CHARJOT TO THE MOONS OF MARS

A NASA Planetary Science Deep Space SmallSat Studies Program Mission Concept

Zachary R. Putnam University of Illinois at Urbana-Champaign

15th International Planetary Probe Workshop Short Course - Small Satellites: An Emerging Paradigm for Bold Planetary Exploration June 9-10, 2018

Zachary R. Putnam

Assistant Professor Department of Aerospace Engineering University of Illinois at Urbana-Champaign

<u>zputnam@illinois.edu</u> putnam.ae.illinois.edu 104 S. Wright St. MC-236 Urbana, IL 61801

Background

- Georgia Tech: B.S. (2004), M.S. (2006), Ph.D. (2015)
- Technical staff at Draper Laboratory (2006-2010)
- Joined faculty at Illinois in 2015

Research group focuses on hypersonic and space systems

- Flight mechanics
- Vehicle and mission design/optimization
- Vehicle systems, including GNC, TPS
- Modeling and simulation

Chariot PSDS3 Team

PURDUE UNIVERSITY.

PI: David A. Minton
Science Co-I: Briony H. N. Horgan
Systems Engineer Co-I: David A. Spencer

Students:

Mayank Aggarwal Rohan Deshmukh Jacob R. Elliott Andrew J. Hesselbrock Connor R. Tinker

CAV/Mission Design Co-I: Zachary R. Putnam

Students:

Giusy Falcone Destiny M. Fawley Elizabeth M. Fleming Thomas R. Smith James W. Williams

Instrument Co-I: Philip R. Christensen Collaborator: Erik Asphaug

Spacecraft Co-I: Austin Williams Spacecraft Co-I: Jordi Puig-Suari

Collaborators:

Matija Ćuk Francesca DeMeo Masatoshi Hirabayashi Jean-François Smekens Andrew Rivkin

Investigating the Origins of the Moons of Mars

- VIS/IR spectra of Phobos and Deimos suggest similar composition to carbonaceous meteorites and asteroids, supporting capture hypothesis...
- ...but orbits suggest formation in protosatellite disk

Chariot Investigation

Chariot was designed to provide high-resolution observations of both **Phobos and Deimos** in order to discriminate among proposed origin models, providing crucial information about the early history of the Mars system.

- COTS/heritage instruments available that meet mission needs
- Relatively large data volume, especially for a smallsat

Color Camera Morphology and geology

TIR Multispectral Imager Regolith thermophysics, variability in bulk composition

VNIR Point Spectrometer Mafic and hydrated minerals, space weathering

Chariot Concept of Operations

Chariot Vehicle Systems

CubeSat

Cruise-Aerocapture Vehicle (CAV)

Drag Skirt

Gore (x8)

Deployment

Rib Support

Drag Skirt

Ring - Top Drag Skirt

Attachment

(x8)

Aerocapture ConOps

Mars System Operations

CAV performs 3 propulsive maneuvers in Mars system:

- 1. Periapsis raise immediately following aerocapture
- 2. Phasing maneuver 1
- 3. Phasing maneuver 2

The two phasing maneuvers complete circularization and phasing concurrently while correcting aerocapture apoapsis error, significantly decreasing time to rendezvous for a small delta-V penalty (less than 5 m/s)

Nominal Aerocapture Trajectory

Chariot to the Moons of Mars

Corridors for Phobos and Deimos

Aerocapture Guidance Trade

- Previous feasibility work showed that a numerical predictorcorrector algorithm could provide required accuracy
- Simple heuristic velocity trigger also investigated

Guidance scheme	Entry Angle	Apoapsis error mean (km)	Apoapsis error std. dev. (km)
NPC	Center of Corridor	708	480
V. Trigger	Center of Corridor	947	1309
NPC	Shallow Edge*	162	93
V. Trigger	Shallow Edge*	235	577

*Shallow edge trajectories target initial flightpath angle -0.1 deg from shallow boundary

Aerocapture Guidance Trade

CAV Packaging

Conclusions

- The Chariot concept is capable of delivering highresolution observations of Phobos and Deimos for relatively low cost
- Drag-modulation aerocapture can provide a lowcost, independent orbit insertion capability for future planetary rideshare missions
- Challenges
 - **Packaging**: aggressive packaging densities may be required to maintain aerodynamic stability in the absence of a separate cruise stage
 - **Planetary Protection**: aerocapture periapsis between 40 and 60 km altitude
 - **Communication**: current relay orbiters are not configured to interact with spacecraft