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OS Mechanical Support  
Structure (OMSS)

Supports OS during MAV launch 
and ejects OS into Mars Orbit

Orbiting Sample (OS)
Holds & protects tubes, 

Surface plating & beacon 
ensure OS can be 

recovered in Mars Orbit

Aero-Thermal Structure (ATS)
Protects the OS from aerodynamic 

& thermal loads, also allows OS 
canister insertion & ejection

1. Insert & secure
OS-canister

2. Prepare and
launch

3. Eject OS     
into Mars 
orbit

+ +MOPS =

Structures
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MAV OS Payload System (MOPS)
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Through-Cable Restraint with Cable Cutter

OS-to-OMSS Interface

• Requirements for OS-to-OMSS connection
– Strong enough to withstand random vibe loads during Mars

Ascent; analysis indicates OS pull-off load around 15 kN
– Allow for controlled, reliable OS release
– Require no features above OML on the OS

• Desire to have single separation mechanism
– Simplifies release operation; no timing concerns
– Centrally-located mechanism could provide pull-down force

• Need axial & lateral compliance to avoid over-constraint
– Two suitable approaches identified; several concepts explored

1. Through-cable with cable cutter
2. Spring-mounted frangibolt

Frangibolt Mounted on Array of Compression SpringsFrangibolt Mounted on Belleville Springs
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• Single Frangibolt suspended on Belleville washers
– Provides 15 kN pull-down force upon assembly

– All components sized to carry 15 kN load with margin

• OS interfaces with the OMSS saddle at four locations

– Stiff, secure interface with the Frangibolt

– Loads reacted at 3 cup-cones

• Corresponding changes to the OS design

– Internal ribs between Frangibolt interface and cup-

cone interfaces for efficient load path
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• Goal: Minimize Orbiting Sample (OS) mass/weight
– 1 kg mass savings for the OS could save 5 kg for the 

MAV and 20 kg for the Lander

• First target for topology optimization (top-opt): Canister body

• Utilizing Sandia National Lab (SNL) code Plato for top-opt

• OS assembly is the logical first load case to examine

– Tubes clamped between canister and Al foam during assy

1.22 kg
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• Ran code in “compliance 
minimum” mode

• Volume fraction of initial total 
space: 0.25

• Optimized mass: 1.13 kg
• Tree-like structures “growing” 

from perimeter

• Dome-like interior profile

Section cut view
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Reference OS canister body Optimized OS canister body
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VM stress

Vertical 
displacement

Reference Optimized

Metric Limit FS Reference Optimized
Peak VM Stress 200 MPa 1.25 202 MPa (MS = -0.21) 26 MPa (MS = +5.2)

Peak Displacement 1.5e-4 m 1.0 9.4e-4 m (MS = -0.84) 2.2e-5 m (MS = +5.8)
Mass - - 1.22 kg 1.13 kg
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• OS attachment to the MAV is fully conceived and can withstand the strong vibe loads 
experienced during MAV Ascent

• Initial OS topology optimization results are promising and provide insight into what a more 
efficient OS canister body design may look like

• Given the large positive margins in the OS canister body, further mass reduction may be 
possible

• Next, impact analysis using an explicit FEA code will be incorporated into the evaluation of 
the geometry resulting from topology optimization

– Limiting load case for the OS is likely impact after Earth entry; needs to be assessed
– LS-DYNA models exist, and modeling using the SNL code Sierra is in development

– Explicit FEA cannot be incorporated directly into the optimization routine; will mesh 
geometry resulting from optimization and incorporate into existing LS-DYNA models
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Mass estimate:  [9.50] kg
Ø270 mm

OS Shell Assembly

RSTA

OS Canister Assembly

Aluminum 
Shell Core

Crushable 
Aluminum Foam 

Torlon Antenna 
Shell

Beacon and 
Battery Volume

36X RSTA

Atmospheric 
Sampling Volume
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