Testing campaign of a martian spherical wind sensor at the AWTSII Wind Tunnel Facility

L. Kowalski, S. Gorreta, M.T. Atienza, V. Jimenez, L. Castañer, M. Dominguez-Pumar

Micro and Nano Technologies Group, Electronic Engineering Department, Technical University of Catalonia, Barcelona

manuel.dominguez@upc.edu

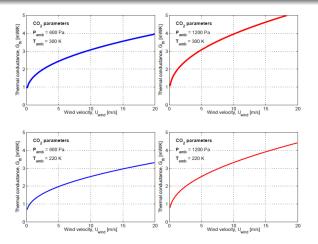
2 Sensor Description

3 Experimental results

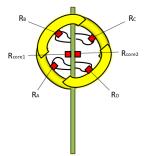
Challenge: 3D wind sensing for Mars

- Shallow atmosphere (6-12 mbar), wide temp. range (150-300K).
- Necessity of a fast, robust & simple sensor.
- 3D wind component recovery must be possible and simple !
- Design for reliability and durability.

In this paper: Experimental results obtained at the Aarhus Wind Tunnel Simulator II (AWTSII) with a spherical wind sensor.


Spherical sensor: a miniature sensor

- Constant temperature operation.
- Heat transfer from the sphere: $\dot{Q}_{surf} = \dot{Q}_{conv} + \dot{Q}_{rad} + \dot{Q}_{cond}.$
- $\dot{Q}_{\rm cond}$ is eliminated by enforcing $T_{\rm core} = T_{\rm surf}$.
- $\dot{Q}_{\rm rad}$ is reduced by gold plating the sphere.
- Spherical geometry simplifies 3D wind data reconstruction.
- Wind speed: heat transfer with the whole sphere.
- Angle information: heat transfer of 4 sectors of the sphere.


Sensor modeling: laminar flow regime

Thermal conductance of a sphere **perfectly known** for relevant values of temperature and pressure.

Spherical sensor: 4 sectors

- 4 gold plated silver tetrahedral sectors ($\emptyset = 10$ mm)¹.
- 2 'back-to-back' PCBs provide mechanical and electrical support.
- R_A, R_B, R_C, R_D : Pt resistors for heating and sensing sectors.
- R_{core1} , R_{core2} : Resistors to enforce $T_{core} = T_{surf}$.

 $^{^1\}mathsf{L}.$ Kowalski et al, "Spherical wind sensor for the atmosphere of Mars ", IEEE Sensors Journal 16 (7), 1887-1897, 2016

Size, weight and power

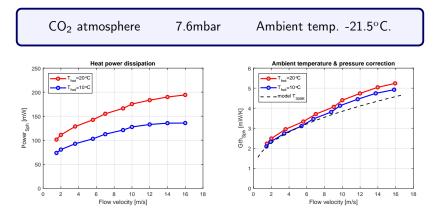
Unit	Mass	Size
Sensor head	3g	10mm in diameter
2 x half PCB	12g (2 × 6g each)	230 × 35 mm
PCB connector	7g	55 × 25 × 8 mm

- Power consumption (sphere 6 resistors) < 300mW (generally dependent on overheat, ΔT .
- Typical ASIC power < 200mW

Experimental results at the AWTSII Wind Tunnel Facility

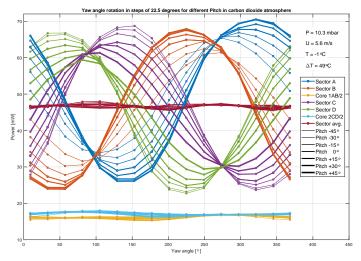
- Constant temperature in all sectors and core resistors $T_{\rm surf} = T_{\rm core}$.
- Air temperature monitored: $T_{\rm air}$.
- Inference of wind speed from global thermal conductance:

$$G_{th} = \frac{P_A + P_B + P_C + P_D}{T_{\rm surf} - T_{\rm air}}$$

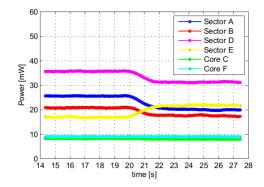

where P_i is power injected in sector i.

• Angle information retrieved from normalized sector powers:

$$\overline{P}_i = \frac{P_i}{P_A + P_B + P_C + P_D}$$


G_{th} inference for wind velocity estimation

- Two different setting points for $T_{\rm surf}$: 20°C and 10°C.
- $\bullet\,$ Good agreement between the obtained ${\it G}_{\rm th}$ and literature models.


Pitch and Yaw sweep

• Almost constant value of $\sum P_i$. Easy solid angle recovery.

Sensor dynamics

- Sudden angle change at t=20s. Time response 1-2s.
- Fast sensor response under constant temperature operation ².

²M. Dominguez-Pumar et al, "Heat flow dynamics in thermal systems described by Diffusive Representation ", IEEE Transactions on Industrial Electronics 64 (1), 664-673, 2017

Conclusions

- A miniature 3D wind sensor for Mars atmosphere.
- Low power, low mass, realiable structure.
- Performance of current prototypes
 - Time response: 1-2s.
 - Wind speed resolution: 0.5 m/s
 - Angle resolution: 5° .
- Extremely easy and reliable solid angle recovery.