

Ablation and Heating During Atmospheric Entry and Its Effect on Airburst Risk

Eric C. Stern, Susan M. White, Y-K. Chen, James O. Arnold

NASA Ames Research Center

Parul Agrawal, Dinesh K. Prabhu

Analytical Mechanics Associates, Inc.

Chris Johnston

NASA Langley Research Center

and **Peter Jenniskens**

SETI Institute

Heating and Ablation in Threat Assessment

Heating and Ablation in Threat Assessment

NASA Asteroid Threat Assessment Project working to improve models for these phenomena

Asteroid Entry Environment

Ablation products mix with shock-heated gas in the wake and emit radiation, producing observed light curves and spectra

(on-going work)

Utilizing high-fidelity Computational Fluid Dynamics (CFD) coupled to full radiation transport and material response

Coupled Ablation and Radiation Modeling

Coupled Ablation and Heat Transfer Modeling

- Fully coupled radiation and ablation results reduces the heat transfer coefficient by nearly *two* orders of magnitude in some cases
- C. Johnston, E. C. Stern, L. F. Wheeler, "Radiative Heating of Large Meteoroids During Atmospheric Entry," *Icarus*, Vol. 31, p. 25-44, doi:10.1016/j.icarus.2018.02.026

Meteoroid Ablation Experiments

Arc Jet Experiment

- Heating rates (~4 kW/cm²) produced in the experiment comparable to 30m asteroid at 20 km/s at 65km altitude
- Machined sphere-cone model allows for highfidelity simulation of the test environment and material response

Tamdakht H5 Chondrite

Laser Experiment Findings

- At low heat flux, effective heat of ablation value close to canonical value of 8 MJ./kg
- Reduction in ablative efficiency at high heat fluxes attributed primarily to radiation blockage from ablation products

Meteoroid Ablation Experiments

Continuous Wave Laser Experiment

- Source of heating is radiation, which is the dominant source of heating for large meteoroids
- Tamdakht H5 Chondrite samples tested at heating rates from 5 to 16 kW/cm²

Arc Jet Experiment

- Heating rates (~4 kW/cm²) produced in the experiment comparable to 30m asteroid at 20 km/s at 65km altitude
- Machined sphere-cone model allows for highfidelity simulation of the test environment and material response

Arc Jet Experiment Findings

P. Agrawal, E. C. Stern, J. O. Arnold, Y-K. Chen, P. Jenniskens, "Arcjet Ablation of Stony and Iron Meteorites," AIAA Paper, Atlanta, Georgia, June 2018

- Effective heat of ablation (Q*) from the experiment ~ 2 MJ/kg
- Heat is well below the canonical value of 8 MJ/kg for chondrite vaporization
 - ▶ Indicates we are in a *melt* dominated regime

Effect of Ablation Parameter on Energy Deposition

Nominal Value Range based on preceding analysis

Effect of Ablation Parameter on Energy Deposition

Conclusions

- Coupled Fluid Dynamics-Ablation-Radiation calculations show significant reduction in heating over canonical value, particularly at larger sizes relevant to planetary defense
- Ground test experiments yielding insight into ablation phenomena, and being used to develop and validate numerical models
- Bias in ablation parameter toward the low-end results in lower altitude airburst, and therefore larger ground damage footprints

Acknowledgments

- Work was performed under the Asteroid Threat Assessment Project, administered by the NASA Planetary Defense Coordination Officer, Lindley Johnson
- The NASA Interaction Heating Facility (IHF) Team is gratefully acknowledged for supporting the arc jet test
- The Air Force Research Laboratory Laser Hardened Material Evaluation Laboratory is gratefully acknowledged for supporting the laser testing
- Thanks to Greg Gonzalez and Val Kasvin for machining the models for the experiments