

University of Colorado Boulder

Celestial and Spaceflight Mechanics Laboratory

Effects of probe shape and surface topography in deployment to small bodies

Stefaan Van wal Daniel Scheeres

15th International Planetary Probe Workshop June 14th, 2018 Boulder, Colorado

Small-body exploration

Current baseline: remote sensing operations
Increased return: surface exploration

Surface exploration: Past

Minerva-I (Hayabusa-1)

Yoshimitsu et al.

Bi

Lander deployment is challenging!

Surface exploration: Future

✤ Hayabusa-2:

Minerva-II and Mascot rovers

Deployed <u>before</u> Hayabusa-2 sample acquisition
Rovers must avoid sampling site exclusion zone

Planning of rover deployment requires simulation of bouncing trajectories

Modeling: Shape

Signed distance field (SDF):

- Implicit shape model
- Gridded 3D sampling of distance function d(x)
- > Linearly interpolated to yield $d(\mathbf{x})$ and $\mathbf{N}(\mathbf{x}) = \nabla d(\mathbf{x})$
- > Inexpensive collision detection vs. classical polyhedron model

Modeling: Surface features (6)

Asteroids and comets are covered with rocks of various sizes Global shape models are smooth with only large features Example: Itokawa

- Presence can affect motion of a probe
- How to account for millions/billions of rocks?

Modeling: Surface features (6)

- Procedurally seeded rocks:
 - > Aperiodic tiling of seeding texture
 - Texture can be tuned to match observations
 - > Numerical cost is two additional SDF samplings
 - \succ Example of different rock populations:

Modeling: Gravity

- Voxelized gravity field:
 - > Pre-compute polyhedron gravity $\mathbf{g}(\mathbf{x})$ at 3D mesh points
 - > Interpolate gravitational perturbation ∆g(x) = g(x) (µ/r³)x at field point x
 - > Inexpensive evaluation of complex gravity field

Modeling: Contact

- Hard contact model with normal and friction forces:
 - > The forces are coupled for *eccentric* collisions!
 - > Numerical integration is required to evaluate effect
 - Based on model by Stronge
- Model is governed by:
 - > Coefficient of restitution e and friction f
 - Assumed independent of velocity and attitude
- Distinguish between slip and stick of contact point
- Impulsive collision vs. continued contact motion

A single simulation

A batch of simulations

t [hr]

Parallel implementation on GPU enables broad studies

Effect of lander shape

Repeat nominal scenario for different shapes:

Different shapes experience notably different dynamics!
Implications for lander design

Effect of lander shape

Behavior of Minerva-II-1:

14

Effect of rocks

- Using procedurally seeded rocks, varying spatial density ko:
 - Settling time statistics:

- > Rocks resist the 'rolling' motion of a probe
- > They are important to model!
- Results hold for normal & grazing impacts
- Implications for Minerva-II-1 rover

Effect of mass distribution

Repeat nominal scenarios for varying j:

Further implications for lander design

Questions? stefaan.vanwal@colorado.edu