, to identify rele-
vant mathematical phenomena (Goodwin, 1994; Latour, 1987; Verran, 2001). Because
generalizing is a central mathematical practice, documenting how students learn to describe how
something always behaves will help us understand how students enter into the specialized disci-
plinary discourse of mathematics.

The article begins with a description of the conceptual framework that informs this study. This
is followed by an overview of cognitive approaches to studying generalizing and a more detailed
discussion of the situated approach used in this analysis. A description of the classroom setting,
study participants, and the curriculum unit will then be presented. In this section, readers will be
introduced to the focal students through an analysis of their typical ways of interacting with one
another and engaging with curricular activities. The discourse analytic methods used to identify
how the students participated in processes of generalizing are then explained and illustrated.

The focus of the article is an analysis of two episodes from the beginning and end of the 8-week
Guppies unit. The episodes show how the students participated in generalizing and developed
general understandings of the behavior of populations. Two participation frameworks are pre-
sented in the context of the episodes that detail how the students link situations together so they
can compare them and conjecture about the future and past behaviors of real-world phenomena.
The article concludes with suggestions for supporting mathematical generalizing in classrooms
and further questions for studying generalizing.

CONCEPTUAL FRAMEWORK

A situated approach to learning is based on the assumption that people learn through gradual partic-
ipation in the socially and culturally organized practices of a community (Lave & Wenger, 1991).
Rather than viewing mathematical patterns as directly perceptible, a situated perspective recog-
nizes that mathematical ways of seeing and knowing are socially, culturally, and historically con-
structed (Lave, 1988; for a philosophical treatment of the problem of induction and the develop-
ment of generalizations see Quine, 1995). As such, a situated approach is useful for understanding
the processes of learning mathematics in classrooms particularly in illuminating how students and
teachers develop shared ways of talking, acting, and using tools to engage in mathematical activi-
ties (Greeno & The Middle School Mathematics Through Applications Project Group, 1998). This
perspective draws attention to how classroom conversations and activities are organized so that
students have opportunities to engage in mathematics in the classroom.

Examining the participation frameworks or sets of participant roles that open up when an utter-
ance is spoken enable an analysis of how students gain access to mathematical discourse and prac-
tices (Goffman, 1981; Goodwin & Heritage, 1990; O’Connor & Michaels, 1996). These roles
shape how students are able to engage with the topics being discussed, participate in classroom in-
structional activities, and thereby learn. In addition to the importance of talk, research on mathe-
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matical activities in and out of school has drawn attention to how the organization of the tasks in
which one uses mathematics, the physical materials available in the setting, and the coordination
of talk with gesture shape participation in mathematical activities (Hall & Rubin, 1998; Lave,
1988; Saxe, 1991; Scribner, 1986; Sfard & Kieran, 2001). In this study, the analysis of participa-
tion frameworks focuses on how students use talk, embodied activity such as gesturing, and in-
scriptions including graphs and diagrams to engage in mathematical generalizing.

COGNITIVE AND SITUATED APPROACHES TO STUDYING
MATHEMATICAL GENERALIZING

The power of mathematics derives from its abstraction and generality. Cognitive psychologists
view generality as the development of decontextualized knowledge that can be applied in any situ-
ation (Anderson, Reder, & Simon, 1997). Learning, they argue, is not tied to specific contexts but
depends on developing mental representations that correspond to an external reality. Generaliza-
tions are the product of accurate mental representations and from this perspective generalizing is
an individual cognitive activity performed to recognize and acquire objective categories. In assum-
ing that objective categories exist outside of the activities of people, traditional cognitive theories
do not account for the intentional and generative processes through which people make their own
categories and representations to make sense of the world. Furthermore, from this perspective, if a
mathematics curriculum is well designed, students should be able to acquire the information it
presents (e.g., mathematical patterns) without any difficulty. If the information is not acquired ade-
quately, the only explanation provided by a traditional cognitive approach is that either the students
or the teacher are not functioning as they should.

Building on Piaget’s approach to intellectual development, Dienes outlined a theory of mathe-
matics learning through which one begins with concrete, hands-on materials (e.g., Dienes’
Blocks) and then abstracts structural features of situations (Dienes, 1960). Under this view, ab-
straction requires a move away from concrete situations, which leads to the recognition of general
patterns. Dienes’ analysis emphasizes the importance of reflecting on situations; however, it
downplays the roles of cultural artifacts and settings in shaping the processes through which peo-
ple identify and develop generalizations (Seeger, 1998).

From a situated or practice-based perspective, abstracting is conceptualized not as “moving
away from” situations, but as a product of local practices. Such a view attends to how social inter-
actions, tools, personal history, and the environment shape the creation and recognition of similar-
ity across situations (Dreyfus, Hershkowitz, & Schwarz, 2001; Greeno, 1997; Noss & Hoyles,
1996). Generalizing or making claims that can be applied to a variety of objects or situations is
likewise understood as a social practice rooted in people’s activities and discourse (Davydov,
1990; Latour, 1987; Lerman, 2000).

Studies of classroom mathematical discourse have emphasized the importance of whole-class
and public discussions in helping students to make claims that span multiple cases. Discursive
strategies used by teachers to support students’ efforts to generalize include the establishment of
norms of classroom interaction that encourage students to explain and justify their mathematical
claims, revoicing student contributions to draw out similarities across findings, and collective re-
flection on the activities of multiple students to generalize across specific cases (Cobb, Boufi,
McKlain, & Whitenack, 1997; Lehrer, Strom, & Confrey, 2003; O’Connor & Michaels, 1996).
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Hall and Rubin (1998) described how students’ mathematical accounts became more general or
broadly applicable as they moved from local to more public classroom settings. Their analysis
draws attention to the changing interactional demands of classroom settings and the need to con-
sider the purposes for which an account is given, to whom it is directed, and the kinds of represen-
tational resources that are available and acceptable for use in a particular setting.

Studies of technoscientific practice have also had a significant influence on analyses of mathe-
matical generalizing in classrooms. In particular, Latour’s (1987) analysis of the construction of
general claims in professional scientific practice emphasizes that generalizations are not objec-
tive, but are shaped by who states them, how they are connected to other claims, and the use of in-
scriptions to make claims that span multiple cases. Inscriptions such as graphs and diagrams can
be used to foreground and background aspects of situations, which can be manipulated, recom-
bined, and used to assert a particular view of the world and persuade others to take on this view
(Greeno & Hall, 1997; Latour, 1990; Roth & McGinn, 1998). For example, a table of guppy popu-
lation growth can emphasize relationships between time, births, and deaths, which are not directly
accessible to a person looking at live guppies in a pond (see Figure 1).

Inscriptions such as this can support generalizing because they allow one to represent and draw
together information about situations that extend across time and space (Latour, 1990). Using this
table, for example, one could generalize about the growth of a guppy population over 3 years. Fur-
thermore, through the development and enactment of mathematical narratives or stories about the
behavior of mathematical phenomena and situations, it is possible to imagine, explore, and share
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analyses of past and future situations (John, Luporini, & Lyon, 1997; Nemirovsky, 1996; Ochs,
Jacoby, & Gonzalez, 1994). Shifting across time and space to describe how something typically
behaves is, as will be shown in this analysis, an important resource for generalizing.

SETTING AND PARTICIPANTS

The data presented in this article were collected as part of a larger ethnographic research project
that compared the development and organization of mathematical practices across school and
work settings in which design was a leading activity (Hall, 1999). This study focuses on a group of
four students working on a population-modeling project in an 8th-grade mathematics classroom in
Northern California. The school served a socioeconomically and ethnically diverse student popu-
lation. Thirty-eight percent of the students at the school received free or reduced-priced lunches.

As part of her participation in the research project, the classroom teacher Ms. Alessi1 taught two
extended design units during the 1996–1997 school year. The first focused on architectural design
and the second, discussed in this analysis, focused on population modeling. Prior to and throughout
the school year, Ms. Alessi participated in after-class debriefing sessions and weekly research pro-
ject meetings in which members of the research team discussed curricular activities and assess-
ments, redesigned activities, and reviewed and discussed videotaped classroom interactions.

The focal studentgroupwasselectedbecause theywere filmedduring the first designunit andwe
wanted to document their activities over the course of the two units.2 They were initially selected be-
cause the teacher thought they would be most likely to participate in the activities of the project. This
approach allowed us to study what engagement in these project-based curriculum units might look
like. The members of the group included four boys: Gento, Patrick, Andre, and Max. Gento, Patrick,
andAndre3 weregroupmatesduring the firstunit.Max,amemberofanother focalgroupfilmeddur-
ing the first unit, joined this group for the second unit. Based on classroom observations and a con-
tent-level analysis of all groups’ participation in a design review in which students presented their
guppy population models and tank designs to visiting biologists, this group was found to be repre-
sentative of the class in terms of the culminating products they created as part of the unit. Spe-
cifically, the focal group’s guppy population model and tank design were comparable to those of
other groups in terms of their attention to the task constraints, level of detail in the population model,
and level of sophistication in discussing their models with visiting biologists.

GUPPIES UNIT

The Guppies unit is organized around simulated real-world problems that provide opportunities for
students to engage in standards-based math topics (National Council of Teachers of Mathematics,
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mentation of the focal group’s activities as well as other students’ activities, which were used to make broad comparisons.
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The fourth member of the group transferred schools before the beginning of the second curriculum unit.



2000). The premise of the unit is that students have been hired as biological consultants who need
to provide advice about how to maintain a population of guppies that have been rescued from a pol-
luted stream in Venezuela. The students-as-consultants are asked to model the life cycle of the pop-
ulation for 2 years and design a tank that can house the predicted number of guppies. By providing a
meaningful context in which students use mathematical concepts and methods to create and ana-
lyze models of guppy population growth, Guppies can become an effective environment for learn-
ing about linear and exponential models, birth rates and death rates, and functional relationships
between multiple variables.

There were four phases of the project as enacted in Ms. Alessi’s classroom. First, students con-
ducted research on guppies and populations, which informed their construction of population
models using modeling software called Habitech©. The second phase involved the analysis and
comparison of different models of guppy population growth. The third phase required designing a
tank with enough top surface area and volume to house the guppies in a healthy environment. Dur-
ing this phase, the students presented their models to visiting biologists who reviewed and
critiqued their models. The final phase of the project involved working on a design challenge cre-
ated by the research team in which students modeled how a guppy population would grow in a
polluted pond environment (the pollution scenario).

The Focal Students: Managing Relationships and Participation in
Mathematical Activities

The relationships between the members of the student group shaped the trajectories of the
mathematical activities and thereby the contexts in which generalizing was embedded. How the
focal students typically participated in their group was revealed through ethnographic analysis
of the focal students’ interactions with one another during the two curriculum units used in Ms.
Alessi’s classroom (see John, 2001 for an analysis of the students’ activities during both curric-
ulum units).

During the first unit, Patrick and Gento established themselves as leaders of the group’s mathe-
matical activities. A number of factors contributed to and supported their leadership positions in-
cluding that, according to their performances on classroom assignments, they were the strongest
academically in the group. Additionally, Gento was quite capable of and interested in mathemati-
cal problem solving and was more comfortable and familiar with using computers than his group
mates. However, he did not turn in his work as often as the teacher required. On the other hand,
Patrick was very aware of and oriented toward the official demands of the classroom such as due
dates and the requirements of an assignment. His attention to task requirements allowed him to as-
sert authority in the group regarding what needed to be done and when (Gento referred to him
fondly as “supervisor”). Gento’s and Patrick’s approaches to schoolwork complemented each
other and they developed a reliance on one another.

The actions of the other members of the group, one who was minimally interested in academic
activities and the other (Andre) who struggled more with the mathematical aspects of the tasks,
ratified Patrick’s and Gento’s leadership positions in the group. Furthermore, Andre’s absences
(during the first and second curriculum units) on days when the group made decisions that af-
fected the subsequent design of their models and presentations to the class about their analyses
served to fix his peripheral position in the group.
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Max’s arrival during the Guppies unit shifted the dynamics of the group. Max was a close
friend of Patrick’s and they often talked about mutual friends and weekend plans while working.
Gento and Patrick to some extent viewed Max as not very serious about schoolwork because he
would often make jokes and as Gento described, “goof off” (Fieldnotes 5/13/97). In regard to the
official work of the group, Max struggled to take part in what had previously been the exclusive
territory of Gento and Patrick. In the following excerpt, Max complains because Patrick has de-
cided that he and Gento should represent the group in a presentation to the class.4

5/15/97

1 Patrick: Who’s gonna go up there (to present at the front of the room)?
2 Andre: I don’t know.
3 Patrick: I’ll go. Me and Gento.
4 Andre: Okay.
5 Gento: Yup.

While Andre readily agrees to this division of labor, Max questions why he is being excluded.

1 Max: Are you saying I wouldn’t go up?
2 Patrick: No, if you want to go, okay, so?
3 Max: …That’s what I’m saying. I understand it. I know that material.

While Patrick and Gento would not consult Max regarding mathematical activities, Patrick and
Max would not include Gento in conversations about more unofficial topics (e.g., about friends).
These tensions shaped how the group made decisions regarding whose contributions the group
would consider seriously, what problems were worth pursuing, and when an answer was good
enough. These issues were significant because they affected both when and how mathematics-rele-
vant moments emerged out of the group’s activities (McDermott & Webber, 1998).

STUDYING GENERALIZING IN CLASSROOM INTERACTION

Analytic Methods

This study used methods from discourse analysis to study both verbal and nonverbal forms of inter-
action (Erickson, 1992; Goodwin & Heritage, 1990). Attention was paid to the participation frame-
works that emerged as the classroom participants attempted to generalize about real and/or hypo-
thetical events. The stances or “footings” participants took toward an utterance or other action
provided a way to study how they oriented to and evaluated a situation (Goffman, 1981). Evidence
of footing included the content of what was said, the relation of what was said to the larger context
of talk, and the participants’ tone of voice and body language. Documenting how classroom partic-
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ipants used and coordinated talk, gesture, and inscriptions to assume or position others to take on a
particular point of view was valuable for understanding the development of general perspectives
(Hall & Rubin, 1998; Latour, 1987).

Conversation analysis was an important lens for understanding how classroom participants
used talk as a resource for generalizing (Sacks, Schegloff, & Jefferson, 1974). A conversation
consists of a sequence of turns and conversation analysis focuses on the level of turn-taking orga-
nization in an interaction. A central concept in this tradition is the “adjacency pair,” which refers
to the fact that when a participant in an interaction makes an utterance, this utterance affects the
subsequent utterance in that it raises expectations regarding its content. For example, in a ques-
tion–answer sequence, after one person asks a question, the subsequent utterance will most likely
be an answer or be heard as an answer to the question. Schegloff (1976) described the second ut-
terance as being “conditionally relevant.” Because utterances set up expectations about what will
likely follow, it was possible to examine the order of conversational sequences and draw conclu-
sions based on those occasions when expectations were not met.

Developing Analytic Categories

The following is a description of the process of developing the category of “linking,” one of the
ways in which classroom participants used talk and interaction to generalize. For the sake of clar-
ity, the iterative process used to develop analytic categories will be described in a more linear fash-
ion. Analysis began with the creation of content logs of classroom videotapes documenting the ac-
tivities of the focal student group during the Guppies unit. Content logs included descriptions of
what happened in the classroom and short analytic notes discussing and comparing events at a
more theoretical level (Strauss, 1987; Jordan & Henderson, 1995). Transcripts, which included
reference to linguistic and paralinguistic features of speech such as intonation and activities with
material objects, facilitated this analysis and provided a way to examine the processes of generaliz-
ing in detail.

After identifying and examining all instances in which students either attempted to generalize
or did generalize, preliminary codes were developed to describe classroom participants’ activi-
ties. On a number of occasions, the teacher and students compared one kind of thing to something
else to generalize about their behavior or characteristics. Consider the following example:

06/03/97

Max: It’s (a pattern of population growth) like a
person’s body weight. When you get to a
certain weight (Patrick throws his head
back with laughter), your weight (1) fluc-
tuates, but it stays around the same area,
going down (2) and up,
(3) down and up…

In this excerpt, Max compares another student’s description of how a population might behave
when it reaches the carrying capacity (or upper limit) of its environment to fluctuations in body
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weight, something with which he is more familiar. Moving his arms in coordination with his de-
scription of the sizes of the fluctuations, he suggests the similarity to members of his group to better
understand the phenomenon they have just discovered.

This phenomenon was preliminarily coded as “linking” because it involved making links or con-
nections between two or more situations, which seemed to support making general claims. In this
case, Max drew a comparison to what he thought was a similar situation to help his group mates pre-
dict how a population would behave as it reached the carrying capacity of its environment.

This working code was then used to identify more episodes in which the students and teacher
would be likely to discuss or show how one thing was like another. In the language of grounded
theory, this process of locating instances is called theoretical sampling (Glaser & Strauss, 1967).
Using the intended curriculum as a guide, curricular activities were identified that encouraged stu-
dents to make connections between curricular activities. Throughout this process, analytic memos
were written to describe the interactional roles and conditions under which classroom participants
engaged in an activity. For the purpose of investigating the development of generalizations it was
necessary to consider the interactions that preceded and followed a linking episode. How was the
comparison initiated and elaborated? How did the person(s) to whom the comparison was pro-
posed respond? What happened when participants agreed or disagreed about a proposed similar-
ity? Access to the longitudinal record of the students’ activities was important in this regard.

After identifying possible cases of linking, their sequential organization was described using
transcripts that visually represented the patterned ways in which participants used and coordi-
nated talk, gesture, and material resources (Goodwin & Heritage, 1990). Comparison of multiple
episodes of linking led to a description of the typical organization of a linking sequence, its com-
mon variations, and the exclusion of certain cases. Following this same general method, the activ-
ity of conjecturing and its relation to mathematical generalizing was identified and described.

GENERALIZING IN INTERACTION

In this section, two episodes from the Guppies unit are presented that describe how the focal stu-
dents engaged in linking and conjecturing to develop general understandings of guppy population
growth over the course of the unit. In the first, from the middle of the unit, the students engage in
linking as they discuss what it means for a model to be a “sensible” model of guppy population
growth. In the second episode, from the end of the unit, the students use their understandings of
sensible or realistic models of growth to conjecture about what would happen to a guppy popula-
tion when it reaches the carrying capacity of its environment.

Episode 1. “What Does Sensible Mean?”: Linking to Describe
General Patterns

Linking is the process of creating and applying classification systems. It is important for generaliz-
ing because it involves determining whether two or more situations are the same and, if so, whether
they can be treated in the same way. The question addressed in a linking sequence is, “Is this one of
those?” Linking consists of three steps through which participants (a) compare two or more situa-
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tions, (b) orient one another to relevant similarities and differences between the situations, and (c)
evaluate the comparison.

This episode takes place in the middle of the Guppies unit. The students have researched guppy
population growth, created their own guppy population model on the computer, and constructed
graphs of how the population will grow over 2 years.

The students are working on an assignment that asks them to analyze different models of guppy
population growth using both tables and graphs. On the assignment sheet is a table of data repre-
senting a linear model of population growth in which the population grows the same amount every
year (see Figure 1). Students are asked to complete the table by continuing the pattern and then to
create a graph of the data. The focus of the group’s conversation is a question on the assignment
sheet that asks whether or not the linear model in which the guppy population grows the same
amount every season is “sensible.”

Comparing

Linking begins with a comparison. After completing the table and graphing the data, Patrick turns
to Gento who has already finished the first part of the assignment and asks:

05/09/97

1 Patrick: What does sensible mean? I don’t get this. I don’t get “b” (the second part of the
question)

2 Gento: Sensible, it’s like, does it make sense heh.
3 Patrick: Yes.
4 Gento: It DOES make sense?
5 Patrick: Yes.
6 Gento: What did our guppies graph look like?

In this excerpt, Gento sets up a comparison between the linear model and a known sensible model
of population growth, the exponential model of guppy population that the group has created.

Orienting

The second step of a linking sequence involves orienting to similarities and/or differences between
situations. In the following orienting sequence, Gento uses talk and gesture to show Patrick how
the two graphs differ. He leans over Patrick’s assignment sheet and says:

7 Gento: It didn’t look like a straight line.
It went up like that (1) because
there’s more guppies and more
repro—repro—reproduction.

Gento traces a curved line representing the growth of the group’s guppy model, a model where
the population grows exponentially, over the straight line of Patrick’s linear graph (see Figure 2).
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By drawing on their shared history and using gesture to recollect the group’s graph in this ex-
change, Gento creates a situation in which he and Patrick can compare the two graphs.

Evaluating

The linking sequence concludes with a joint evaluation of the comparison between the two situa-
tions. Patrick decides, possibly because he doesn’t completely understand the distinction Gento is
making between the two models that the linear model is “different” from the group’s population
model and starts writing this on his assignment sheet. Max who has been privy to the exchange, but
who has not yet worked on this part of the assignment chimes in to support Patrick’s position and
the following conversation ensues:

12 Patrick: This is different.
13 Max: This is a different model. We’re working with a different model. We’re feeling

like working with a different model. It’s a different model.
14 Gento: Well it doesn’t MAKE SENSE.
15 Max: It’s a model and it’s different. Just let it go.
16 Gento: DOES IT MAKE SENSE OR NOT THOUGH?

The conversation about whether or not the model is “sensible” ends at this point. Patrick has found
an answer that he thinks is good enough even though Gento continues to insist that the models are
not just different but that the linear model does not make sense.
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Why Linking is Important for Mathematical Generalizing

In this example, the students were attempting to generalize about what constitutes the category
“sensible models of population growth.” The activity of linking is important for understanding
generalizing for two reasons. First, linking draws attention to the ambiguity involved in comparing
across situations and how participants negotiate this ambiguity to create shared or partially shared
understandings of situations. That the students do not come to a shared understanding of what con-
stitutes a “sensible” population model highlights the work that is involved in coming to see two sit-
uations as being the same or belonging to the same general category. Second, linking is important
because it describes what people do with each other, with inscriptions, and with their bodies to in-
vestigate and compare mathematical situations. In this regard, the assignment that the students
worked on provided an important support for the activity of linking. Comparing across different
ways of representing models of growth supported the students in identifying the relevant features
of sensible models of growth.

As shown in the quote that opened this article, Max was able to explain why the linear model is
not a sensible model of growth (“since there’s more guppies it’s always like—it’s always like
changing the population … it’s gonna be a larger amount of guppies born every, every season”).
He made this statement during a presentation to the class following the group’s work on the as-
signment. While tracing the development of his understanding is beyond the scope of this analy-
sis, Max’s generalization about how the guppy population would grow exponentially points to a
further dimension of the social organization of generalizing, attention to students’ purposes for
generalizing. Presenting and explaining an analysis to the class provided more of an impetus for
Max to develop his analysis of the linear model than did completing a worksheet. When he needed
to address the same question posed by the worksheet, he was oriented toward “getting an answer”
rather than discussing the problem in depth. This was revealed in his insistence that they “just let it
(the question and their answer) go.”

As described in the next section, the distinction between what is a “different” versus a “sensi-
ble” model of population growth shapes the students’ later work in the project and their develop-
ing understandings of how populations behave.

Episode 2. Dealing with “Overpopulation”: Conjecturing to Describe and
Explain General Patterns

Conjecturing is the process of describing and explaining the behavior of objects and situations.
Conjecturing is important for generalizing because it allows one to answer the question, “What
would happen if?” A conjecturing sequence consists of three main steps: (a) discussing a situation
that involves making a prediction, (b) describing a general pattern, and (c) explaining this pattern.

This episode takes place at the end of the Guppies unit. In it, the students are working on an as-
signment called the pollution scenario, which was an extension problem designed by the
Math-at-Work Project. The problem extends the fictive premise of Guppies and picks up after the
guppy population the students have been modeling throughout the unit is returned to their natural
habitat, a stream in Venezuela. Students are informed that the guppies have been thriving in the
stream for a year, but that an unspecified amount of pollutant has recently entered the stream.
They are now asked to predict the effects of the pollutant on the population over the next 3 years.
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This problem asks the students to transfer their understandings of guppy population growth and
population modeling to a new, but related, situation.

Students were given a diagram of a stream and a guppy pond (see Figure 3). The diagram is a
mathematized representation that depicts the pond as a “tank-like” geometric form with labeled
dimensions for its length, width, and height (Lynch, 1990). The diagram was designed to resemble
the tanks students constructed earlier in the unit to encourage them to refer to the procedure they
used to find the carrying capacity of their fish tanks to find the carrying capacity of the pond. In
addition to building on prior activities, the pollution scenario provided students with novel model-
ing opportunities such as describing the guppy life cycle in a natural environment and modeling
the effects of an external factor (i.e., pollution) over time.

The focal students began their work on the problem by determining the carrying capacity of the
guppy pond. Gento calculated the number of guppies that could live in the pond by referring to the
group’s research on guppies and the procedure they used earlier in the unit to design a guppy tank.
He determined how many guppies the pond can support (its carrying capacity) by calculating the
top surface area of the guppy pond (400cm × 500cm) and dividing it by the amount of top surface
area that a guppy requires to get enough oxygen to live (30cm). He found that the maximum num-
ber of guppies that could live healthily in the pond is 6,666 guppies.

Keeping this number in mind, Gento and Patrick led the group in building a step-wise popula-
tion model to investigate the effects of the pollutant on the guppy population. Specifically, they
built four population models with different birth and death rates for each year of the model and
connected the four models (“steps”) sequentially so the ending population value of one model
would be the starting value of the next model. After running through all the years of the model,
they found that the ending number of guppies would exceed the maximum capacity of the guppy
pond; the students refer to this as “overpopulation.”

Andre, Max, and Patrick each proposed ways of revising the model to Gento, who was in
charge of adjusting the parameters of the model on the computer. Andre suggested adding a preda-
tor to the model to reduce the number of guppies in the pond; Max proposed “killing” off the num-
ber of guppies that exceed the capacity of the pond because he knows there cannot be more than
6,666 guppies in the pond; and Patrick suggested altering the timing of the guppy death rates in the
model so more guppies will die over time. Gento follows Patrick’s proposal, but even with more
guppy deaths they find that the pond is still overpopulated.
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FIGURE 3 The diagram of the guppy pond given to students.



Gento suggests completely altering the group’s population model so that it includes immigra-
tion and emigration, two functions available in HabiTech© with which he has experimented ear-
lier in the unit. By setting appropriate values for the immigration and emigration functions, Gento
hopes to reduce the number of guppies so they can “fit” in the pond. This approach would require
creating a more complicated population model using functions on the computer that the group has
never used before. It would also require reinterpreting the stream diagram as an “open” biological
system in which guppies could travel in and out of the pond.

Patrick and Max argued against Gento’s proposal to revise the model because, as Patrick put it,
they should just “finish it and be done” and “get (their) credits” because this was the last assign-
ment of the semester (06/03/97). Furthermore, the group has spent 2 days working on the problem
and, as Max pointed out, they already have an answer, which is that the guppies will overpopulate
the pond.

At this point, the students have reached a stalemate and have decided to ask the teacher for
help. The following describes how the students and Ms. Alessi engage in conjecturing to imagine
what will happen to the guppies over 3 years.

Discussing a Future Situation

Ms. Alessi initiates a conjecturing sequence by posing a hypothetical question that asks the stu-
dents to consider what would happen to the guppy population at the critical moment in the students’
model when the guppy population approaches the carrying capacity of the pond.

06/03/97

1 Ms. Alessi: Okay, so my question is what would happen to the guppy population when it
reaches say six thousand, sixty-six hundred? What’s happening?

Describing a General Pattern

In response to her question, the students use talk and gesture to animate narratives about what will
happen when the guppy population reaches the carrying capacity of the pond. While earlier they
were focused on how to model the situation using the software, the teacher’s question opens up the
conversation, and the students then describe what might happen. Gento proposes that the popula-
tion will increase and decrease in a regular cycle and uses talk and gesture to animate what he thinks
will happen to the population.

4 Gento: It’s gonna—it’s gonna in-
crease uh (1) slowly and go
down (2) and go up
(3)

Drawing on a more familiar experience, Max asks whether he can “give ‘em the metaphor” and
then proposes that population growth is similar to fluctuations in body weight.
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(1) raises one hand above the other
(2) lowers top hand
(3) raises top hand



7 Max: It’s like a person’s body
weight. When you get to a cer-
tain weight, (Patrick throws
his head back with laughter)
your weight (1) fluctuates, but
it stays around the same area,
going down (2), and up
(3) down and up=

8 Patrick: (1) (quietly to Max) No::oo.
9 Gento: Okay.

10 Max: = so they’re not gonna—not
gonna keep growing and
growing and growing.

Max coordinates his talk and gestures to describe how once a person reaches a particular (fairly sta-
ble) weight, fluctuations are fairly small. He demonstrates this by using his arms to make smaller
and smaller repeated, swaying movements around a central position representing that “certain
weight” (actions 2 and 3). Max’s metaphor elaborates on Gento’s spare description of the growth
of the population as it reaches the carrying capacity of the pond. In addition to comparing the
growth of the guppy population to fluctuations in body weight, Max concludes that the guppy pop-
ulation will not “keep growing and growing and growing,” but like body weight, it will fluctuate
around a particular level. Notably, however, Patrick laughs dismissively at Max’s contribution
possibly because Max is not seen as mathematically competent in the group and/or because he ex-
presses his understanding in a way that is unusual in this classroom (i.e., drawing on experiences
from outside of the classroom).

Justifying

In his next turn, Gento explains why the population would follow this general pattern of growth,
specifically, why it would not exceed the carrying capacity of the pond. Making reference to the
group’s earlier research on the habitat requirements of guppies, Gento states and shows how the top
surface area of the pond would limit the number of guppies that could live in the pond. When the
pond becomes too full of guppies, he explains, they would not all be able to get oxygen at the top
surface area of the pond and so some would suffocate and die (see Figure 4):

13 Gento: It’ll go up and down (1) because
there there’ll be guppies (2) births
and stuff and they would need oxy-
gen and that would (3) that would
take up oxygen and some would suf-
focate (4) to death and stuff like that
and y—y’know too much room be-
ing y’know used and then (5) and so
the population go down but then
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(1) arms sway in a large range

(2) arms sway in a smaller range
(3) arms sway quickly back and forth
(1) wags his finger dismissively at Max

(1) hands move alternately up and down
(2) hands create a flat surface

(3) hands roll upwards

(4) both hands open and are lowered

(5) right hand is raised then lowered



there’s (6) more more room for
births so more more will grow then
(7) then some will die and
(8) some will grow and
(9) some die so it’ll be
(10) steady.
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FIGURE 4 Gento coordinates talk and embodied activity to describe how the guppy population
would behave as it reaches the carrying capacity of the pond. Images of actions 8, 9, and 10 are
shown in the right column.

(6) hands move upward

(7) hands are lowered
(8) hands are raised
(9) hands are lowered
(10) right hand moves up and down in a small
range to show a “steady” pattern of growth



In this turn, Gento describes the “representing” world of guppies or how guppy population
growth is represented mathematically (i.e., “It’ll [the number of guppies] go up and down”) and the
“represented” or lived experience of guppies inhabiting a pond (“some would suffocate to death”)
(Hall, 2000). Gento’s talk and gestures combine aspects of the physical representations he has used
to understand guppy population growth in the pollution scenario (i.e., graphs created using the
Habitech© software and the pond diagram) to explain what he thinks will happen to the population.
In action (1) Gento moves his hands alternately up and down suggesting how the growth of the pop-
ulation would be represented on a graph. In action (2) he creates a flat surface with his hands to indi-
cate the top surface area of the pond and in action (3), he rolls his hands up showing how oxygen is
“take[n] up” from the pond. Through this complex coordination of talk and gesture, Gento connects
the mathematical representation of guppy population growth with an understanding of the biologi-
cal and environmental processes that constrain the size of the population.

Why Conjecturing is Important for Mathematical Generalizing

Conjecturing involves asking “What if?” Asking this question is important for generalizing be-
cause it pushes students to move beyond particular situations to make sense of new situations. The
activity of conjecturing involves more than just predicting; it also involves explaining why some-
thing will happen. In this case, the students, with the help of the teacher, were generalizing about
what happens when a population reaches the carrying capacity of its environment. As with the ex-
ample of linking, the design of the problem the students were working on and the materials they
were given to think about the problem provided important resources for generalizing. The diagram
of the pond, which closely resembled a tank, allowed the students to determine the pond’s carrying
capacity and allowed the students to refer back to their understanding of how carrying capacity af-
fects the growth of populations to understand a new situation that they had not considered. Through
the activity of conjecturing, the students coordinated talk, gesture, and inscriptions like the dia-
gram of the pond to gain access to situations and events that are not directly accessible in the class-
room so that they can imagine and analyze the general behavior of objects and situations.

DISCUSSION

Research on mathematics and science has found that it is challenging for students to learn to use
decontextualized or generalized language to reason about real and hypothetical situations (Lemke,
1990; Mason, 1996; Rowland, 2000). To understand how students generalize, this study examined
how one group of students worked together to identify patterns and make predictions about simu-
lated real-world problems in an extended population-modeling project. While the students did not
always succeed in making broad generalizations that extended beyond the scope of the specific
problems they were studying, this analysis highlighted aspects of the process of generalizing.

This study focused on participation frameworks to examine how a group of students coordi-
nated talk, gestures, and inscriptions to generalize. Two participation frameworks, linking and
conjecturing, were identified as ways that the students used to attempt to generalize about mathe-
matical situations. Through linking a speaker proposes a comparison between situations and uses
resources including talk and inscriptions to articulate and show the recipient the basis of the com-
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parison. In so doing, the recipient is positioned to evaluate the comparison in a particular way. As
discussed in this analysis, this process of comparing and negotiating similarities and differences
can be a resource for identifying general patterns. Through conjecturing, this study showed how a
speaker can invoke a “possible world” (Heath, 1991) that she/he can explore with co-participants.
In imagining these possible or hypothetical worlds, participants use narrative and other modeling
tools (e.g., graphs, computer simulations) to describe the behavior of phenomena over time, pre-
dict the effects of changes on the situation, and justify outcomes. From this perspective, a general-
ization is understood as the outcome of activities distributed across people, talk, and inscriptions
rather than the product of any individual’s thinking.

As shown in this study, the interactions between students did not always facilitate the kind of
mathematics and generalizing intended by the curriculum designers or the teacher. For example,
when Patrick wrote, “it’s different” as an answer to whether a linear model of population growth is
sensible, he was responding to the demands of getting an answer rather than pursuing a mathemat-
ical or a biological line of analysis. On the other hand, in their discussion of whether overpopula-
tion was a finding or an error, the students pursued the meaning of their mathematical model by
drawing on and integrating their prior work in the Guppies unit (i.e., research on guppies and pop-
ulations) and their personal experiences with patterns of growth (i.e., patterns of weight fluctua-
tions) to understand a new situation (John, Torralba, & Hall, 1999). While the differences in the
students’ approaches to these problems is beyond the scope of this analysis, one possibility for the
difference may lie in how the students understood the problems in the context of their classroom
activities. More specifically, the students’ conversation about overpopulation was motivated by
their own identification of a significant problem whereas the question about the sensibility of a
linear population model was introduced by a worksheet question. When the students worked on
the worksheet, the question of sensibility was not yet something that all of the group members
considered a relevant question. By the end of the unit, however, after the students had spent more
time discussing the realism of their own and other’s models (in whole-class discussions and in
conversations with visiting biologists), the students began to take on more of a concern for what
they were modeling and whether it made sense (see Jurow, in press, for an analysis of how the rel-
evance of problems develops in a similarly organized project). Developing detailed descriptions
of the conditions under which students engage in meaningful mathematics will facilitate our anal-
ysis of how, when, and why generalizing takes place in classrooms.

Supporting Mathematical Generalizing in the Classroom

How can teachers engage students in mathematical generalizing in the classroom? Research sug-
gests that students need to engage in and reflect on a variety of experiences over time to see the gen-
eral connections between them (Bransford, Brown, & Cocking, 1999). In this study, students spent
8 weeks studying and creating models of guppy populations. They examined aspects of population
growth through building and altering population models using dynamic software, analyzing the
sensibility of different population models, investigating the growth of populations in different situ-
ations using multiple forms of representation (e.g., tables, graphs), and discussing and comparing
their models in conversations with peers and professional biologists. Engaging in activities such as
these is not enough for students to see the connections across activities or to begin to make mathe-
matical generalizations. Students also need guided reflection and multiple scaffolded opportuni-
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ties to talk about, write about, and otherwise represent what is general in and across situations
(Greeno & Hall, 1997).

As prior research indicates, whole-class discussions can be a productive context for engaging
in these conversations and activities. For example, in a series of whole-class discussions during an
extended project such as the Guppies unit, the teacher and students can create a public and running
record of the approaches used to solve different problems. Through guided reflection on the ap-
proaches, the teacher can ask the students to discuss and critique each other’s approaches, try to
make connections between their approaches to different problems, and attempt to identify general
patterns that emerge from a comparison of different students’ approaches and solutions. Teachers
can also scaffold students’ discourse by asking them to predict what will happen in a situation that
is more or less similar to the one they are considering or come up with a rule that describes what al-
ways happens in a situation. By making conversations focused on generalizing a routine part of
classroom practice, students will have more opportunities for identifying patterns, making predic-
tions, and transferring their understandings into new situations.

CONCLUSION

Generalizing is usually thought of as an individual, cognitive process. It is often the case that teach-
ers, curriculum designers, and textbook authors fail to recognize that general mathematical pat-
terns are not directly perceptible. Mathematics students do not unproblematically see general pat-
terns through exposure to or experience with multiple, similar cases. Rather, they need to orient to
and be guided to recognize what is relevant in and across situations.

By conceptualizing generalizing as a situated activity, this analysis provided a productive way
to look at the work involved in generalizing and the contexts in which generalizations emerge. In-
stead of studying what students ought to see and do, this analysis focused on what students actu-
ally see and do when they engage in mathematical activities. This study found that when students
attempted to generalize they used talk, inscriptions, and embodied activity to identify the relevant
similarities and differences between situations (linking) and to predict and explain what will hap-
pen in a situation (conjecturing).

The study focused on one group of students working on a project-based mathematics unit.
However, the point of examining their activities was not simply to describe how this particular
group of students attempted to generalize. It also aimed to describe a more fundamental dynamic
involved in the activity of mathematical generalizing. The notion of generalizing in interaction,
whereby generalizing is viewed as an accomplishment of people using talk, inscriptions, and em-
bodied action to produce general claims, represents such a dynamic. The two participation frame-
works described in this article were those used by one group of students in a single classroom.
While focusing on one group can provide insight into the processes of mathematical generalizing,
there is much more to be understood about these processes. How do students use and develop new
resources (e.g., symbolic notation) to describe general mathematical patterns? How does general-
izing in mathematics differ from generalizing in science? Studying how generalizing takes place
in settings other than school (e.g., in scientific laboratories) can also shed light on the develop-
ment of generalizations (see Hall, Stevens, & Torralba, 2002). The findings from this study rec-
ommend that future analyses of generalization attend to the processes of generalizing in
interaction to describe how generalizations emerge in and through social practices.
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