RESTRICTED ADDITIVE SCHWARZ PRECONDITIONERS WITH
HARMONIC OVERLAP FOR SYMMETRIC POSITIVE DEFINITE
LINEAR SYSTEMS
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Abstract. A restricted additive Schwarz (RAS) preconditioning technique was introduced re-
cently for solving general nonsymmetric sparse linear systems. In this paper, we provide one-level
and two-level extensions of RAS for symmetric positive definite problems using the so-called har-
monic overlaps (RASHO). Both RAS and RASHO outperform their counterparts of the classical
additive Schwarz variants (AS). The design of RASHO is based on a much deeper understanding
of the behavior of Schwarz type methods in overlapping subregions, and in the construction of the
overlap. In RASHO, the overlap is obtained by extending the nonoverlapping subdomains only in
the directions that do not cut the boundaries of other subdomains, and all functions are made har-
monic in the overlapping regions. As a result, the subdomain problems in RASHO are smaller than
that of AS, and the communication cost is also smaller when implemented on distributed memory
computers, since the right-hand sides of discrete harmonic systems are always zero that do not need
to be communicated. We also show numerically that RASHO preconditioned CG takes fewer number
of iterations than the corresponding AS preconditioned CG. A nearly optimal theory is included for
the convergence of RASHO preconditioned CG for solving elliptic problems discretized with a finite
element method.
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1. Introduction. A restricted additive Schwarz (RAS) preconditioning tech-
nique was introduced recently for solving general nonsymmetric sparse linear systems
[1,5,7,14, 16,17, 20]. RAS outperforms the classical additive Schwarz preconditioner
(AS) [8, 24] in the sense that it requires fewer number of iterations, as well as smaller
communication and CPU time costs when implemented on distributed memory com-
puters, [1]. Unfortunately, RAS in its original form is nonsymmetric and therefore the
conjugate gradient method (CG) cannot be used [15]. Although a symmetrized ver-
sion was constructed in [7], our numerical experiments show that it often takes more
iterations than the corresponding AS/CG. In this paper we propose another modi-
fication of RAS and show in both theory and numerical experiments that this new
variant works well for symmetric positive definite sparse linear systems and is superior
to AS. Recall that the basic building blocks of classical Schwarz type algorithms are
realized by solving the linear systems of the form

(1.1) Alw = Rlv

on each extended subdomain, where A? is the extended subdomain stiffness matrix
and R{ is the restriction operator for the extended subdomain (formal definitions will
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be given later in the paper). The key idea of RAS is that equation (1.1) is replaced
by
(1.2) W=l inside the un-extended subdomain

' ¢7 71 0 in the overlapping part of the subdomain.

Note that the solution of (1.2) is discrete harmonic in the overlapping part of the
subdomain, and therefore carries minimum energy in some sense. Setting part of the
right-hand side vector to zero reduces the energy of the solution, and also destroys
the symmetry of the additive Schwarz operator. In this paper, we further explore the
idea of “harmonic overlap” and at the same time keep the symmetry of the Schwarz
preconditioner. We mention that other approaches can also be taken to modify the
Schwarz algorithm in the overlapping regions, such as allowing the functions to be
discontinuous [4].

The algorithm to be discussed below is applicable for general symmetric positive
definite problems. However, in order to provide a complete mathematical analysis,
we restrict our discussion to a finite element problem, [3]. We consider a simple
variational problem: Find u € H} (), such that

(1.3) a(u,v) = f(v), Yo € Hy(Q),

where
a(u,v):/ Vu-Vvdr and f(v):/fvdm for f € L*().
Q Q

For simplicity, let Q be a bounded polygonal region in 2 with a diameter of size
O(1). The extension of the results to 82 can be carried out easily by using the theory
developed here in this paper and the well-known three-dimensional additive Schwarz
techniques; [9, 10, 12]. Let T"(2) be a shape regular, quasi-uniform triangulation,
of size O(h), of © and V C H{(Q2) the finite element space consisting of continuous
piecewise linear functions associated with the triangulation. We are interested in
solving the following discrete problem associated with (1.3): Find u* € V such that

(14) a(u*,v) = f(v), Yve.

Using the standard basis functions, (1.4) can be rewritten as a linear system of equa-
tions

(1.5) Au = f.

For simplicity, we understand v* and f both as functions and vectors depending on
the situation.

The paper is organized as follows. In section 2, we introduce notations. The new
algorithm is described in section 3. Section 4 is devoted to the mathematical analysis
of the new algorithm. We conclude the paper in section 5 by providing some numerical
results and final remarks. Through out this paper, C' is a positive generic constant
that is independent of any of the mesh parameters and the number of subdomains.
All the domains and subdomains are assumed to be open; i.e., boundaries are not
included in their definitions.



2. Notations. Let n be the total number of interior nodes of 7%(Q) and W
the set containing all the interior nodes. We assume that a node-based partitioning
has been applied and resulted in N nonoverlapping subsets W?,i = 1,..., N, whose
union is W. For each W?, we define a subregion Q£ as the union of all elements of
Th(Q) that have all three vertices in W2 U 9. Note that UQF is not equal to Q; see
Fig. 2.1(b). We denote by H as the representative size (diameter) of the subregion
QF.

We define the overlapping partition of W as follows. Let {W}!} be the one-
overlap partition of W, where W} D W} is obtained by including all the immediate
neighboring vertices of all vertices in W7; see Fig. 2.1(c). Using the idea recursively,
we can define a d-overlap partition of W,

Here the integer 4 indicates the level of overlap with its neighboring subdomains and
§h is approximately the extend of the extension. The definition of W7, as well as
many other subsets, can be found in an illustrative picture, Fig. 2.1.

We next define a subregion of (2 induced by a subset of nodes of 7"(Q) as follows.
Let Z be a subset of W. The induced subregion, denoted as 2(Z), is defined as the
union of: (1) the set Z itself; (2) the union of all the open elements (triangles) of
T"(Q) that have at least one vertex in Z; and (3) the union of the open edges of these
triangles that have at least one endpoint as a vertex of Z. Note that (Z) is always an
open region. The extended subregion ¢ is defined as Q(W}), and the corresponding
subspace as

VI =Y n HE(Q?) extended by zero to 2\Q°.
It is easy to verify that
V=Vl + V4 + VR

This decomposition is used in defining the classical one-level additive Schwarz algo-
rithm [8]. Note that for 6 = 0 this decomposition is a direct sum. Let us define
P} :V — V¢ by: for any u € V,

(2.1) a(P’u,v) = a(u,v), Vv e V..
Then, the classical one-level additive Schwarz operator has the form
P’ =P} ... 4+ P}

In the classical AS as defined above, all the nodes of Wi‘s are treated equally even
through some subsets of the nodes play different roles in determining the convergence
rate of the AS preconditioned CG. To further understand the issue, we classify the
nodes as follows. Let ['? = 9Q9\0); i.e., the part of the boundary of Q¢ that does
not belong to the Dirichlet part of the physical boundary Q2. We define the interface
overlapping boundary I'? as the union of all I'; i.e., ['¥ = UN T?. We also need to
define the following subsets of W, see, for examples, Fig. 2.1, where § = 1:

e W = W NT? (interface nodes)
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. T/Virts =wr’ AW (local interface nodes)

. W{:n =wr’ N Wi0 (local internal interface nodes)
. WZ out = \ Fin * (local cut interface nodes)
. WZ ol = (W‘S\WFS) N(U, W ) (local overlapping nodes)

o« WS, =WHAWL U 2 1) (local nonoverlapping nodes)

1,

. me = Wl‘inon Uw, Z in (internal nodes)

We note that the most northwest and the southeast nodes in (c¢) were added in
Fig. 2.1 to I‘f in order to make Qf a rectangle. This just to simplify the presentation
and it is not required in the implementation of the algorithms.

We frequently use functions that are discrete harmonic at certain nodes. Let
xr € W be a mesh point and ¢,, (z) € V the finite element basis function associated
with xg; i.e., ¢a, (2r) = 1, and ¢, (z;) =0,j # k. We say u € V is discrete harmonic
at g if

a(u, ¢g,) =0

If u is discrete harmonic at a set of nodal points Z, we say w is discrete harmonic in
Q(Z).

Our new algorithm will be built on the subspace ﬁ‘s defined as a subspace of V¢.
V‘5 consists of all functions that vanish on the cuting nodes lrfut and are discrete
harmonic at the nodes of Wi’ovl. Note that the degrees of freedom associated to the

subspace lNif is
76 — 179
Wi = W \ i, cut

and, since the values at the harmonic nodes are not independent, they can not be
counted toward the degree of freedoms. The dimension of V! is

dim (V) = Wi, .

Let Q(’V[V/?) be the induced domain. It is easy to see that Q(’V[V/'ﬁ) is the same as ¢

(3

but with cuts. We denote Q(W7?) by Q. We have then V9 = VN HL(Q?) and are
discrete harmonic on Q(W?, ). We denote QW? ) by Q°

1,

We define V° C V? as

i, ovl i,ovl"

V=Vg oV,

which is a direct sum. We remark that functions in Vo are, by definition, the sum of
functions u; € V9,4 =1,---, N. Functions in V can, in fact, be characterized easily
as in the following lemma.

Lemma 2.1. Ifu € V and u is discrete harmonic at all the overlapping nodes,
i.e., on UN W3 . thenu e V.

,oul?’



Proof. To prove that u € ﬁ‘s, all we need is to find a decomposition

N
w=> u; withu; €V}, i=1,---,N.

i=1

For the given u, we define u; piece by piece as follows. On the nodes in me we
let u; = u. On the nodes in W7, we let u; be zero. On the nodes outside W¢ we
set u; to zero. We now need only to define u; on the nodes belong to W}, ;. There,
we extend u; as a discrete harmonic function with boundary data given by wu; just

defined. O

3. One-level restricted additive Schwarz with harmonic overlap (RASHO)
method. Using notations introduced in the previous section, we now describe a new
method, namely a restricted additive Schwarz with harmonic overlap. B

We first define P} : V° — V? as a projection operator, such that, for any u € V9

(3.1 a(PPu,v) = a(u,v), Yve VY.
The RASHO operator can then be defined as
(3.2) PP=P)+... 4+ P.

Note, however, that the solution u* of (1.4), see also (1.5), is not, generally speaking,
in the subspace 175, therefore, the operator P? cannot be used to solve the linear
system (1.5) directly. We will need to modify the right-hand side of the system (1.5).
A reformulated (1.5) will be presented in Lemma 3.1 below. We will show that the
elimination of the variables associated with the overlapping nodes is not needed in
order to apply P’ to any given vector v € P?.

We now introduce a matrix form of (3.2). We define the restriction operator,
or a matrix, RY as follows. Let v = (vi,...,v,)T be a vector corresponding to the
nodal values of a function u € V; namely for any node z, € W, v = u(xy). For
convenience, we say “v is defined on W”. Its restriction on W?, Rlv, is defined as

_ vy ifx € Wi‘i
(3.3) (Rv) (@) =

0 otherwise.

The matrix representation of Ef is given by a diagonal matrix with 1 for nodal points
in W and zero for the remaining nodal points. We remark that, by way of definition,
the operator R¢ is symmetric; i.e., (R?)T = R?. Using this restriction operator, we
define the subdomain stiffness matrix as
A =R AR,

which can also be obtained by the discretization of the original finite element problem
on W? with zero Dirichlet data on nodes W \ W/. The matrix A¢ is block diagonal
with blocks corresponding to the structure of R? and its inverse is understood as an
inverse of the nonzero block. A matrix representation of P? denoted also by P} is
equal to

Pi= (&) a
6



and
(3.4) P = ((Z‘{)—1 +ot (/T?V)—l) A.

Using the matrix notations, the next lemma shows how to modify the system
(1.5) so that its solution belongs to V°.

Lemma 3.1. Let u* and f be the exact solution and the right-hand side of (1.5),
and

N

(3.5) w=> (A)'RYf,

i=1

then, we have u* = u* —w € ga’ which is the solution of the modified linear system
of equations

AT = f— Aw = f.

Proof. If we can show that

a(w7¢k) = f(¢k))

for a regular basis function associated with an arbitrary overlapping node z;, € Wi‘favl,
for some i, then we will have

(3.6) a(u® —w, ¢r) = f(éx) — f(¢r) =0,

which says that @* = u* —w is discrete harmonic at the overlapping node zj. We can
then use Lemma 2.1 to conclude the proof. Let us now consider

w; = (A) 'R,
which, by definition, is the same as
a(wi, ¢;) = (5, RYf), Vo, € WY,

Here and in the rest of the proof, ¢; is the basis function associated with the node
z; € WP. Using that R? is symmetric and

(67, BYf) = (f, R%;) = a(u*, R)¢)),
we get
(37) a’(wi7 ¢J) = a’(’U’*ﬂ E?(b])

Let us compute a(w;, @). Since zy is an overlapping node, it cannot be on the
boundary of ﬁf This leaves us with the following two cases.

Case (1): The support of ¢ (x) belongs to the exterior of ﬁf Since the supports
of w; and ¢;, do not overlap, we have

a(w;, ¢) = 0.
7



Case (2): The support of ¢ (x) belongs to the interior of ﬁf. In this case, we
have

a(wia ¢k) = a(u*, E?Qbk)

Taking the sum of the above equality fori =1,---, N,

N N _
a(w7¢k) =a (Zwl)¢k> =a <U*7ZR?¢IC> = a(U*7¢k))

i=1 i=1

which proves (3.6). Here the fact Zi\il E? =TI is used. O

There are basically two ways to compute w in practice. Suppose that subdomain
problems are solved using some LU factorization based method. One can use the same
factorization of A to modify the right-hand side of the system and to solve subdomain
problems in the preconditioning steps, as what was suggested in Lemma 3.1. Or,
one can obtain w by solving several small Dirichlet problems on each subdomain
with zero Dirichlet boundary conditions in the overlapping regions Qiovl. In both
strategies, the computation can be done in parallel and no communication is needed
in a distributed memory implementation. In the first approach u* is discrete harmonic
in Wi‘fovl u Wi‘fnan and in the second approach u* is discrete harmonic only in Wi‘favl.
We note that the discrete harmonicity of u* on Wi‘fnon is not required to the algorithms

and to the corresponding theory developed in this paper.
Let f = f— Aw, then @* is the solution of the following linear system of equations

(3.8) At = f.
Since u* € ﬁ‘s,
g= Pig*

is well defined, and can be computed without knowing u* by using the following
relations:

a(PPu*,v) = a(i*,v) = (f,v), Ywe Viandi=1,---,N.
More precisely speaking, we can obtain g by solving the subdomain problems
a(g;,v) = (f,v), Yv € 17{5,

fori = 1,---,N, and taking g = g1 + --- + gny. With such a right-hand side, we
introduce a new linear system

(3.9) Pou* =g,

which is equivalent to the linear system (3.8); see Theorem 5.1. The system (3.9)
is a symmetric positive definite system under the usual energy inner product, and
therefore, can be solved using the conjugate gradient method. RASHO has a few
advantages over the classical AS preconditioner. Let us recall AS briefly. Let

v, ifxy € Wi‘i
(3.10) (R)v) (k) =

0 otherwise.

8



Then the AS operator takes the following matrix form
(3.11) PP= (A" +--+ (AN A

where A2 = RIA(R?)T. Because of the inclusion of the cut interface nodes, the size
of the matrix A? is |W?|, which is slightly larger than the size of the matrix /Tf,
which is |Wi5|. In a distributed memory implementation, the operation R?U involves
moving data from one processor to another, but the operation fifv does not involve

any communication. More precisely speaking, in RASHO, if u € 17‘5, then it is easy
to see that

(3.12) RJAu= RS, Au,

1,in
where R? ;. is defined as
,

v ifxy € Wz{m

(3.13) (R n0) (i) =
0 otherwise.

Therefore, for functions in 17‘5, we can rewrite ﬁ‘s, as in (3.4), in the following
form

(3.14) PP o= () R 4+ (A%)  Rhn) A

Although the operator (3.14) does not look like a symmetric operator, but it is indeed
symmetric when applied to functions in the subspace V3. The form (3.12) takes the
advantage of the fact that the operator Efm
it needs only the residual associated with nodes in W7, € Q2.

We make some further comments on how the residual Au can be calculated in a
distributed memory environment, for a given vector u € V°. In a typical implementa-
tion, the matrix A is constructed and stored in the form of {A%}, each processor has

one or several of the subdomain matrix Zf Similarly w is stored in the form of {u;},

is communication-free in the sense that

where u; € V9. We note, however, that to compute the residual at nodes W/, some

,in
communications are required. The processor associated with subdomain Q¢ needs
to obtain the local solution from the neighboring subdomains at nodes connected to
W{:n. It is important to note that the amount of communications does not depend
on the size of the overlap since only one layer of nodes is required. This shows that
in terms of communications, the RASHO is superior to AS and RAS.

4. Some two-level versions. Similar to other domain decomposition methods,
the convergence rate of the single level method depends on the number of subdomains.
To make the algorithm more scalable with respect to the number of subdomains, we
next introduce two two-level versions of RASHO in this section. This includes an
additive version and a hybrid version using the same coarse space.

Standard coarse spaces can not be used since they are usually not discrete har-
monic in the overlapping regions. To construct a coarse subspace V, of V, we introduce
the coarse basis functions ¢(z),7 = 1,..., N, based on a partition of unity [21] on the
interface nodes W', For each subdomain, we define the nodal values of ¢(z) € Vi
as follows:

_ 1 if 2, € W,
(4.1) ¢'(zy) = < discrete harmonic  if zy, € Wi‘%ovl UW? on
0 if o, € W\W?.



Let us denote Q(W? ) by Q? Then ¢'(zy) = 1 at o, € W2, for the case

i,non i,non" i,non

Q2 N 60 = 0 since all the boundary nodal values of ¢ belong to WL and

i,non i,non i,in

therefore have nodal values equal to one. For the case Q° NoQ # 0, we have

i,non

chosen to define ¢i(Qf7non) as the discrete harmonic extension with boundary nodal

] _
values equal to one on W} and equal to zero at Q.
5

not require that V¢ be discrete harmonic on Q2 - If we had chosen ¢’ equal to one
at all nodes of Q¢ also for the Q2 N AN # B case, ¢* would have a jump from

i,non i,non
one to zero on the neighboring elements of 9Q2. This jump would give lower bounds
that depend on the factor h/H, and such bound would be poor if the overlap is very
small. Another possibility to avoid the discrete harmonicity of ¢ on Q?mon in the

Q2 on NN # 0 case would be the use of the boundary layer technique developed in
[21]. We note however that the bounds of Theorem 5.1 would remain the same as
well as the its analysis, with some minor modifications.

The coarse space Vg is simply the space spanned by all linear combinations of the
coarse basis functions ¢*,i = 1,---, N. We define ﬁg A ]~/g as the operator such

that, for any u € V

N 9Q; note however we do

a(ﬁgu,v) =a(u,v), Yvé€ 17g.
A two-level additive version of RASHO can now be introduced with the operator

N
(4.2) Po=>"P..

i=0

The convergence properties of this two-level algorithm will be studied in the next

section. To describe the computational aspects of the coarse problem, we rewrite the
above definitions in matrix notations. Recall that n is the total number of nodes in
W, N is the total number of subdomains, and ¢* is the coarse basis function. We
write the fine to coarse restriction operator as an N X n matrix

(RO)NXn - (d)l(mk))i:l,N;k:l,n ’
The matrix form of the coarse projection operator ]365 is
(4.3) P¢ = RTAS Ry A,

where Ay = RyART is an N x N matrix.

We remark that A is more sparse than coarse space matrices that appear in other
methods such as Neumann-Neumann or FETT type algorithms [12, 13, 18, 23], since
only connections with the neighboring subdomains appear in the stencils associated
to a coarse basis function. Another feature of this coarse space problem is that the
computation of the right-hand side, i.e. RgAu, for some u, can be done inside each
Q9; this is a clear advantage over regular coarse spaces.

The two-level additive algorithm (4.2) is easy to code, but the performance isn’t
as good as expected. Some examples are given in the numerical experiments section
of this paper. We next introduce another two-level algorithm — a hybrid Schwarz
operator (see [19]) with the error propagation operator given by

(4.4) (1—1355) (I-iﬁf) (z_ﬁg).

10



This is a symmetric operator with which we can work essentially without any extra
cost, since when forming powers of the operator (4.4) on building the Krylov space on
the PCG, we can use the fact that I — P is a projection, and therefore (I — B{)? =
I — P{. Subtracting the operator (4.4) from the identity operator I, we obtain the
operator

(45) Bly=PBy+(1-F) (i P) (r-7).

The spectral properties of ﬁfyb will be studied in the next section. Some numerical
results obtained using the additive and the hybrid two-level methods will be presented
in the numerical experiments section of the paper, and they will both be compared
with the single level method.

5. Theoretical analysis. The algorithm presented in the previous section is
applicable for general sparse, symmetric positive definite linear systems. The notions
of subdomains, harmonic overlaps, the classification of the nodal points, etc, can all
be defined in terms of the graph of the sparse matrix. In this section we provide
a nearly optimal estimate for a Poisson equation discretized with a piecewise linear
finite element method. We estimate the condition number of the RASHO operators
P9 and Pg in terms of the fine mesh size h, the subdomain size H, and the overlapping
factor 0. We shall follow the abstract additive Schwarz theory [24]:

Lemma 5.1. Suppose the following assumptions hold: _

i) There exists a constant Cy such that for any u € V° there exists a
decomposition

N
u = E U,
=0
where u; € VY, and

N
D luilt o) < Colultn oy
=0

i) There exist constants €;5,1,7 =1,..., N such that
a(ui,u;) < e alug, u)aluj,u)'?, Yu; € V), Vu; € V).
Then, ﬁg is invertible, symmetric; i.e., a(ﬁgu,v) = a(u,ﬁgv),
(5.1) C;%a(u,u) < a(Plu,u) < (p(€) + Da(u,u), Yue )V’

Here p(€) is the spectral radius of £, which is a (N) x (N) matriz made of {e;;}.

It is trivial to see that p(§) < C. So our focus in the rest of the section is
in bounding Cy. For the case of the single level RASHO, the lemma above can be
modified by replacing u = Zﬁio u;, P2, and (p(€) + 1) above to u = Ef\;l u;, P,
and p(&), respectively.

To analyze the hybrid algorithm we use a result due to Mandel (Lemma 3.2 [19])
which in our context is given by

11
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Fic. 5.1. The partition of Q‘f into the union of four types of subregions. This is a ‘floating’
subdomain with § = 2. The collection of “e” forms the set VViO.

Lemma 5.2. The extreme eigenvalues of JS,fyb, ]58, and P? satisfy

)\mzn(ﬁffyb) Z Amm(ﬁg’) and Amam (ﬁ}fyb) S Amam (156)

5.1. The partition of unity and a comparison function. The construction
of a partition of unity is one of the key steps in an additive Schwarz analysis. Consider
¢i(z) defined in (4.1). Tt is easy to see that {¢'(z),i = 1,..., N} restricted to W'
forms a partition of unit.

In addition to ¢(z), we also need to construct a comparison function ;(x) for
each subdomain Q¢. Comparison functions, or barrier functions, are very useful for
many Schwarz algorithms, such as these on non-matching grids [6]. We will show
that, even though 6;(z) € Vf, not in 171‘5 as we wished, it can still be used to bound
functions in 172‘5 . Both 6;(x) and ¢'(z) depend on the overlapping factor J. Because
¢'(z) is discrete harmonic at Wi‘fovl U Wi‘fnon, and identical to #; at the remaining
nodes, we have

a(¢’, ¢") < a(6;, ).

To construct the function 6;(z), we first consider the case when QY is a floating
square subdomain. “Floating” refers to the fact that the subdomain doesn’t touch the

12



boundary 9. The extension to cases when Q¢ touches the boundary is simple and we
will comment on it later. To further simplify our arguments, we assume that ¢ and
its neighboring extended subdomains Q? are squares of the same size; i.e. sides length
equal to H + 2(6 + 1)h. This assumption is equivalent to that QF has size H and §
levels of overlap is applied; see Fig. 5.1. And we also assume the overlap is not too
large; for the analysis given below dh no larger than H/4 is enough. Our techniques
can be modified to consider larger overlaps and more complex subdomains, although
too large of an overlap has little practical value.

Roughly speaking, 6;(x) is equal to ¢*(x) on W\Wi‘fovl. On the overlapping region

W?  we need to define #;(z) carefully so that we can control its energy in the semi H'

i,0vl
norm. For this purpose, we decompose Q¢ into subregions of four types (see Fig. 5.1):
Q?mon (Type (1)), Q% (Type (2)), W7 (Type(3)), and Q% (Type (4)), and define
0;(z) on each piece of the subregion separately.

Type (1): The first subregion is Qf’mm, which a square with sides of size H —2dh.

Type (2): The second subregion Q;-m is the area where Qf overlaps simulatneously
with three neighbors Q?. 099 therefore represents the union of the four corner pieces
of Q¢; i.e. four squares with sides of size (2§ + 1)h.

Type (3) and (4): The area where ¢ overlaps only one neighbor are four rect-
angles of size H — 26h x (26 + 1)h. We further partition each of the four rectangles
into three smaller rectangles; i.e. two of them are of Q%% type and one of them of
QfH type. For instance, without lost of generality, let us consider the intersection of
Q¢ with its right neighbor Q‘;, excluding the corner parts. In this case, the subregion
to be partitioned is a rectangle of size (2§ + 1)h in the z direction and H — 2k in
the y direction. The partition of this rectangles gives two smaller rectangles of (9°
type with dimensions 2(§ + 1)k x dh and each one has an edge in common with a
square of Q;-m type. We denote them as transition subregions because they are placed
between a corner type subregion Q2° and a face type subregion Q0#. The Q2 face
type subregions are the smaller rectangles that are placed between the two smaller
rectangles of Q99 type. Q0 face type regions are of size (2§ + 1)h by H — 45h.

For any node z belonging to a Type (1) region Q¢ we define 6;(z) to be equal

3 i,mon?
to one; i.e., equal to ¢*(z). Therefore

|¢i($)|§{1(9§,mn) = |9i(w)|?{1(gg‘mn) =0.
We next define 6;(z), node by node, in Q7 . which is the union of corner,

transition and face type regions defined above.

For a Type (2) region Q2. Let @ be such a square with vertices V; = (a,b), Vo =
(a+ (26 + 1)h,b), V3 = (a,b+ (26 + 1)h), and V4 = (a + (26 + 1)h,b+ (26 + 1)h).
We assume that V;,V5, and Vy belong to 89?. In other words, @ is located on
the southeast corner of Qf. Let use also introduce another square region Q, with
vertices Va3 = (a,b + (26 + 1)h), Vi = (a,b+ 0h), Vo = (a + (6 + 1)h,b + 6h), and
Vi = (a+ (6 +1)h,b+ (26 + 1)h). Note that Q is contained in Q, with V3 as the
common vertex. To define 6;(z) on Q, we set 8;(V3) = 1, 8;(V1) = 0, 6;(Va) = 0,
01»(‘74) = 0. At the remaining nodes z on the edges ViVy and VoV, we set 6;(x) =0,
and on the edges V3V, and V3V; we set 8;(z) = 1. For nodes on Q\Q we set 6;(z) = 0.
It remains only to define 6;(z) for nodes z in the interior of Q. To define 6;(z) there
we use a well-known cutoff function technique, such as the one introduced in Lemma,
4.4 of [10] but for two-dimensional square regions. An illustrative picture of ;(z) in a

13
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F1G. 5.2. An illustrative picture of 0;(x) in a typical region Q‘f‘s.

typical region Qf‘i is shown in Fig 5.2. For the completeness of this paper, we include
the construction below. Let C be the center of the square ). The construction of
0;(z) is defined by the following steps:

(1) Define 8;(Vs) = 1, 8;(Va) = 0, 8;(V4) = 0 and 6;(Vy) = 0.

(2) For a point P that belongs to the segments V3‘~/4 or V3‘71, define 6;(P) = 1.
For a point P that belongs to the segments ‘74‘72 or ‘71 ‘72, define 6;(P) = 0.

(3) For a point Y that belongs to the line segment connecting C to V3, define
0;(Y") by linear interpolation between values 6;(C) = 1/2 and 6;(V3) = 1. For
a point Y that belongs to the line segment connecting C' to ‘72, define 6;(Y")

by linear interpolation between values 6;(C) = 1/2 and 6;(V2) = 0.

(4) For a point S that belongs to a line segment, connecting a point Y to a vertex
Vi or Vq, define 6;(S) = 6;(Y).

(5) Note that the ; is defined everywhere on QUAQ. 6; is continuous everywhere
except at the points ‘71 and 174. We redefine 6; as the continuous piecewise
linear finite element function given by the standard pointwise interpolation.

The most important observation of the construction of 8;(z) inside @ is that
|[V8;(z)] < C/r near V; or V4. Here r is the distance of = to V4 or V4. Therefore, we
obtain (see [10] and [23])

|0i(w)|§{1(Q) = |0i(m)|ip(5) <C (1 + log (W)) = C(1 + log(d + 1)).

14



Since inside of Q¢ there are four of those squares we obtain
10:(2) %1 55 < C (1 +1log(d + 1))

Type (3) regions consist of transition type rectangles. Let us consider one of them
and denote it by T, which we assume has vertices at V3 = (a,b + (20 + 1)h), V4 =
(a+(204+1)h, b+(204+1)h), Vs = (a,b+(36+1)h), and Vg = (a+(26+1)h, b+ (35+1)h).
Note that T stands on the top of the square () introduced above and has the common
edge V3Vy. We define 6;(z) over the edge V3Vy to be equal to ¢f(z). Over the
edge V3Vs, we set 0;(z) = 1. Over the edge V4Vs, we set 6;(z) = 0. And over the
edge VsVs we let 6;(z) decrease linearly from the value 1 to 0. What remains is
to define 6;(z) inside T. Let us define the nodes V; = (a + dh,b + (20 + 1)h) and
V. = (a+ (6 + 1)h,b + (26 + 1)h), which is the same as the node V; used in the
description of Type (2) regions. The nodes V; and V,. are exactly the places on the
edge V3V, where ¢(z) jumps from 1 to 0. On the triangle V3V, V5 we set 6;(z) = 1. On
the triangle V. V4 Vs we set ;(z) = 0. On the region V;V,.VsVs, we let 8;(z) decrease
linearly in the z direction from the value 1 to 0. We note that next to the nodes V;V/.,
0;(x) has a singular behavior similar to |V8;(z)| < C/r where r is the distance from
z to the line V; V,.. Similarly, we have

160:(2) 772 7y < C (1 +1log(d +1))).
Since there are eight rectangles of Type (3) inside Qfg, we obtain

|6: () i]l (@5%) <C(1+log(d+1)).

Type (4) regions are rectangles of face type. Let R be one of them, and we assume
that the vertices are given by Vs = (a,b+(30+1)h), Vs = (a+(26+1)h, b+ (35+1)h),
Vi =(a,b+H — (0 —1)h), and Vg = (a + (20 + 1)h,b+ H — (§ — 1)h). Note that R
is on the top of the rectangle T' defined above and its height is H — 45h. The vertices
Vs and Vi are the vertices that belong to 02¢. We define ;(x) = 1 if x is on the edge
V5 V7, and equals zero if x is on the edge ViVg, and linear in the z direction for the
remaining points. We obtain then

H — 46h
2
. 1 < .

Since there are four of those rectangles inside Q297 we obtain

H — 45h H
26+ 1)h =~ 20+ Vi

10:(2)| g1 iy < C

For the cases in which Q9 touches the boundary 012, the analysis needs to be
modified slightly. The first modification is because the shape of the overlapping region
changes slightly, i.e. the longer side is shorter. It is easy to see that we get similar
bounds as before. The other modification is because ¢* on Q?mon is not identically
equal to one and therefore the corresponding energy is not necessarily zero. For this

case we can design 6; similarly and obtain

H
|91(a:)|§11 @) <C (1 + log (ﬁ)) )
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Putting all pieces of 6;(z) together, we see that 6;(x) € V¢ and it is equal to
¢i(z) on W'’ Adding all the estimates on subregions of four types, we arrive at the
following lemma.

Lemma 5.3. Fori=1,---,N, hold 6;(x) € V? and ¢'(z) € V! the following

(1) |¢l ip(gf) < |0’|iIl(Qf)

(2)

)§C<1+log(6+1)+L>.

10il7r o\
: 20+ )k

i,non

(3) if Q0 VO =0 then [6;]2,, = 0.

(4) if Q2,00 NOQ# O then

H
|0i|iI1(Q§’M") <C (1 + log (ﬁ)) )

Here C > 0 is independent of the parameters h, H and §.

Q2 on)

5.2. A bounded partition lemma. To obtain the parameter Cy of Assumption
i) of the abstract additive Schwarz theory, see Lemma 5.1, we construct a decompo-
sition of V% and prove its boundedness below.

Lemma 5.4. There exists a constant C' > 0, independent of h, H, and &, such
that for any u € V°, there exist v; € V?, such that

N
(5.2) uw="> v,
=0
and
N
H
2 2
Z|Ui|H1(Q) <C ((m)) |ulfr @)+
(5.3) =0

C(1 +1log(d + 1)) <1 + log (%)) |ulFr1 (-

In addition, there exist u; € ]7?, such that

N
(5.4) w=>yu,
i=1
and
N H
Z|ui|fql(9) <C(1+log(é+1)) (1 + log <%>> |u|%11(9)+
i=1
(5.5)

1 H
—(1+1 1 S 2o
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Proof. We first construct the decomposition (5.4). For any given u € V%, we
define u; € V7 as

u;(zy) = ¢ discrete harmonic  if z;, € WZD}\}L
0 if 2, € W\W,.

It is easy to see (5.4) holds. We next construct the decomposition (5.2). For i =
1,...,N, let us define v; € V9 by

vi =u; — ¢ € VY,
where

1
2 Jas

w; udx

is the average of u on the extended region Q9. Here |Q2¢| is the area of the region Q2.
We also define

N
vy = Z wid'.
i=1

It is easy to see (5.2) holds.

The next step is to bound YN |vil%1(q)- To bound each term [vi|3: g, =
1,...,N, we use 6;(z),i = 1,..., N, introduced before. Consider #; € V! defined as
follows

0i(x) = In(0:(z) (u(z) — ;).

Note that @;(z) is equal to v;(z) on WiFS, and on 99%. On

iovl> Vi 1s discrete
harmonic. Therefore, we have

ilins ) < Bilins -

In addition, v;(x) is identical to ©; on Q9 . whenever Qf . does not touch 892. For

such cases, we next devote the proof to the estimate of |17i|ip(9?) in terms of |u|i11(§2§)'
The estimate of |Ui|fql(

afterwards in (5.10).
Let K be an element of Qf and let us denote w; = u — @; then

) for the case in which Qinon does not touch 01 is done

i,non

(5.6)  |0al7n (xe) = [0 (Bswi) [ (1) < 2100wl 31 () + 210 (6 = 0:)wi) [ ¢ -

Here, @; is the average of f; on K, and Ij, is the standard pointwise interpolation. To
estimate the first part of (5.6) we use the fact that |6;| < 1, to obtain

|§iwi|§p([{) = [6i(u — ﬂi)@p(m <lu-— ﬂi@p([{) = |U|%11(K)-

The last equality comes from the fact that a; is a constant. For the second part of
(5.6), according to an inverse inequality we have

_ 1 _
(5.7) 11 ((0; = 0:)wi) | F1 () < Cﬁ”Ih((ei — 0:)wi)l| 72 (-
17



To obtain the bound for the right-hand side of (5.7), we consider the element K in
four different situations corresponding to the four types of subregions into which the
the subregion Q¢ is split i.e., Q¢ QH 02 and Q2°.

i,non’ :
The proof for the cases K C Qf and K C Q¢ are nearly the same, so we only
consider one of them here. For K C Q¢ since

h 2
n 2
. 0. < - @

we obtain

1 ~ 1
7z 1 ((0; — B)wi)llF2x) < CW||W||2L2(K)-
Applying a technique developed in Dryja and Widlund [11], we obtain

S R
(26 + D)p)2 "WillLz@im) =
(5.8)
e L A e e
(26 + Dk D T (26 + DRy UiEE@) ) -

Using the fact |wi|ip(m) = |“|%11(Q§) and a Friedrichs inequality
(5.9) k]2 sy < CH ufZs gs)-

Combining the estimates (5.8) and (5.9), we obtain

1 2 H 2
I — l 2 H < T~ a4 1 .
((25+ l)h)QHwZHL (Qf ) = 0(25+ 1)h|u|H (Qf)

For the case when K C Q99

9%, we use similar arguments as in Dryja, Smith and
Widlund [10] to obtain

1 ~ 1
(5.10) > ﬁllfh((@—@i)wz'lliz(mﬁ > Cﬁllﬂ’ill%z(m,

KeQd? KeQd?

where ch <r < C((d + 1)h) is the distance to those “cut pieces”. We have used here
that 0;(z) has the singular behavior C'//r on QJ%. We have then

1 , C(6+1)h
(5.11) S Sludau <€ [ [l g dadr
KEQ;?J ch a ¢
and
H
(5.12) i gy < € (14108 (51 ) ) ey

For the inequality (5.12), we have used a well-known result (see Bramble [2])

) ) " )
o= 0l ey < o= 0ty < (1108 (3 ) ) o=l
18



5.

and that u; is the average of u on Q3;

i.e., a Friedrichs inequality
o= s sy < Clols ey
Putting (5.11) and (5.12) together, we obtain
1 2 H 2
KeQ??

For the case K C Qf,,,. If Q) is a floating subdomain, which is to say that

94 does not touch 99, then 6; — 6; is zero. If Q9 touches the boundary 02,

i,non i,non

then the estimate becomes

v, S C (Wi, )+ P, )

H
C <1 + log (ﬁ)) |u|ip(9?).

Here we have used Lemma 5.3 and that for the cases i € 92, we can use a Poincaré
inequality to obtain

_ 1
(5.15) Z ;> < C Z ﬁ”uuizmg) <C Z |U|?11(Q§) < Clulf(g)-
i€oQ icoQ i€oQ

(5.14)

IN

Here we have introduced the notation i € 9 to denote the subdomains Y that touch
the boundary 09 with a face.
Putting everything together we have shown that

s H
2 2
Yl <0 () ) e

C(1 +1log(s + 1)) <1 + log (%)) |ulF1 (q)-

(5.16)

We remark that the bound (5.3) follows from (5.16). To see this, we use that vy =
u — Y, v;, triangular inequalities and (5.16) to obtain (5.3).

We now consider the bound for the one-level RASHO method; i.e., to bound
Zilil u;. Note that

N N N
E u; = E v; + E ;"
i=1 =1 =1

For the second sum above, we first use Lemma 5.3 to obtain

. i H
Z |ﬂi¢l|%{1(g) <C (1 + log <E>> Z |32+

i=1 i€0Q)

H
e 7,2
C’<1+10g(5+1)+ 20 1)h> i§1|ul| .
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We then use Cauchy-Schwarz and Friedrichs inequalities to obtain

2 N
1
=3 f ) <03, bl
i=1

1 1
< Cﬁ“””%ﬂ(ﬂ) < Cmmﬁpm)-

For the cases i € 99, we use (5.15). The inequality (5.5) then follows.
a

5.3. The main theorem. We state the main theorem of this paper here., The
proof follows directly from all the abstract Schwarz theory given by Lemma 5.1,
Lemma 5.2, and Lemma 5.4. o _

Theorem 5.1. The RASHO operators P?, Pg and P,fyb are symmetric in the
inner product a(-,-), nonsingular, and bounded from below and above

Cy 2a(u,u) < a(Plu,u) < Cra(u,u) YueV?,

Cy 2a(u,u) < a(Pou,u) < Cra(u,u) YueV?,

and
o (B0) < (72).
Here
5 _ H H
C’O—C<(26+1)h+(1+log(6+1)) 1+ log - ,
and

c2=c ((1 +log(6 + 1)) (1 +log (%)) ;2 (1 +log(d + 1) + ﬁ)) .

The constants C, C1, Cy > 0 are independent of h, H, and §.
We remark that the corresponding convergence rate estimate for the regular one-
level additive Schwarz methods [11], in terms of the constant Cp, is

A2 1
Co _C<1+H(26+1)h !

and the two-level additive Schwarz method is

C2 = C<1+§l>

The lower bound C’g of the one-level RASHO algorithm is theoretically slightly worse
than the lower bound of regular AS algorithm in the case of large overlap, but roughly
the same for small overlap. For small overlap, the lower bounds of both algorithms
behave like O(H/h). When the overlap gets larger, the RASHO scheme starts to
feel the factor log(H/h) and the performance gets worse than the additive version for

20



large overlap. On the other hand, the upper bound C; of RASHO is smaller than
the upper bounds of AS. We can see this since V§ C V{,Vk, implies that the positive
numbers ¢€;; defined in Lemma 5.1 are smaller for RASHO than the corresponding
€;j for AS. Consequently, the spectral radius & of RASHO is smaller. Because C}
of RASHO is smaller, the numerical performance of RASHO presented in the next
section is better than that of AS for the practical cases. Similar considerations also
apply to the two-level RASHO methods.

6. Numerical experiments. In this section, we present some numerical results
for solving the Poisson’s equation on the unit square with zero Dirichlet boundary con-
ditions. We compare the performance of RASHO and AS preconditioned Conjugate
Gradient methods in terms of the number of iterations and the condition numbers.
We pay particular attention to the dependence on the number of subdomains and the
size of overlap.

We first discuss a few implementation issues related to the new preconditioner.
In order to apply the RASHO/CG method, it is necessary to force the solution to
belong to V3. To do so, a pre-CG-computation is needed, and it is done through the
formula (3.5). We note that u = u* —w € V?, see Lemma 3.1, and therefore, we can
apply the regular PCG to the RASHO preconditioned system (3.9). The AS/CG is
the classical additive Schwarz preconditioned CG as described in [8]. We note that in
the case § =0, i.e. ovlp = h, RASHO and AS are the same.

The stopping condition for CG is to reduce the initial residual by a factor of 1076,
The exact solution of the equation is u(z,y) = e®#+¥) sin(7z) sin(ry). All subdomain
problems are solved exactly. The iteration counts (iter), condition numbers (cond),
maximum (max) and minimum (min) eigenvalues of the preconditioned matrix are
summarized in tables 6.1-6.5.

From Table 6.1, Table 6.2, and Table 6.3, it is clear that for overlap not too
large and for mesh not too small, which is the case of practical interest, the one-level
RASHO/CG outperforms the classical one-level AS/CG in terms of the iteration
counts and condition numbers. In this case of small the condition number of RASHO
is almost twice smaller than AS. This is an important result since it is easy to modify
a (parallel) one-level AS/CG code to obtain a one-level RASHO/CG implementation.
Although we do not have any parallel results to report here, we are confident to predict
that RASHO/CG would be even better than AS/CG on a parallel computer with dis-
tributed memory since much less communications are required. Also the local solvers
in RASHO are slightly cheaper since the local solvers have slightly smaller numbers
of unknowns than for the regular AS. From Table 6.4 we show that both the two-level
hybrid and additive versions of RASHO attain scalability in terms of number of iter-
ations when the number of subdomains becomes large; the hybrid version reaches the
asymptotic behavior sooner than the additive version. The hybrid version is superior
to the additive version since the number of iterations is much smaller. Finally, from
Table 6.5 we show that larger overlap reduces dramatically the number of iterations.
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TABLE 6.1
One-level RASHO and AS preconditioned CG for solving the Poisson’s equation on a 128 x 128
mesh decomposed into 2 X 2 = 4 subdomains with overlap = ovlp. The AS/CG results are shown in
(). The “+1” is for the preprocessing step needed for RASHO.

ovlp | iter cond max min
h 42 (42 129.(129.) | 1.98 (1.98) | 0.0154 (0.0154
3h | 24+1 (28) | 48.4 (86.3) | 1.94 (4.00) | 0.0402 (0.0464

~— [ — [ —

) (1.98) (
( (4.00) (
5h | 20+1 (23) | 33.3 (51.8) | 1.01 (4.00) | 0.0574 (0.0773
Th | 18+1 (20) | 27.2 (37.0) | 1.89 (4.00) | 0.0694 (0.1081

TABLE 6.2
One-level RASHO and AS preconditioned CG for solving the Poisson’s equation on a 32 %
DOM x 32%x DOM mesh decomposed into DOM X DOM subdomains with overlap = 3h, i.e. § = 1.

DOM x DOM | iter cond max min
2% 2 19+1 (20) 26.8 (43.7) 1.89 (4.00) | 0.0708 (0.0916)
4x4 39+1 (42) 86.9 (145.) 1.95 (4.00) | 0.0225 (0.0276)
8 x 8 75+1 (78) 328. (550.) 1.97 (4.00) | 0.0060 (0.0073)
16 x 16 147+1 (156) | 1295 (2168.) | 1.98 (4.00) | 0.0015 (0.0018)
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TABLE 6.3
One-level RASHO and AS preconditioned CG for solving the Poisson’s equation on a n X n
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32 * DOM mesh decomposed into DOM x DOM subdomains with overlap = 3h, i.e. § = 1; The
two-level additive RASHO results are shown in ().
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TABLE 6.5
Two-level hybrid and additive RASHO CG for solving the Poisson’s equation on a 512 X 512
mesh decomposed into 16 x 16 = 256 subdomains with overlap = ovlp. The two-level additive RASHO
results are shown in ( ).

ovlp | iter cond max min

h 86 +1 (109+1) | 307 (275.7) | 1.96 (3.74) | 0.0064 (0.0136)
3h | 44 +1 (68+1) | 48.0 ( 95.7) | 1.87 (2.98) | 0.0391 (0.0312)
5h | 36 +1 ( 58+1) | 32.8 ( 70.1) | 1.83 (2.95) | 0.0558 (0.0421)
7h | 31 +1(53+1) | 27.3 ( 59.8) | 1.80 (2.93) | 0.0662 (0.0491)
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