

Mars 2020 Project

Making an Onboard Reference Map from MRO/CTX Imagery for Mars 2020 Lander Vision System

Yang Cheng, Adnan Ansar, Andrew Johnson, Rich Otero, Nathan Williams

JPL

Terrain Relative Navigation

Jet Propulsion Laboratory California Institute of Technology

Challenges and General Approach Strategy

- Challenges:
 - There is no reliable ground truth reference for Mars
 - All available orbital images are taken by push broom cameras, which introduce difficult-to-model artifacts
 - This is the first ever use of a reference map for real time EDL. No successful preceding example exists.
- Strategy:
 - Identify all possible error sources related to the final map product.
 - Choose the most reliable and suitable segment of data.
 - Refinement of input models and batch image motion refinement.
 - Validate the final map product by (1) comparing the LVS map with other maps from different platform such as HRSC, HiRISE and (2) Cross-validating independently generated maps.

MRO CTX imaging is used to generate the LVS map

- CTX images are 6m/pixel and about 30km across
- MRO images the landing site around the time of landing (telecom constraint)
- stereo pairs are needed for elevation map generation while one of the stereo images is used for the appearance map

- 2 stereo pairs are needed to cover the map area
 - a third stereo pair is used to improve de-jittering (bundle adjustment)
- an additional 3 stereo pairs will be used to build a separate map for V&V

LVS elevation and appearance map

LVS Map Generation Improvements

Jet Propulsion Laboratory California Institute of Technology

Action	Description	Result
CTX image and ancillary data selection	Used image, temporal, spatial, and weather information and associated ancillary data quality info to select the highest quality image set	Avoided poor quality (e.g. dusty) images and bad ancillary data (e.g. low quality orbit solution)
Camera model refinement	Errors were found in the available CTX camera models (Bell and Kirk). Refined the camera model using using HRSC/MSL MARDI and CTX images.	Reduced camera error from ~150 m to < 50 m and camera attitude error from 0.08° degree to <0.02°
Time tag correction	The time tags of CTX images contain up to 30ms of error. Used stereo ray gap analysis to reduce this error.	Reduced map error from more than 100 m to less than 10 m
Bundle adjustment	MRO attitude file (CK kernel) does not capture MRO jitter (high frequency vibration) which can result DEM errors up to 10 m. Used multiple images to solve for the jitter and removed it from the attitude profile.	Reduced the map error to meters.

LVS Appearance Map

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

Jezero Mosaic A (30 by 30 km)

Jezero Mosaic B (30 by 30 km)

Compliance Approach

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

Elevation Map Noise

Compared 2 LVS elevation maps error < 15m (3 sigma)

Map Orientation

Compared independent CTX image to LVS appearance map. error < 0.3mrad

Co-registration Error

Summed stereo projection error (ray gaps) with misregistration in overlap region between orthophotos that make the appearance map error < 3m

^{© 2018} California Institute of Technology. Government sponsorship acknowledged

Conclusion

- In this paper we presented a new methodology for building the reference map from CTX imagery. Some error sources are identified and analyzed. Some of the errors, such as the time tag error and camera model error, have been addressed. For other errors, which are harder to remove, we have developed a procedure to reduce them as much as possible.
- Two independent LVS reference maps Mosaic A & B have been produced so far. We have validated both maps against each other and against other data such as HRSC and HiRISE maps. These maps have met and exceeded the mission requirements.

LVS Map Definition

Jet Propulsion Laboratory California Institute of Technology

Potential Error Sources

Error Name	Description	Magnitude	Source
	There is up to 35 uRad uncertainty in the s/c quaternions relative to the Mars equator and IAU vector of date frame instance uploaded to		
MRO attitude error	the s/c	35 uRAD	SPICE Team
Attitude error between Mars	There is a few (<5) uRad variable error between the Mars equator and IAU vector of date frame instance uploaded to the s/c and the	<5 uPad	SDICE Team
	continuous implementation of this frame is SPICE		SPICE lealli
More exientation model	There is a ~10 uRad error in Mars rotation provided by IAU constants relative to higher fidelity Mars rotation model developed by JPL SSD	~10	SPICE & SSD
Mars orientation model	group	10 UKAD	icanis
MRO Trajectory error	MRO orbit solution can have up to 10s of meters error	~10m	SSD team
MRO CTX Time tag	MRO clock linear piecewise correlation function provided in SCLK kernel can have error of up to 20 *milliseconds*	20 millseconds	SPICE Team
MRO CTX camera model	MRO CTX camera model may have up to 10 pixels displacement error(LVS team);	10 pixels	JPL/USGS Team
Image Jitter	MRO CK does not capture high frequency jitter	5 m	JPL team

Careful CTX image data selection (Jezero) (93651)

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

Requirement ID: 93651:The LVS appearance map shall be constructed from images with sun elevation angles in the Lm frame that are within $\frac{1}{-15}$ of the sun elevation angle at nominal landing time and are within +/-35° of the nominal sun azimuth angle at landing time.

Jezero Landing Sun Illumination • elevation: 39.6° to 42.2°

- azimuth: 255.8° to 257.2°

Role	Image name (Mosaic A)	sun ele.	delta ele	sun azi.	delta azi.
1 First pa	ir G13_023168_1986_XN_18N282W.cal.pgm	44.16	3.16	264.96	8.96
2 First Pa	ir G13_023102_1986_XN_18N282W.cal.pgm	44.49	3.49	264.49	8.49
3 Second	Pair F04_037396_1985_XN_18N282W.cal.pgm	34.7	-6.3	224.85	-31.15
4 Second	Pair F04_037330_2008_XN_20N282W.cal_sub.pgn	n 36.7	-4.3	222.85	-33.15
5 Suppor	t Pair P18_007925_1987_XN_18N282W.cal.pgm	47.12	6.12	279.71	23.71
6 Suppor	t Pair P19_008650_1987_XI_18N282W.cal.pgm	46.25	5.25	287.21	31.21

Role	Image name (Mosaic B)				
1 First Pair	J03_046060_1986_XN_18N282W.cal.pgm	40.1	-0.9	240.3	-15.7
2 First Pair	J03_045994_1986_XN_18N282W.cal.pgm	42.4	1.4	237.6	-18.4
3 SecondPair	F05_037607_2008_XN_20N282W.cal_sub.pgm	32.7	-8.3	261.8	5.8
4 Second Pair	F05_037752_2008_XN_20N282W.cal_sub.pgm	32.4	-8.6	255.57	-0.43
5 Support Pair	D14_032794_1989_XN_18N282W.cal.pgm	51.9	10.9	241.3	-14.7
6 Support Pair	D15_033216_1989_XN_18N282W.cal.pgm	51.08	10.08	254.2	-1.8

LVS DEM

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

 $\ensuremath{\mathbb{C}}$ 2018 California Institute of Technology. Government sponsorship acknowledged

Map Error Sources

Jet Propulsion Laboratory California Institute of Technology

Batch Image Bundle Adjustment

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

1. Image triangulation and outlier rejection

2. Attitude adjustment

Image Dejittering (ray gaps (m))

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

Ray gap is reduced from 5 m to <1 m

© 2018 California Institute of Technology. Government sponsorship acknowledged

15