Joseph M BrOCk National Aeronautics and
AMA Inc. Moffett Field, CA

Eric C. Stern

NASA Ames Research
Center

P &7
PROGRESS ON FREE FLIGHT CFD SIMULATION
FOR BLUNT BODIES IN THE SUPERSONIC

REGIME
vw

www.hasa.gov/spacetech



Blunt Body Dynamic Stability NASA

Genesis Sample Return Capsule (Desai, 2008)
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e Blunt-body capsules are very effective at reducing heating to the surface
* Dynamic instabilities often arise at low-supersonic and transonic Mach numbers

* Dynamic stability is characterized exclusively through experiment — forced-, free-
oscillations, ballistic range, and flight tests — however each has drawbacks/
difficulties

» In all cases, flight similitude parameters are difficult to achieve

 CFD is an integral part of static aerodynamic characterization and design.
« Would be desirable to have similar capability for dynamic aerodynamics
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Pitch and Yaw vs.

Creation of Methodology
Fitted with cosine function
and taking the first
derivative for tip-off rates

Simulation data for pitch, yaw, total angle
of attack and downstream distance is
compared against experimental data
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Experiment and accompanying free-
flight CFD support meant to provide
informed advice on placement of
backshell pressure measurement for
Mars 2020 EDL experiment.
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Simulation results show:

* Amplitude growth predicted well by CFD

e Mismatch in frequency

* Backshell pressure show reasonable agreement

Simulations were performed a-priori at
“relevant” experimental conditions. Current

efforts look to run at exact experimental
conditions.
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Dynamic Data Comparisons NASA
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Recent Results
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* 92% Time Dilation

Total Angle-of-Attack vs. Time
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Summary

Free-Flight CFD as been applied for the range of Mach numbers 3.7-1.0
 High Mach number cases show excellent agreement with experiment

* Lower Mach number cases show reasonable agreement against
experiment

* Roughly 10 percent error in total alpha
Solver has also been applied to full-scale trajectory
« High altitude portion shows stable flight dynamics
 Lower altitude shows total amplitude growth

Recent updates to Free-Flight solver look to extend capabilities and
improve accuracy

* Mesh deformation technique
* Implementation of multi-body dynamics

Future work topics include; longer ballistic range experiments, flight
relevant trajectories, and multi-body dynamics
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We are partnering with the Asteroid Threat Assessment project under SMD to study free-flight
behavior of multi body (and their interactions). This effort will compliment future work to model
EDL separation events.
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Multi-Body Dynamic Capabilities ~ Nasa
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US3D Flow Solver

* Developed at the University of Minnesota by Graham Candler and students
 3-dimensional parallel unstructured cell-centered finite-volume Navier-Stokes solver
= Ability to solve on structured, unstructured, and hybrid grid topologies

Spatial fluxes can be;
> 2nd and 3rd order upwind fluxes

> 2nd, 4th, and 6th order Kinetic Energy Consistent (KEC)[5] low-dissipation
fluxes

= Time integration achieved through 3rd order explicit (RK3), or second order
implicit (DPLR and FMPR) schemes

= Finite Rate chemistry and vibrational-electronic energy relaxation
= Turbulence modeling available through;
> Algebraic Baldwin Lomax model
> One equation Sapalart Almaras model [6]
> Shear-Stress-Transport (SST) k-omega model
=  Wall model LES implemented using DES97, DDES, IDDES [7]
= Mesh motion capability to perform dynamic simulations
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