

The Need for Subglacial Bedrock Sampling

- Knowledge of subglacial environment is poor.
- Reliant on airborne geosurvey to map Antarctic subsurface.
- Little knowledge of geological composition and age of terrain.
- **Isotopic analysis** of bedrock provides history of exposure, hence allows us to map glacial front over time.

ASIG Rig

Subglacial Drilling on Continental Antarctica

- Bedrock sampling rigs do exist!
- "Agile Sub-Ice Geological (ASIG) Drill" operated by USA.

ASIG Ria

- Rock core samples from 700 m depths.
- Complex, utilising large quantities of drilling fluid and heavy machinery.
- Complexity comes at a logistical cost.
- Best explained using the Antarctic metric of logistical complexity, the **Twin Otter flight**.

Twin Otter Logistics

- De Havilland Canada Twin Otter are an Antarctic workhorse, used for ferrying people (~ 4) and ~ 1 tonne of cargo up to 800 km from base.
- BAS operate six Twin Otters from Rothera station.
- Twin Otter availability is major limitation on fieldwork ambitions.

BAS 'RAID' Twin Otter Demand

How!

University of Glasgow Top Trumps...

The Planetary Drilling Approach

- The UoG Space Systems team have experience developing planetary drilling systems.
- Approach requires different mindset to industrial-scale drilling.
- Planetary systems are typically designed to operate with low power, mass, volume, weight-onbit and torque.
- Remoteness of target sites requires **high degree of reliability**, **autonomy** and **dry drilling** (no drilling fluid) in a cold, harsh environment not dissimilar to Mars.
- UoG undertake collaboration with British Antarctic Survey (BAS) to develop a "Subglacial Bedrock Sampler".

BAS RAID Drill Heritage

- Building upon heritage of Rapid Access Isotope Drill (RAID), designed to sample ice cuttings from depths up to 1 km.
- Lightweight wireline system provides solid baseline for new development.
- Proven, robust system breaking records in dry drilling.
- Incapable of sampling bedrock.

RAID Retrofit

- Proposed retrofit of RAID ice-drill.
- Existing ice-auger replaced with self contained percussive drilling system. Drill within a drill.
- Existing design significantly constrains maximum diameter system diameter (80 mm), torque (< 10 Nm) and power (< 1 kW) of proposed Subglacial Bedrock Sampler.

Subglacial Bedrock Sampler Overview

Cam Hammer Principle

University of Glasgow Cold Testing

P-RAID - Industrialised

P-RAID - Industrialised

Summer Campaign 2018 – Skytrain Ice Rise

Summer Campaign 2019 – Sherman Island

