

Going to the Water

Key Technology Needs for Accessing the Ocean of an Icy Moon

Tom Cwik, Wayne Zimmerman, Andrew Gray, Bill Nesmith, Anita Sengupta*

Jet Propulsion Laboratory, California Institute of Technology

*Hyperloop One

15th International Planetary Probe Workshop
University of Colorado, Boulder,
June 11-15, 2018

Copyright 2018 California Institute of Technology. U.S. Government sponsorship acknowledged.

A Potential for Life

Energy Source

Biologically Essential Elements

Liquid Water

Time

From Europan orbit: deorbit, descend and land, establish a surface system, travel through the ice, enter the ocean, and determine whether-or-not there is extant life

Surface Phase

- Release probe into ice
- Communications: DTE and/or to orbiter; Tethered or wireless to probe
- Maintain operations in radiation

Ice Mobility Phase

- Mobility to Ocean
- Communications to surface
- Science Instrumentation

Ocean Access and Mobility Phase

- Entry into ocean at ice-ocean interface
- Explore ice interface and open ocean
- Maintain planetary protection

Europan Ice Probe Trade Space

Ice Descent

Melt Probe

- Thermal energy melts ice ahead and along probe
- Power can be aboard probe or transferred by tether from surface
- Rate of travel depends on amount of thermal energy
- Water Jets can be added to further melt ice and move melt water – electrical energy needed to drive pumps

Zimmerman, JPL 2001

Kaufman et al

Mechanical Cutting

- Electrical energy drives blade to shave ice
- Chips need to be moved from front of probe

Honeybee, inc

Ice Mobility – Days for Melt Probe to Travel 10Km

Ice Mobility – Heat and Electric Source

Communications in Ice and to Earth

Orbiter Configuration

- 2 m antenna
- 100 W TWTA
- X-band

Lander Configuration

- 27 dBi surface antenna
- 4 W RF
- X-band

Probe Configuration

- 5 comm pucks
- Turbo coding
- 100 MHz

Autonomous Guidance Navigation and Operations

Ice Descent

Melt
Water Jet and Cut
Unfurl Tether
Sense Position/Orientation
Tx Housekeeping Data

Science Comm

Science Ops Science Transmit

Puck Release

Release Puck Anchor Puck Transmit Checkout

Navigate

Radar / Sonar
Differential Heating
Differential Jetting

Surface Phase: Initial Access into Ice

SOL₀

- Lower and level
- Initial System checkout
- Install cap at surface

SOL 1

- System checkout
- Initial melt, cut and water jet operations

SOL 2

- Melt cut and water jet ~meters
- Deposit lander electronics
- Relay telecom checkout
- Science instrument checkout

SOL 3 to n

- Melt, cut and jet
- Unfurl tether
- Release puck
- Transmit science

Landing Phase

Ocean Access and Mobility: Four Science Segments

1 - Probe Nose In

Anchor Image ocean Sample water

2 - Probe Fully Submersed

Deploy ocean probe Tethered Ops

3 - Underwater Vehicle Ops

Buoyant operation
Science Ops
Mobility Ops

4 - Free Fall & End Of Mission

Cut Tether

Dare Mighty Things

Ice Mobility – Melt Probe Power

Amount of thermal energy needed to melt ice:

- Aamot model provides first order requirements vs melt rate
- Dependent on diameter and length of probe
- Assumptions
 - Temperature vs Depth
 - Thermal Conductivity, Specific Heat & Ice Density vs Temperature
 - Salt Content
 - Sublimation (especially at ice interface)
 - Viscous friction, tether effects, salt layering, voids, ...

Looking ahead: What we will know and have shown

Ice shell structure by RADAR

 Resolution of +/-10m @3km depth and +/-100m @30km depth

Detailed topographic surface map

· At 50m with higher resolution regions

Surface thermal map

 Identification of higher temp anomaly zones suggesting recent up- welling or cryo-volcanism

Mapping image spectroscopy

Europa Clipper

Powered landing to 100m accuracy

- Terrain relative navigation
- Hazard detection LIDAR

High resolution descent/surface imaging

Surface operations

Cutting and handling of ice and salts at temperature

Organic/inorganic quantification at surface

Seismometer sensing of crustal motion

Europa Lander Concept

Ice Mobility – Water Jetting and Cutting

In addition to melting ice for mobility, need to

- Travel through potential sediment layers
- Force sediment and melt water past probe

Include

- Water jetting by pumping and ejecting melt water at nose
- Cutting with motorized blade and removing chips

Requires electrical power drawn from thermal energy

• Balance of RTG electrical generation and thermal

Surface Phase Functions

Probe start-up activity

- Release Europan probe into ice
- Control initial sublimation at ice/salt surface

Survive radiation through mission life

- Use ice to protect electronics from radiation
- Melt electronics package into ice

Communication

- Direct to Earth or through Orbiter
- To and from Europan ice probe

Ice Mobility – Communications

RF Communications in ice is feasible

- Data rate depends on ice temperature dependent attenuation
- Released pucks can store and forward data Requires stand-alone power

Tether allows max bandwidth

Mechanical strength in Europan ice is unknown

Combine pucks and tether (and acoustic)?

Probe Thermal Configuration

Design Assumptions

Begin with Europa Lander systems and mass parameters

- SLS launch with same dry mass as Lander concept project
- Same trajectory design to Jupiter and Europa
- Same Deorbit system
- Same Mass to the surface (but not skycrane lander system)

Begin with known power sources (radioisotope)

What advances can we make?

Baseline 10Km ice thickness

Baseline Ice temperature profile, salt content

Set approximately two-vear time for ice travel

Europa Lander Mission Design

Conceptual Design

7 KWth Main + 1 KWth Nose Power Sources

Ice Probe	CBE Mass (Kg)	CBE Power (We)
Total Probe	210.8	597.6
Navigation	4.59	11.4
C&DH	1.50	10.0
Power	33.26	4.0
Telecommunication	5.55	30.0
Drilling / Water Jet	16.00	400.0
Submarine payload	26.70	27.2
Structure	112.00	5.0
Thermal	11.20	110.0
Margin (%)*	41	29

^{*}Mass margin calculated against 335 Kg landed mass allocation for Europa Lander Class DDL

With newly developed pellet thermal source

With existing GPHS thermal source

^{*}Power margin based on 836 W EOL (9 years)