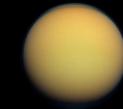

15th International Planetary Probe Workshop June 13th, 2018 Boulder, Colorado



Pneumatic Sample Transport for Ocean Worlds

HΒ

AP

ΗB

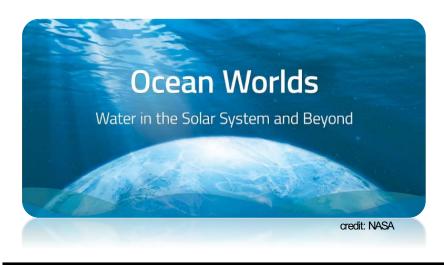
HB HB

HBR HBR

Presenter: Joey Sparta Mechanical Engineer Honeybee Robotics (HBR) isparta@honeybeerobotics.com

Kris Zacny				
Ralph Lorenz				
Fredrik Rehnmark				
Tighe Costa				
Zach Mank				
Jameil Bailey				
Nick Traeden				

SR	ColdTech Pl
L	ColdTech Co-l
R	Sr. Systems Engineer
BR	Pneumatic Subsystem Lead
R	Sample Delivery Subsystem Lead
R	Avionics Lead


Mechanical Engineer

Background

COLDTech - Concepts for Ocean worlds Life Detection TECHnology

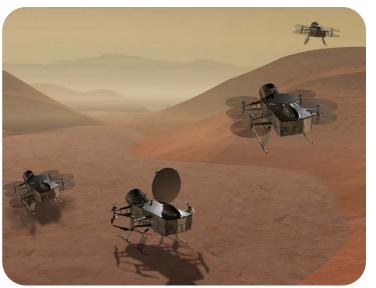
NASA-funded ocean worlds technology development program:

a) science instruments

b) sample acquisition & delivery systems

c) spacecraft technology for ocean access

Dragonfly Mission



- New Frontiers IV mission finalist
 I-year phase A study
- Titan rotorcraft lander with drills & pneumatic sampling system

credit: Johns Hopkins Applied Physics Lab

SEARCH FOR LIFE

LOW GRAVITY (< 0.15 g)

CRYOGENIC TEMPERATURES

WET/COHESIVE MATERIAL POSSIBLE

Kev Sampling Strategies

- Minimize heat transfer into sample
 - Keep sample system cold
 - o Sample quickly
- Minimize surface contact between sample and spacecraft

Mechanical vs Pneumatic Transport

Mechanical Transport

- Robotic arm & manipulator
 - Scoops (Phoenix, MSL)
- Screw / Auger (Resource Prospector)
- Brush (Resource Prospector)
- Vibrating mechanisms (MSL)
- Gravity drop
- Belts, buckets, trays

Energy efficient Complex / multiple moving parts Issues with cryogenic temperatures

credit: JPL / Caltech

Pneumatic Transport

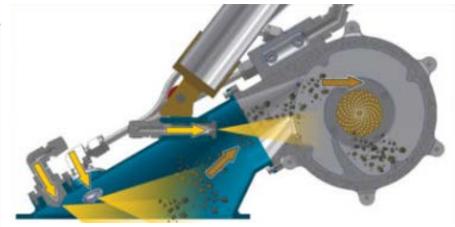
- Uses gas flow to transport materials

 Eg. Vacuum cleaners
- Pipeline + pressure source
- Pressure sources fan or gas tank
- Negative pressure (Venus Vega & Venera)
- Positive pressure (PlanetVac)

Extremely fast transport (reduced heat transfer) Mostly passive system Requires a supply of gas

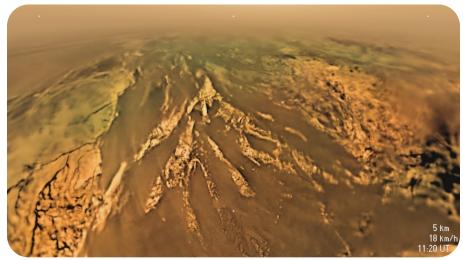
credit: NASA/GSFC/NSSDC

Pneumatic Transport


• Atmospheric ocean worlds (Titan)

- Can use local air as carrier gas (using a fan / pump)
- Negative pressure: pulls sample down pipeline
- Positive pressure: pushes sample down pipeline

• Airless ocean worlds (Europa, Enceladus, Ganymede, Callisto)


- Must bring your own carrier gas
- Must provide manifold to seal against the surface
- PlanetVac Honeybee Robotics & The Planetary Society

Titan Environment

- Surface:
 - Cryogenic (94 K, -180 C)
 - o I.5 bar
 - $\circ~$ Air: 95% Nitrogen, 5% Methane, < 0.1% other
- Sand dunes (up to 150 m high)
- Methane rivers and lakes
- Ammonia-rich subsurface ocean?
 - Estimated 10% NH3 by mass
- Cryovolcanoes Ammonia-water "lava"

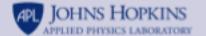
(credit: ESA/NASA/JPL/University of Arizona)

View of Titan surface from Huygens Probe, 2005:

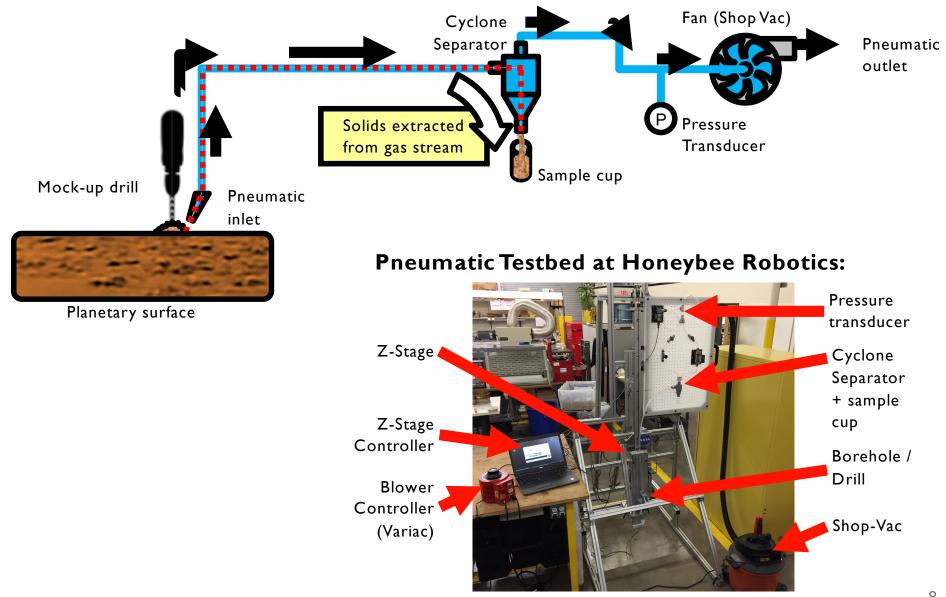
HONEYBEE ROBOTICS

OHNS HOPKINS

(credit: ESA/NASA/JPL/University of Arizona)

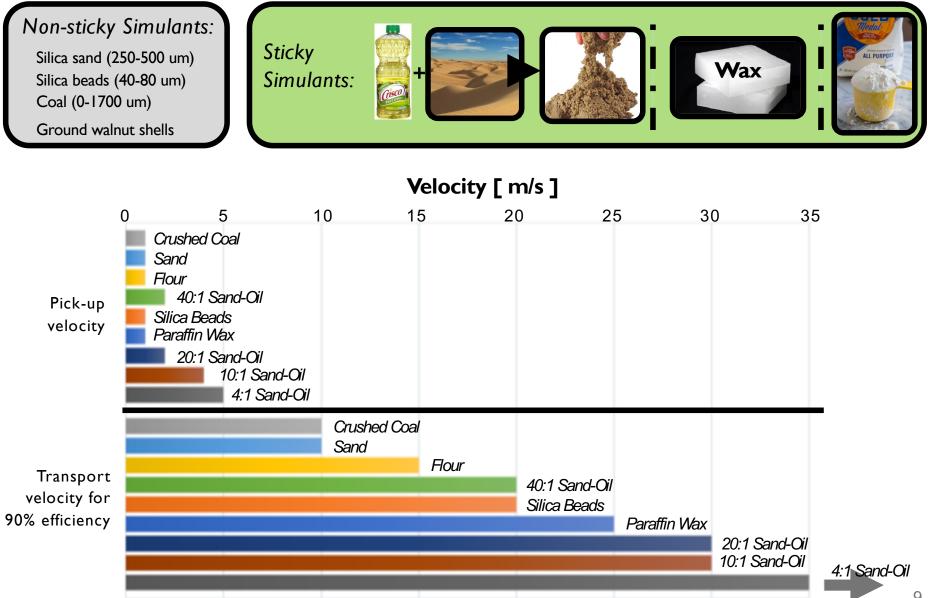


• Titan's dense atmosphere and low gravity make it much easier to fly AND to convey pneumatically!


		Earth	Titan	Titan- Earth ratio
Air Density	ρ	1.2 kg/m ³	5.4 kg/m ³	4.4
Viscosity	μ	1.8 x 10 ⁻⁵ Pa-s	6.0 x 10 ⁻⁵ Pa-s	0.33
Gravity	g	9.8 m/s^2	1.4 m/s^2	0.14

		Equation	Velocity
Equivalent Dynamic Pressure	q	$\frac{1}{2}\rho u^2$	$u_{\text{Titan}} = \frac{1}{2} u_{\text{Earth}}$
Equivalent Particle Terminal Velocity	u_T	$\sqrt{\frac{4d_pg(\rho_p-\rho_{air})}{3\rho_fC_D}}$	$u_{\text{Titan}} = \frac{1}{5} u_{\text{Earth}}$

Room Temperature Testing

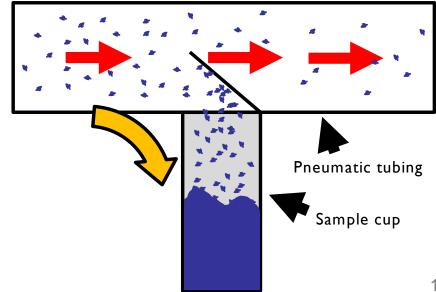


Pneumatic Transport Velocity

Solid Particle Extraction

Cyclone Separator

- Creates gas vortex or "cyclone"
- Centrifuge-like separation
- Delivery into cup by gravity
- Widely used in industrial conveying
- Demonstrated in lunar gravity (parabolic flights)



Deflector Cup

- Intercepts particulates with mesh screen
- Deflect into cup outside airstream
- Highly inefficient
- Gravity independent
- Clean / minimal cross-talk between samples

Solid Particle Extraction

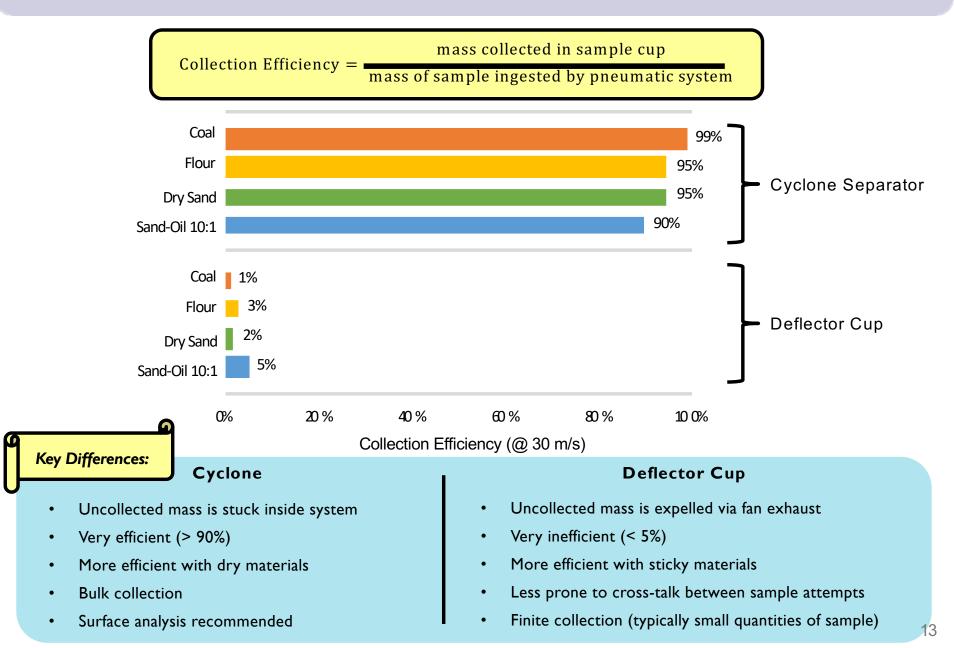
Pathological Testing

Most materials are transported easily, **however** tests with sand-oil helped to identify challenges of transporting sticky materials

Saturated sand-oil mixture

Sticking inside cyclone:

Sticking to tubing walls:



Lessons learned:

- Do not arrest sample until reaching final destination (i.e. keep it airborne)
- Minimize all disruptions in the pipeline sharp bends, blockages, etc...
- Flexible tubing instead of rigid tubing
- More air velocity = cleaner transport

- Honeybee is developing a pneumatic sampling system for Titan exploration
 - Could be adapted for operation on other ocean worlds (e.g. Planet-Vac)
- Two types of particle extractors tested to determine strengths and weaknesses
 - Room temperature analog testing to identify and characterize performance with different simulants

Thank you for your attention... Any questions?

