Initial Results of Shell Lander Impact Tests for the Exploration of Medium-Size Airless Bodies

15th International Planetary Probe Workshop (IPPW) June 14, 2018, Boulder, Colorado, USA.

<u>Christian D. Grimm</u>, Silvio Scröder, Lars Witte

Institute of Space Systems, German Aerospace Center (DLR), Bremen, Germany;

Teaser: MASCOT Landing on Asteroid Ryugu (October 2018)

Knowledge for Tomorrow

"Landing" Missions to Small Bodies – up to date

Mission	Target	Lander	Carry-on	Launch	Landing	TD Vel. [m/s]
Fobos 1	Phobos	Fobos 1 DAS	yes	07.07.88	-	<1
Fobos 2		Fobos 2 DAS	yes	12.07.88	-	<1
(CCCP)		Fobos 2 PrOP-F	yes		-	<1
NEAR (NASA)	Eros	orbiter	-	17.02.96	12.02.01	~1.6
Hayabusa	Itokawa	orbiter	-	19.11.05	19.11.05	~0.03
(JAXA)		MINERVA	yes		-	~0.1
Rosetta	Chury-G.	orbiter	-	02.03.04	30.09.16	~1
(ESA)		Philae	yes		12.11.14	~1
Fobos-Grunt	Phobos	lander stage	-	08.11.11	-	
(Russia)						
Hayabusa2 (JAXA)	Ryugu	orbiter	-	14.12.14	10.2018	~0.03
		MINERVA-II-1	yes			~0.2
		MINERVA-II-2	Yes		(TBD)	~0.2
		MASCOT	Yes			~0.2
OSIRIS-REx (NASA)	Bennu	orbiter	-	08.09.16	2019 (TBD)	

Body dependent Gravity Acceleration

Body dependent Gravity Acceleration

Other Targets

Source (www.lpl.arizona.edu)

Reference Misisons:

DLR.de · Chart 5

Landing on larger Bodies (e.g. Martian Moons)

DLR.de • Chart 6

DLR

Shell-Lander (SHL) – Concepts

- Carry-on Surface Science Package (e.g. Mascot) with a mass of 10-15 kg, with a protective shell structure to sustain higher impact loads during landing resulting from touchdown velocities of 1-4 m/s.
 - Concept No.1: full-shell, no Propulsion, no attitude control, no electric actuators (motors), fixed shell with cut-outs for optical sensors.
 - Concept No.2: full-shell, no propulsion, no attitude control, no electric actuators (motors), unfold or eject shell after landing with spring mechanism, posibility of additional solar generators.
 - Concept No.3: half-shell, no propulsion, vertical attitude control with fly-wheel or spin stabilzed at separation, ejection of shell after first impact.

Hardware Tests - Pendulum Testbed LR Lander d DOD DOD mg demonstrator Target: flat wall or hemisperical obstacle DLR DLR.de • Chart 8

Test Setup @ DLR Landing and Mobility Test Facility (LAMA)

Pendulum Characterisation "Bending Beam Oscillation"

Testplan

Fixed core and face sheet material:

- core: AL-Honeycomb
- FaceSheet: Dyneema fabric

Tests performed for worst case scenarios:

- hard flat (boulder >> lander)
- hard obstacle (boulder << lander)</p>

Objectives:

- 1) Difference between flat and obstacle impact
- 2) Difference between top side and edge elements

- Influence of face sheet and number of laminates (specifies stiffness)
- 4) Influence of impact speed

Test No.	Part No.	No.of Laminates	Impact Velocity [m/s]	Impact element	Impactor type
1	T4	2	4	top	flat
2	T5	2	4	top	penetrator
3	Τ1	1	4	top	penetrator
4	Т2	1	4	top	penetrator
5	Т3	1	4	top	flat
6	Т8	0	4	top	flat
7	Τ7	0	3	top	flat
8	Т6	0	2	top	flat
9	S1	1	4	side	flat
10	S2	1	4	side	penetrator
11	S9	0	4	side	penetrator
12	S8	0	3	side	penetrator
13	S7	0	2	side	penetrator
14	S6	2	2	side	penetrator
15	S5	2	4	side	penetrator
16	S4	2	4	side	flat
17	E1	1	3	short edge	penetrator
18	S6/T4	2/2	4	long edge	penetrator
19	T4/S6	2/2	4	long edge	penetrator
20	T5/S5	2/2	4	long edge	flat
21	S5/T5	2/2	4	connection	flat

Parts/Elements: T: Top/Bottom, S: Side, E: Edge

Exemplary Results – Side Elements

shell dimension: side shell: 30x20x10cm; mass: 350g top/bottom: 30x30x10cm; mass: 500g

0.04

0.04

DLR.de · Chart 12

Comparision of Crush-Elements

Conclusion

- Shell Lander Concept to support "generic" surface science pacakges for heigher landing velocities on small bodies (e.g. missions to the Martian moons or Trojan asteroids with diamters of 10 – 50 km),
- Current design includes full- and half shell concepts, dedicated trade-offs on-going,
- Tests performed for shell-elements in lab environment => TRL-4 achieved,
- The combination of a hard shell with a soft core, yields to high enery absorbtion and lower peak acceleration,
- Absorbed Energie and COR independ of impact speed, here: ~80%

Outlook and Ongoing Work

Numerical Simulation and Test Correlation

Test of different materials (e.g. 3D-printed metal structures)

Design and test of unfolding mechanism

Bouncing Tests in Zero-G

DLR.de · Chart 15