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Introduction
• Address Titan’s diverse landscape by using             

a rotorcraft for aerial mobility
• Go to the interesting material
• Conduct surface experiments
• Obtain aerial images
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• NASA Ames & Langley Involvement
• Partnering as the leads for the entry system to provide the completed    

EDL Assembly
• Provides an opportunity for continued development of Titan entry capability
• Leverages unique capabilities at both LaRC and ARC

R. Lorenz & D. Adams from 
APL have more detailed talks 
about the mission on Friday



Titan Arrival
• Aerothermal Design
• Titan offers relatively benign entry conditions 

for aerothermal environment
• Largest aero-heating uncertainty is radiative 

heating 
• Contributes ~20 % of heat load on the forebody
• Dominates backshell heating environment
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Entry and Descent

Space Exploration

Entry and Descent

Entry
Preparation

Powered
Flight

Parachute
Phase

Ballistic
Entry

For reference, Huygens took
152.5 min from entry to the surface.
Dragonfly’s descent is a bit shorter by design.

Wake-up avionics, begin telemetry transmission, E-25 min

Vent heat rejection system, E-20 min

Turn to entry, switch to tone transmission, E-15 min

Cruise stage separation, E-10 min

Entry interface, h=1270 km, v=7.3 km/s, J=-47.7°, E-0 min

Peak heating, h=254 km, v=5.9 km/s, a=7.8 g’s, E+4 min

Drogue chute deploy, h=154 km, supersonic, E+6 min

Descent on drogue

Main chute pilot deployed in lower atmosphere

Heatshield separation

Landing skid deployment

Radar and lidar active

Lander release  

Relevant to Aerothermal 
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Entry and Descent (pre Phase A) 
• Relatively benign Titan ballistic entry at EFPA of -47.7° and 7.3 km/s
• Genesis scaled 60° 3.7m sphere cone heatshield / biconic backshell geometry
• In terms of TPS materials, Forebody: Tiled PICA. Aftbody: Acusil-II
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Forebody Heat Loads (Pre Phase A)
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• Peak margined heat flux ~ 145 W/cm2

• Margined heat load ~ 9.5 kJ/cm2

• Even though shoulder loads were higher, stag point was driving TPS sizing location
• In family with MSL environments and thus similar TPS thickness

• PICA is flight proven for such fluxes/loads and more than capable

MSL 197

MSL 5477

Wright, et al., AIAA JSR 2014

Dfly Shoulder 180

Dfly Shoulder 9200

Stagnation Point



Preliminary Phase A Aerothermal V&V 
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Preliminary Comparison!!!
NB: LAURA/HARA modeling 
options are slightly different
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Aftbody Heat Flux (Pre Phase A)
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• Heat flux calculated at shoulder seal for zero degree angle of attack 

• Peak margined heat flux ~ 25 W/cm2

• Preliminary analysis suggests these environments are relatively insensitive to the 
increase in mass and size

• Trade study currently taking place for aftbody TPS material

MSL 6.3

MSL ~14
w/rad
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Previous Titan Radiation Studies
• The joint NASA/ESA Cassini/Huygens mission resulted in significant 

efforts to understand radiative heating for Titan
• Post flight simulations were conducted assuming a Boltzmann 

distribution of CN excited states
• Consequently, experiments were performed in shock tubes and 

QSS/CR models developed

• Reasons to believe there were 
issues with previously reported  
Titan (pre-upgrade) EAST data

• Warranted to update previously 
published data:
§ Advanced mission proposals to Titan
§ Improvements available with the 

current EAST set up
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Brandis, et al., AIAA JTHT 2010



Previous Titan Radiation Studies

• Two shock tube facilities:
- EAST at NASA Ames
- X2 at U. Queensland

• Test 43 & 45 from EAST 
(2003 to 2005)

• Boltzmann predictions 
shown to substantially over-
predict

• CR models deemed to 
adequately match peak 
(within a factor of ~2)

• Simulations showed slower 
decay rate than experiment

5.15 km/s, 98% N2 : 2% CH4, 0.1 Torr, 
400 – 430nm. EAST T43-25 
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Comparisons To Previous Data: X2, Test 45
New Test 61 EAST data funded by NASA’s ESM project

Significant differences with previous EAST and X2 data

X2 AB: steel tube with a diameter 
of 8.5 cm

X2 CJ: aluminum tube with a 
diameter of 15.5 cm

With contamination added to T61, closer 
agreement is observed with previous data

Excellent agreement btwn new data & simulations.

Results from CR models which were benchmarked 
to previously reported data, may now provide 
under-predictions when compared to Test 61. 

It is recommended that this new dataset be used 
to benchmark models for current & future Titan 
missions.
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Current & Future Work
• Aerothermal indicator update in progress for Titan entry to aid picking a 

worst case design trajectory

• Run aerothermal analysis for Phase A study, including analyzing heating 
on the long gain antenna on the backshell at an angle of attack

• Perform a parametric study for relevant CFD and radiation parameters to 
inform design margins

• With updated aerothermal environments and informed margins, the Phase 
A TPS sizing will take place

• There is also an Engineering Science Investigation (ESI) study happening 
simultaneously along side the aerothermal work with the goal of obtaining 
aerothermal flight data
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Conclusion
• Dragonfly is a proposed mission that would send a rotorcraft to Titan in 

order to study prebiotic chemistry and extraterrestrial habitability

• Aerothermal analysis from both Ames and Langley’s suite of codes has 
been run for Dragonfly, with good agreement shown

• Models for radiative heating have been validated by recent shock tube 
testing in the EAST facility

• The entry conditions are relatively benign and can readily be 
accommodated with a tiled PICA heatshield similar to MSL and a number 
of flight proven materials for the backshell
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Questions?

• Reminder for Friday
• 10:08am - Ralph Lorenz: “Sample acquisition and transfer for a Titan lander”
• 11:06am - Doug Adams: “Dragonfly: Rotorcraft landing on Titan”

14



Backup



Effect of Density & Chemical Composition
Time 223s, Velocity 6.25 km/s, nominal density 3.17 e-4 kg/m3 

• Plots show effects of freestream density and composition on the surface aerothermal environment at 
peak convective heating

• Pre phase A nominal chemical composition was 98.2N2 : 1.6 CH4 : 0.1 H2 : 0.1 Ar, the present trade study 
looked at 98:2 and 98.6:1.4 variation of N2 and CH4

• Future analysis will be based on expected maximum values for methane in the upper atmosphere, so will 
be running a composition of 97.8 N2 : 2.2 CH4

• These simulations will be used to determine heating indicators for turbulent shoulder locations, and for 
points of interest on the backshell
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