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Aerobraking, Autonomy, Goal & Challenges



AEROBRAKING

: Aerobraking is a maneuver that -
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IMPORTANCE OF AEROBRAKING & AUTONOMY

Benefits and Costs l‘
Massive propellant saving WRT Importance of Autonomy

single propulsive maneuver at , Ground cost, a team of
the expense of risk caused by ' engineers always-online, less

variability in atmospheric aggressive conditions(more
density (heat rate & dynamic ||  when orbital period

pressure) I decreases)

Successfully performed for

three Mars missions: Previous efforts to address

= Mars Global Surveyor (1996) these issues with autonomy:

= Mars Odyssey (2001) Aerobraking Autonomous Control

® Mars Reconnaissance Orbiter (2005) (1999-2012)
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§ GOAL AND

7
{ CHALLENGES W A

Perform a complete and successful autonomous
aerobraking campaign at Mars with a learning and adaptive
behavior approach while:

1. Satisfying constraints on dynamic pressure and heat rate
2. Managing mission risk

3. Minimizing control effort and time of flight (cost) H



Mission Modeling, Reinforcement Learning and Interface



AEROBRAKING MISSION MODELING

Aerobraking mission: vary periapsis
altitude to lower apoapsis altitude while

satisfying constraints

rai, dpl hri



REINFORCEMENT LEARNING '

© e
Tabular Q-Learning Algorithm with e- ::ﬁ
greedy policy search .

<S,AP3%s,R%s,y> = [ F—ird
S = apoapsis radius > Y. o=
A = periapsis altitude n Reinforcement
R ass =reward built to minimize the learning is learning

what to do...so as to

aerobraking whole time. ..
maximize a

numerical reward
signal. (Sutton)




INTERFACE

BETWEEN
MISSION AND RL

A trained policy chooses when perform a trim maneuver
to minimize the aerobraking time and to avoid the
violating constraints.




Aerobraking Simulation, Constraints & Corridor, Learning



AEROBRAKING
SIMULATION

Apoapsis radius
from 200,000 km
to 5,000 km

PERIAPSIS




CONSTRAINTS AND CORRIDOR

.'q_), N-—-O.5 -'G_). ,—.0.4

© o

T 5 < o2

© ©

$E - g2,
0 100 200 0 20 40 60 80

£ # Orbit <

§NH0.4- @N__M

et ,‘ W.,J E E

S £0.2] s 502

g —_ ’ .‘ | | % = O M : . .‘A., i) Wr '

§ 0 100 200 § 0 20 40 60 80

# Orbit # Orbit

|
B NOT TRAINED MACHINE TRAINED MACHINE n



RESULTS DELTA-V AND TOTAL TIME
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REWARD FUNCTION DECREASES ONLY TOTAL TIME ﬂ
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If overcome heat rate
(0.4 W/cm?2), dynamic

pressure (0.4 N/m”2)

If apoapsis radius does

10

- LEARNING
PROCESS
Reward: Penalty:
- If reach goal
If heat rate and
dynamic pressure
- closer to corridor If escape/impact
boundary (dynamic)
not variate
4 6 8
# Evaluation %10



THANKS!

Any questions?
You can find me at:

gfalconZ2@illinois.edu
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MISSION DESIGN CHARACTERISTICS

Small Satellite Aeroassist Simulator
Mass: 110 kg 3 DOF equations of
Drag Area: 10 m?2 motion. Numeric

Co: 1.9 simulation integrated

using a forth order
Runge-Kutta scheme.

Keplerian Trajectory Density model: Mars-
Simulator (2-bodies) Gram 2010
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REINFORCEMENT LEARNING l

Tees

Markov Decision Process (stochastic)&- --------- -
<S,AP%s,R%s, y> L -
S = state space (apoapsis radius) W . )%
A = action space (periapsis altitude)
P ass==probability of getting into s’ after a from S
R ass =expected re*ward fromstos’ aftera
Find policy t through iteration Bellman eq.

Q'(s,a)= ) PLPRY +ymax,Q'(sha)] g

S'ES




STATE SPACE ACTION SPACE REWARD FUNCTION

Apoapsis radius Periapsis altitude Reward:

From 4000 to From 105 to 127 km. Reach goal.

400000 km. If closer to corridor
boundary (dynamic).

981 states. 147 states. y (dy )
Penalty:

Overcome heat rate (0.4

W/cm?2), dynamic
pressure (0.4 N/m”2).

Escape/Impact.
If apoapsis radius does n

not variate.




O-LEARNING ALGORITHM

Algorithm 5:Q-Learning Complexity
Input: MDP~{P , R}, a, ¢
Output: 7

1 0 « Initialize arbitrarily

2 <’va) o (30.77.(30»

3 while time left do

4 Take action a and receive reward r and next state &'

s | Q*(s,a) « r+ymax, Q(s',a') O(nl|A|)
6 b + Q*(s,a) — Q(s,a)

7 0 « 0+ adp(s,a) O(n)
8 | (s,0) « (&', 7°(s")) O(n|A|)
9 return 7 greedy w.rt, Q

Off-policy and model free algorithm



e-GREEDY POLICY SEARCH

e-greedy policy spans between exploration and
exploitation:

- With probability 1- &, uses the greedy action:
a;, = argmaxQ(s;,a)

- With probability €, play random action.




