15th IPPW | June 2018 | Boulder, CO

MULTIPROBE MISSION DESIGN WITH APPLICATIONS TO THE OUTER PLANETS

Archit Arora (arora31@purdue.edu)

Sarag J. Saikia and James M. Longuski

School of Aeronautics and Astronautics, Purdue University, IN, USA

I gratefully acknowledge IPPW for providing funding

Credit: SNAP: Small Next-generation Atmospheric Probe, PSDS3

Why would we want multiple atmospheric probes?

- An extra small probe would greatly increase science
- Deploy multiple probes at one body
- Deploy probes during flybys

How would we design a multiprobe mission?

- One orbiter and two atmospheric probes in a single mission
- Deploy both probes at Uranus

Both probes same side (Prograde or retrograde)

Both probes opposite sides

One probe delivered before capture (Prograde or retrograde) and one after capture

Entry Site Selection

Our probe entry sites are limited by the interplanetary trajectory

Timing Adjustment ΔV

- Both spacecraft travel at the same rate
- Orbiter is not in line of sight of the probe
- Orbiter needs to speed up to meet probe

Crosstrack Adjustment ΔV

- The probe rotates out-of-plane with the atmosphere as it descends
- This causes a loss of line-of-sight with the orbiter
- Orbiter requires a slight inclination change to keep contact

Architecture Comparison: Case 1

Example mission: Given an interplanetary trajectory, we would like one probe to enter on the day side and one on the night side of Uranus

- Green probe does not enter far enough into day side
- Not enough separation between contact and capture

Architecture Comparison: Case 2

- Probe enters into day side, clear of capture conflict
- Feasible design

Summary

- 1. Multiple ways to conduct a multiprobe mission
 - Drop-off during flybys
 - Drop-off multiple at a single body
- 2. Provides additional science opportunities for low cost
 - Flybys of Venus, Jupiter, Saturn
- 3. Key design aspects
 - Interplanetary trajectory
 - Architecture selection
 - Entry site selection (fixes entry flight path angle + entry velocity)
 - Deflection maneuvers