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A Potential for Life

Energy Source
Biologically Essential Elements

Liquid Water

Ocean Worlds Exploration Roadmap
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From Europan orbit: deorbit, descend and land, establish a surface system, travel
through the ice, enter the ocean, and determine whether-or-not there is extant life
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Europan Ice Probe Trade Space

Landing Phase
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lce Descent

Melt Probe

* Thermal energy melts ice ahead and along probe

* Power can be aboard probe or transferred by tether Zimmerman, JPL 2001
from surface

» Rate of travel depends on amount of thermal energy | . §°

* Water Jets can be added to further melt ice and move B
melt water — electrical energy needed to drive pumps

Mechanical Cutting
e Electrical energy drives blade to shave ice

* Chips need to be moved from front of probe

Honeybee, Inc



lce Mobility — Days for Melt Probe to Travel 10Km

Days to Descend 10 km Temperature Profiled Europan Ice Shell

Sensitivity to Thermal Conductivity Variations & Ice Types
- 0.160 m Dia x 2.418 m Long, 87.3 Liters, SR=19.1 (optimized SR)
- Power of 7.5 kW @ 85% Thermal Efficiency (net 6.3
- MS7 "like" ice: Extrapolated thermal conductivity & specific heat for MgS04 - 7H20,
epsomite (W.B. Durham et al, 2010), remaining properties of pure H20 Ice
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lce Mobility — Heat and Electric Source

General Purpose

Heat Source (GPHS)
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Communications in Ice and to Earth

Orbiter Configuration

e 2 m antenna
e 100 W TWTA

e X-band
Lander Configuration

e 27 dBi surface antenna
e 4\WRF

e X-band
Probe Configuration

e 5 comm pucks
e Turbo coding

e 100 MHz

Surface
~ Communication
Relay

- ——
-

Communication
Transceivers




Autonomous Guidance Navigation and Operations
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Surface Phase:

SOLO

e Lower and level
e Initial System checkout

e Install cap at surface

SOL1

e System checkout
e |nitial melt, cut and
water jet operations

Initial Access into Ice

SOL 2
e Melt cut and water jet Ymeters
e Deposit lander electronics

e Relay telecom checkout
e Science instrument checkout

SOL3ton

e Melt, cut and jet
e Unfurl tether

e Release puck
e Transmit science

10



Landing Phase
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Ocean Access and Mobility: Four Science Segments

3 - Underwater

1 - Probe Nose In Vehicle Ops
Anchor 2 - Probe Fully Buoya?nt operation
Image ocean Submersed Science Ops
Sample water Mobility Ops
Deploy ocean probe
Tethered Ops 4 - Free Fall &

End Of Mission
Cut Tether
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lce Mobility — Melt Probe Power

Amount of thermal energy needed to melt ice:

* Aamot model provides first order requirements vs melt rate

* Dependent on diameter and length of probe

* Assumptions
e Temperature vs Depth

Salt Content
Sublimation (especially at ice interface)
Viscous friction, tetber effects, salt layering, voids, ...

Ps=Lateral Meiting Power I
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™ Py =Cross-sectional Melting Power

Weiss, Planetary and Space Science 56 (2008) 1280—1292

temperature (K)

Thermal Conductivity, Specific Heat & Ice Density vs Temperature
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Looking ahead: What we will know and have shown

Ice shell structure by RADAR

* Resolution of +/-10m @3km depth and +/-
100m @30km depth

Detailed topographic surface map

* At 50m with higher resolution regions

Surface thermal map

* ldentification of higher temp anomaly
zones suggesting recent up- welling or
cryo-volcanism

Mapping image spectroscopy

Europa Clipper

Powered landing to 100m accuracy
* Terrain relative navigation

* Hazard detection LIDAR

High resolution descent/surface imaging

Surface operations
* Cutting and handling of ice and salts at

temperature

Organic/inorganic quantification at
surface

Seismometer sensing of crustal motion Europa Ocean Exploration

Europa Landef Concept
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lce Mobility — Water Jetting and Cutting

In addition to melting ice for mobility, need to

* Travel through potential sediment layers
* Force sediment and melt water past probe

eat Pipe

Water Jet

Include
* Water jetting by pumping and ejecting melt water at nose

 Cutting with motorized blade and removing chips

. . Pum
Requires electrical power drawn from thermal energy P

* Balance of RTG electrical generation and thermal

PuO2 pellet (Heat Source) 16



Surface Phase Functions

Probe start-up activity

* Release Europan probe into ice
e Control initial sublimation at ice/salt surface

Survive radiation through mission life

e Use ice to protect electronics from radiation
* Melt electronics package into ice

Communication

* Direct to Earth or through Orbiter
* To and from Europan ice probe

Direct to Earth
Surface Telecom

Phased Array

Gimbaled Flat Plate
Array

17



lce Mobility — Communications

Number Required # of Pucks vs. Comm Freq. (MHz)
of Pucks 10km Pure Ice, 4w RF, 10 kbps, 10 dB link margin

14

RF Communications in ice is feasible N g '
* Data rate depends on ice temperature dependent attenuation | | cweme
» Released pucks can store and forward data

Requires stand-alone power § BEPF|
Tether allows max bandwidth : L
* Mechanical strength in Europan ice is unknown ’ i (RPN o
Combine pucks and tether (and acoustic)? — Data Rate vs. # of Pucks

Convective ice, 100 MMz

Tether

ProbeTelecom

Acoustic

Number of Pucks



Probe Thermal Configuration

Shunt Fin

Comm (5 pucks) Thermal Zone 4

Thermal
Zone 3

Science Payload
(submersible)

Electronics (C&DH and Nav)
~ -34 to 70 C? Non operational Temperature?

~-20t0 50 C,45W

< 1100 C Needs > 1000 W heat from source
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Design Assumptions

Begin with Europa Lander systems and mass parameters
* SLS launch with same dry mass as Lander concept project

* Same trajectory design to Jupiter and Europa
e Same Deorbit system

* Same Mass to the surface (but not skycrane lander system)

Begin with known power sources (radioisotope)
 Whatadvances can we make?

Baseline 10Km ice thickness
* Baseline Ice temperature profile, salt content

Set approximately two-vear time for ice travel

ér
2,

Deorbit, Descent, Landing
» Guided deorbit bum

* Propulsive Landing System

Cruise / Jovian Tour * 100 m accuracy

» Earth Gravity Assist: Oct 2026
« Jupiter Orbit Insertion: Oct 2029
» Eariest fanding on Europa: April 2031

| Ean
° Ot X

-
Larth Grtnty// b
Assist

‘ Launch
i -« SLS Block 1b

A, » 2024 (eariest)

Europa Lander Mission Design
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Conceptual Design

7 KWth Main + 1 KWth Nose Power Sources

lce Probe CBE Mass CBE Power
(Kg) (We)
Total Probe 210.8 597.6
Navigation 4.59 11.4
C&DH 1.50 10.0
Power 33.26 4.0
Telecommunication 5.55 30.0
Drilling / Water Jet 16.00 400.0
Submarine payload 26.70 27.2
Structure 112.00 5.0
Thermal 11.20 110.0
Margin (%)* 41 29

*Mass margin calculated against 335 Kg landed mass allocation for Europa Lander Class DDL

*Power margin based on 836 W EOL (9 years)

Science Payload A 023 m
(submersible)

Electronics (C&DH omm )
and Nav)

_ (New Microsphere .
Drill and Jet Radioisotope Based Thermoelectric
(Shaving bit with Generator)

water jets)

With existing GPHS thermal source 21



