Design and characteristics of the suborbital expansion tube HEK-X for afterbody heating of sample return capsule

Kohei Shimamura

Evaluation of afterbody heating of sample return capsule in the ground facilities

Afterbody heating was estimated at 1/100 of stagnation heating (15 MW/m²)

Forebody heating visualization

In this talk: High-speed imaging for test time evaluation of HEKX

Highspeed visualization method is proposed to obtain arrival of SW, CS, and EX-tail or head, and determine the test time of expansion tube.

Time history of density change is obtained by visualization of wedge (oblique SW) and hemispherical shape probe(Shock-standoff distance).

- ✓ Radiation heating is important topic in the deep space exploration mission.
- ✓ HEK-X is possible to cover the maximum heat flux of HAYABUSA reentry condition.

 Total length of HEK-X is the longest in the middle class of expansion tube.

Free-piston driven expansion tube HEK-X 34 m, 72 mm bore (JAXA Kakuda, since 2015)

Chasifiantiana

Test section

	Specifications	HEK-X	X2(UQ)
\checkmark	Piston Mass, kg	15.7	10.5
\checkmark	Compression tube length[m]/bore[mm]	16/210	3.8/257
\checkmark	Shock tube length[m]/bore[mm]	6.5/72	3.4/85
\checkmark	Expansion tube length[m]/bore[mm]	9.4/72	<u>5.2/85</u>
\checkmark	Nozzle length [m] / bore [mm]	-	1.4/208

- Thermocouples and pitot
 E-type coaxial thermocouples (Φ2.3mm)
 PCB(114B28) sensor with cover
 15 degree wedge probe
 Two probes and wedge were set at 15 mm distance from the end of expansion tube.
- Laser Schlieren for 15 deg wedge Light source: 1W 532nm DPSS Laser Camera: ULTRA CAM(NAC)
 FPS1MHz kHz, Exposure time 0.1 us 120 frames available
- Self-emission w/780nmBPF Filter: Ø1" Bandpass Filter, CWL = 780 ± 2 nm, FWHM = 10 ± 2 nm (Thorlabs) camera: FASTCAM SA-Z FPS700 kHz, Exposure time 0.25 us 10 k frames are available

Rupture pressure history, static pressure histories and x-t diagram

Rupture pressure was hold at 55 Mpa (~1ms) with over drive operation. SW and Ex-wave arrivals are obtained from each static pressure history. Displacement of SW and Ex-wave, and SW velocity are obtained on the x-t diagram. At the test section, SW-Ex wave duration is estimated as 46 us.

Schlieren images

Shot # 1217
Probe shape:
15 deg wedge
Camera condition:

FPS: 0.5 M

Exposure: 100 ns

Test time (26 to 46 μs)

Reflected wave from wedge base

Reflected wave was observed because expansion wave arrived and density increased.

Self emission images

Shot # 1217
Probe shape:
Spherical (D = 20 mm)
E-type thermocouples
Camera condition:

FPS: 0.7 M

Exposure: 100 ns

er et we	k stand-off distance Semi-sphe scouple prob	 	1.4 ←	2.9	4.3	5.7	7.1	8.6	10 μs	11.4	12.9
14.3	15.7	17. 1	18.6	20 μs	21.4	22.9	24.3	25.7	27.1	28.6	30 μs
1										e eredi	
31.4	32.9	34.3	35.7	37.1	38.6	40 μs	41.4	42.9	44.3	45.7	47.1
48.6	50 μs	51.4	52.9	54.3	55.7	57.1	58.6	60 μs	61.4	62.9	64.3

TEST TIME CALCULATION

The discontinuity contact surface is observed in the pitot history, SW angle, shock standoff distance at 26 us. Test time = 46 - 26 = 20 us

STAGNATION HEAT FLUX

0.5 Stagnation heat flux In the test time 0.0 was 100 MW/m².

-0.5 Theoretical formula (Tauber-Sutton) can be compared with the experimental result,

$$q_{conv} = 1.35 \times 10^{-10} \sqrt{\frac{\rho_{\infty}}{R_{n}}} U_{\infty}^{3.04} \left(1 - \frac{h_{w}}{H_{0}}\right)$$

Theoretical heat flux was 95.3 MW/m² which is good agreement with the experimental results. 9

Test time evaluation in the other conditions

Heat Flux (test time) MW/m ²	70	100	300
Sw velocity (exp)	8.2 km/s	7.6 km/s	6.9 km/s
SW velocity (theory)	11.00km/s	10.12 km/s	9.23km/s
Test time (exp)	15us	20us	40us
Test time (theory)	129.5us	163us	195us
Acceleration gas	61(Pa)	93	197
Test gas	7(kPa)	10	14
Compression	92.4(kPa)	92.4(kPa)	92.4(kPa)
Reservoir	5.77(MPa)	5.77(MPa)	5.77(MPa)
	1218	1217	1215

Because Paull-Staker theory do not consider the viscosity effects, the SW velocity and test time of experiments is different from that of theoretical results. To obtain the suborbital condition (>8 km/s), we need to increase the reservoir pressure (under construction).

10

Conclusions

- ✓ The Schlieren visualization and self-emission image were used to simultaneously identify the test time of the expansion wave tube with the pressure / thermal probe measurement.
- ✓ Contact surface behind the shock wave was visualized. SW and Exwave arrivals are obtained from each static pressure history. Displacement of SW and Ex-wave, and SW velocity are obtained on the x-t diagram. At the test section, SW-Ex wave duration is estimated as 46 us for shot #1217. We could calculate the test time with the static pressure history.
- ✓ Because Paull-Staker theory do not consider the viscosity effects, the SW velocity and test time of experiments is different from that of theoretical results. To obtain the suborbital condition (>8 km/s), we need to increase the reservoir pressure (under construction).