## HYBRID AEROCAPTURE USING LOW L/D AEROSHELLS FOR ICE GIANT MISSIONS

15<sup>th</sup> International Planetary Probe Workshop (IPPW-15) Boulder, Colorado, June 2018

#### Athul Pradeepkumar Girija

A. Arora, and S. J. Saikia

School of Aeronautics and Astronautics, Purdue University, IN, USA

J. A. Cutts

NASA Jet Propulsion Laboratory, California Institute of Technology, CA, USA



This work was supported in part by the NASA Jet Propulsion Laboratory, California Institute of Technology.

Travel funding provided by IPPW is gratefully acknowledged.

Artist's concept of a low L/D aeroshell used for aerocapture at the Ice Giants. MSL entry vehicle used for representative purpose only, credit: NASA/JPL.

### Ice Giants – Uranus and Neptune



Gas Giants

15. 1B.

Rocky





**Ice Giants** 

Image credits: Top: Solar System, Wikipedia.org, CC BY-SA 3.0; Bottom left: NASA/Lunar and Planetary Institute; Bottom right: NASA Ames/W. Stenzel



### NASA Ice Giants Pre-Decadal Study, 2017



| Uranus O | rbiter witl | n probe anc | 1~50 kg pavl | load, no | SEP |
|----------|-------------|-------------|--------------|----------|-----|
|          |             |             |              |          |     |

| Launch | TOF (y.) | Arrival V∞ | Arrival Mass | ΟΙ ΔV    | Mass in Orbit |
|--------|----------|------------|--------------|----------|---------------|
| 2031   | 12.0     | 8.5 km/s   | 3582 kg      | 1.7 km/s | 1913 kg       |

| 100 |  |
|-----|--|
| -   |  |
|     |  |

| Neptune Orbiter with probe and ~50 kg payload, with SEP stage |          |            |              |          |               |
|---------------------------------------------------------------|----------|------------|--------------|----------|---------------|
| Launch                                                        | TOF (y.) | Arrival V∞ | Arrival Mass | ΟΙ ΔV    | Mass in Orbit |
| 2030                                                          | 13.0     | 11.5 km/s  | 5033 kg      | 2.7 km/s | 2012 kg       |

### Mission Design Challenges





# Corridor Width

- 1. Theoretical Corridor Width (TCW)
  - Vehicle (L/D)max
  - Arrival V∞

#### 2. Required Corridor Width (RCW)

- Navigation errors
- Atmospheric uncertainties
- Aerodynamic dispersions

### TCW ≥ RCW

TCW

I I I I I I I I RCW

### Aerocapture Vehicles





# Hybrid Aerocapture

- Aerodynamic and propulsive forces used for orbit insertion
  - How?
  - Feasibility
- Can we use low L/D aeroshells?
  - $-\Delta V$
  - Risk vs. Benefit





### Hybrid Aerocapture – Approach #1: Small capture orbits

- Benefits
  - Increases TCW
  - Reduces risk of accidental escape
- Cost
  - $-\Delta V$
  - G-load, heating
- Risks
  - Ring plane crossing hazard
  - Autonomous navigation



#### Hybrid Aerocapture – Approach #1: Cost-Benefit Analysis



### Hybrid Aerocapture – Approach #2: Exit speed targeting

#### Benefits

- Allow a wide range of exit speeds
- Increased TCW
- Reduced ring plane crossing hazard

- Cost and Risk
  - ΔV
  - Possible escape



#### Hybrid Aerocapture – Approach #2: Cost-Benefit Analysis



#### Hybrid Aerocapture Mission Concept

 $\bullet$ 

 $\bullet$ 

 $\bullet$ 



### Summary of Options and Impact on Investment



# Questions?

Crescents of Neptune and Triton acquired by Voyager 2 on its outbound journey from the Neptune system, Aug. 28, 1989.

Credits: NASA/JPL