

Overview

- Motivation: Why are we making this simulation?
 - Simulation is the only end-to-end representation of EDL other than actual EDL. We can't test end-to-end EDL
 - EDL will have more than one complete end-to-end simulation (Mars program requirement)
 - POST 2 (LaRC) provides official project performance results for Mars 2020
 - DSENDS is used for targeting and independent V&V of POST results
- Agenda
 - Overview of DSENDS
 - Overview of Mars 2020 EDL and models required
 - Details of model integration and checkout

What is DSENDS?

A *deployment* of the DARTS Lab's DARTS/Dshell multi-mission simulation toolkit

- A high-fidelity, physics-based flight-dynamics system simulation tool in use for EDL (e.g. M2020) and Proximity Operations (e.g. Comet).
- Simulates the multi-body spacecraft's position, attitude, articulation and body flexibility states and the interactions with gravity, atmospheres, terrain, and on-board s/c devices in response to onboard flight-software directed sensing and control actions.
- DSENDS is used for end-to-end simulation and performance evaluation for flight missions, proposal development, internal R&D efforts, mission studies, algorithm & real-time testbeds, EDL targeting and mission operations.

DARTS/Dshell Simulation

Toolkit Usage MSL EDL LDSD JSC-MOD **Precision** ISS Landing **ARRM** ohnson NEO Space Center JPL MSL DARPA Arm NIH **MSL** Rover **DARPA Atlas MER Rover DARPA** ARM **Athlete DARPA Army UGV** RoboSimian

14 June 2018 IPPW-2018 4 jpl.nasa.gov

EDL Overview

EDL Sim Block Diagram

Interface Functionality

For each module

- Functionality delivered/developed
- Assembly created
 - Parameters: required and/or optional user inputs, handled via parameter class
 - States/scratch: data required external to the module
 - Flowin/flowout: data received from/passed to another module
- Test
 - Parameters properly passed to the assembly
 - Flowin/flowout values passed as expected
 - States and scratch values as expected
 - Setting of parameter values from external source
 - Modified by hand
 - Config control parsing, writing param class
 - Monte Carlo knob evaluation and writing to param class

Model Checkout

Checkout for each model is different

- Environment: Does the model reflect best knowledge?
 - Atmosphere, gravity, terrain external experts approve model, DSENDS checkout of usage
- Physical spacecraft data provided and implemented correctly
 - Mass properties, separation springs/ejections, propellant loading/mass properties changes
- Device models provided a model that is certified against test data, checkout of DSENDS integration
 - Thrusters, IMU, TDS
- FSW: have multiple venues to show it works, prove that we're interfacing with it correctly

Summary

- DSENDS architecture makes the tool well suited to supporting multiple projects and quick turn-around proposals
 - The framework makes adding/removing models to support different tasks quick and simple
- Mars 2020 EDL end-to-end simulation model set required for future analysis in nearing completion of integration and checkout
 - Model checkout demonstrates proper integration and use, assuming the model correctness is addressed elsewhere.
 - Details of checkout vary depending on the model

jpl.nasa.gov