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Deployable Aero-Decelerators

• Enable large masses to be 
delivered to Mars surface
• Also enable higher elevation landing 

sites and more precise landing

• Other advantages
• Can be deployed and restowed
• Resilient to micrometeoroid impact
• Can withstand dual heat pulse
• Could enable guidance by individual 

control of ribs
• Could use ribs as landing gear
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Mass Estimation

• Widely varying mass assessments 
for all concepts
• 8% - 46% of entry vehicle mass
• Different margin assumptions
• Hard to compare against inflatables 

and rigid bodies
• Robust mass estimates are key for 

determining performance
• A coupled aero-structural tool will 

improve deployable rib mass 
estimation process

• Enables assessment of different 
architectures/concepts
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Coupled Aero-Structural Model

6DOF entry trajectory simulator
• Geometry mesh of any shape/size

• European Mars Climate Database

• Modified Newtonian method

• Equations of motion integrated 

• Aerodynamic forces & coefficients 
updated at each timestep

Structural model of deployable ribs
• Aerodynamic forces across TPS 

summed and applied to rib nodes

• Euler-Bernoulli beam model

• Numerical integration method

• Individual ribs deform separately

• Updated shape passed back

+

Undeformed Mesh Mesh at Peak Deformation



Correlation and Validation

• Trajectory Simulator 
• Correlated against results from 

internal Airbus tool BL43
• Schiaparelli-based rigid entry vehicle

• Validated against published NASA 
flight data

• Structural Model
• Correlated against deflection 

results from Abaqus FEA model
• 5% deflection error with mesh 

points > 15 along rib length

MER SpiritIndustry Tool



Reference Mission
Mission Human Cargo

Surface Payload 20 tonnes 

Stowed Diameter 4.5 m

Entry Strategy Direct entry from transfer trajectory

Entry Velocity 6 km/s

Descent Strategy Supersonic retropropulsion at Mach 3.5 
above 3 km altitude

Landing Site Elevation 0 km MOLA 16 m diameter

4.5 m rigid nosecone

6.1 m deployable rib

70° rib angle

Credit: NASA



Deformation Animations

• Variable parameters include:
• All 6DOF trajectory initial 

conditions
• Entry vehicle size and shape
• Number of ribs
• Rib cross-section, dimensions and 

material properties
• Support strut location
• Payload centre of gravity

Reference Mission 16 m Diameter with Realistic Rib Design

Unbalanced Forces with Highly Flexible Rib Design



Rib Stiffness Variation

• Varied bending stiffness of ribs 
• !" range: 4-84 × 106 Nm2

• Reference Human Cargo mission 
assumed

• Clear effect on drag coefficient
• Only very flexible ribs show 

significant effect on trajectory
• !" ≤ 7 × 106 Nm2 

• 25% higher velocity at 10 km
• 7% increase in peak heat flux
• 13% decrease in peak g-load
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Rib Stiffness Variation

• Increasing rib flexibility 
damps attitude oscillations 
more effectively
• New deformed shape is 

more stable 
• e.g. similar to 45° sphere-

cone having greater stability
• Flexibility alone does not 

lead to beneficial effects on 
trajectory
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Rib Tapering Effect

• Mass savings from flexible tapered 
ribs  => increase entry vehicle 
diameter
• Maintained entry vehicle mass
• Balanced decreased rib mass with 

increased TPS mass 
• Beneficial trajectory effect

• Larger diameters decelerate more 
effectively at higher altitudes

• Lowers peak heat flux significantly                          
(42 => 30 W/cm2)

• Reallocating the mass gained from 
flexibility is very beneficial
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Number of Ribs

• Maintained total rib mass by 
balancing rib size/stiffness with 
number of ribs
• Very large effect on trajectory

• Drag coefficient varies significantly
• Fewer stiffer ribs deform less but give 

lower drag coefficient initially
• Prefer larger number of more flexible 

ribs – to a limit
• e.g. 16 ribs in this case

• Optimise number of ribs for each 
specific mission – more flexible ribs 
generally preferred
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Support Strut Location

• Strut can be located at any point 
along deployed element
• Investigated for one rib design case 
• Improvement in drag coefficient with 

strut distance from hinge
• Minor (< 3%) change in peak heat flux, 

g-load, velocity at 10 km

• => Strut location should be based on 
maximum principal stress
• Ensure material yield strength including 

safety factor is not exceeded

• Optimise with rib flexibility for lowest 
mass design 0
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Conclusions and Next Steps

• Aero-structural simulator tool developed to assess deployable aero-
decelerator concepts and improve mass estimates
• Continue using tool to investigate variables and optimise designs

• Flexible deployable ribs are beneficial if resulting mass savings are 
reallocated to increase vehicle diameter
• Decreases peak heat flux significantly
• Attitude damping increases with flexibility

• Number of ribs has a large effect on the drag properties and must be 
optimised for each mission 
• Next steps: validation of aero-structural effects via experiment

• Lab-scale test to investigate TPS flexure/wrinkling as ribs deform
• High-speed wind tunnel test to investigate stability
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