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Abstract The Cyclic Cutwidth Minimization Problem (CCMP) consists of finding
an embedding of the vertices of a candidate graph in a host graph in order to
minimize the maximum cut of a host edge. The host graph is restricted to be a
cycle. We study several properties of the CCMP and design a multistart search for
this problem. We compare our procedure with the state of the art for the CCMP
using sets of problem instances previously published. Statistical tests indicate the
merit of our proposal.
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1 Introduction

Some families of optimization problems can be represented as graph layout prob-
lems where the objective consists of defining a mapping of a candidate graph into
a regular structure, called the host graph. In these problems, there are two map-
ping functions. The first one assigns each vertex in the candidate graph (candidate
vertex) to a vertex in the host graph (host vertex). The second function assigns
to each edge in the candidate graph (candidate edge) a path in the host graph
(host path). The most common approaches found in the literature for this family
of problems are those where the host graph is a line. These problems are com-
monly referred to as linear layout problems [34]. However, there exist mappings
over more complex regular structures such as trees, grids, or cycles [8]. Regardless
of the structure of the candidate and host graphs, the optimization problem may
be defined over several objective function choices.

We tackle a minimization problem consisting of embedding a general candidate
graph in a cycle host graph. Let C = (VC,EC) be a connected, unweighted, and
undirected candidate graph where VC and EC represent the sets of vertices and
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edges, respectively. Analogously, let H = (VH,EH) be a host cycle graph with the
following properties:

– n = |VC| = |VH| = |EH|
– The degree of each vertex v ∈ VH is 2
– H is a Eulerian and Hamiltonian graph
– The disposition of the vertices VH in the Euclidean space is such that all

adjacent vertices are placed at the same distance.

Considering these definitions, the host graph in our context is represented as
a cycle. A bijective function ϕ assigns each vertex in the candidate graph to a
single vertex in the host graph. This function is defined as ϕ : VC → VH, where
∀ v ∈ VC ∃ w ∈ VH such that ϕ(v) = w. An injective function ψ assigns candidate
edges to host paths. A path is a sequence of edges that connects two vertices
without repeating any edges or vertices. Let PH be the set of all possible host
paths in H. Then, for every candidate edge (u, v) ∈ EC there are two possible
paths in PH, one ending in ϕ(u) and another ending in ϕ(v). The ψ function is
defined as the mapping of candidate edges to host paths, i.e., ψ : EC → PH.

Figure 1 shows an example of a candidate graph (C), a host graph (H), a
possible embedding of the candidate graph in the host graph, and the two possible
host paths between a pair of adjacent vertices (A and D). In particular, Figure 1(a)
shows a candidate graph with VC = {A,B,C,D,E,F} and EC = {(A,B), (A,D),
(A,E), (A,F), (B,C), (B,D), (C,D), (D,E)}. Therefore, the host graph must have
the same number of vertices VH′ = {1, 2, 3, 4, 5, 6} and a set of corresponding
edges EH′ = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)}, as presented in Figure 1(b).
One possible mapping of the candidate graph into the host graph is showed in
Figure 1(c). Each vertex in VC is assigned to a vertex in VH. For instance, vertex
A in VC is assigned to vertex 1 in VH. The assignment is denoted by ϕ(A) =
1. Similarly, vertex B is assigned to vertex 4 (ϕ(B) = 4), and so forth for all
other candidate vertices. Then, candidate edges are assigned to host paths. For
instance, edge (A,D) must be assigned to a host path with ϕ(A) = 1 and ϕ(D) =
5 as terminal vertices. The possible paths are p(A,D)1 = {ϕ(A), ϕ(E), ϕ(D)} =
{1, 6, 5} and p(A,D)2 = {ϕ(A), ϕ(F ), ϕ(C), ϕ(B), ϕ(D)} = {1, 2, 3, 4, 5}. These paths
are shown in Figure 1(d). Note that for any candidate edge, there are only two
possible host paths (clockwise and counterclockwise) when the host graph is a
cycle. We further define ψ as a function that selects the shortest path. The length
of the path is determined by the number of host edges traversed. In our example,
the length of p(A,D)1 is 2 and the length of p(A,D)2 is 4. Therefore, ψ(A,D) =
p(A,D)1 = {1, 6, 5}. The function must be applied to all candidate edges EC. When
the length of both host paths is the same, ψ selects the clockwise path.

1.1 Problem description

We study the Cyclic Cutwidth Minimization Problem (CCMP) for general candi-
date graphs and cycle host graphs. Our objective function for the CCMP is based
on the concept of a cut of an edge in the host graph (i.e., edges in EH). Given the
assignments solution ϕ and ψ, the cut of an edge e ∈ EH is defined as the number
of host paths assigned by ψ that traverse e. This calculation has been referred to
in the literature as congestion [40].
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Fig. 1: (a) A candidate graph, C. (b) A host graph, H. (c) An embedding of C in H.
(d) Two possible paths for (A,D) ∈ VC named as p(A,D)1 and p(A,D)2 respectively.

Formally, we define the cut of host edge (w, z) ∈ EH associated with ϕ and ψ

as:

cut((w, z), ϕ, ψ)
(w,z)∈EH

= |{(u, v) ∈ EC : (w, z) ∈ ψ(u, v)}| (1)

where the ψ(u, v) path is defined as:

ψ(u, v) =


{w, z} if ϕ(u) = w ∧ ϕ(v) = z

{w, z, . . . , ϕ(v)} if ϕ(u) = w

{ϕ(u), . . . , w, z} if ϕ(v) = z

{ϕ(u), . . . , w, z, . . . , ϕ(v)} otherwise

(2)

The objective function (ccw) is denoted as the cyclic cutwidth and is calculated
as follows:

ccw(C, ϕ, ψ) = max
(w,z)∈EH

cut((w, z), ϕ, ψ) (3)
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Fig. 2: Evaluation of a possible embedding of C in H.

Since paths can be derived from the vertex assignments (see equation 2), a
solution is fully characterized by ϕ. Therefore, for the purpose of the optimization
problem, we can simplify the notation for ccw, by making it depend only on C and
ϕ. Our minmax problem consists of finding, among all possible candidate vertex
assignments ϕ ∈ Φ, the assignment ϕ? that minimize the cycle cutwidth:

ϕ? ← arg min
ϕ∈Φ

ccw(C, ϕ) (4)

Figure 2 depicts the evaluation of the solution represented in Figure 1, i.e.,
the evaluation of the assignments ϕ and ψ. The host graph is shown in dashed
black lines and the candidate graph in gray solid lines. The host paths assigned
by ψ to each candidate edge in EC are shown outside the cycle. Then, the cut
associated with each edge of the host graph is indicated as the number of paths
that traverse the edge. For example, edge (1, 2) is traversed by paths p(A,F) and
p(A,B). Therefore, cut((1, 2), ϕ′, ψ′) = |(A,F), (A,B)| = 2. Similarly, edge (2, 3) is
traversed by only path p(A,B). Therefore, cut((2, 3), ϕ, ψ) = |(A,B)| = 1. The value
of the objective function for the vertex assignment ϕ on graph C is ccw(C, ϕ) =
max{2, 1, 3, 2, 2, 2} = 3.

1.2 Literature review

The CCMP is closely related to the Cutwidth Minimization Problem (CMP). Both
problems share the same objective function, however the host graph for the CMP
is a line, while the host graph for the CCMP is a cycle. The practical applications
of these problems are also common, and can be found in various areas that include
circuit design [7], engineering [27], and graph drawing [44].
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The CMP was originally proposed in the 70s as a theoretical model in the
context of circuit design [7]. The problem belongs to the NP-hard class [12]. Due
to the problem complexity, several heuristic procedures have been proposed in
the literature [7,9,28,33,35,38]. The literature also includes exact procedures for
the CMP on some special classes of graphs [20,40,45]. In addition, two Branch &
Bound procedures have been proposed for general graphs [29,32] and mathematical
formulations have been proposed in [25,26].

The bounds proposed in [23] establish a relationship of the objective function
values for the CMP and the CCMP. In particular, for a candidate graph C, if we
let lcw(C) and ccw(C) be the optimal objective function values corresponding to
the CMP and CCMP, then:

lcw(C)

2
≤ ccw(C) ≤ lcw(C) (5)

The CMP and the CCMP are equivalent when C is a tree [5].
There are several exact algorithms for the CCMP for particular types of can-

didate graphs. The optimal value of the CCMP for complete graphs is known by
construction [39]. For mesh graphs, it is possible to determine the optimum for
grids with dimensions larger than 3 × 3 [6,41,42]. The optimal solution is known
for three-dimensional meshes, as long as one dimension is 2 and the other two are
greater than or equal to 2 [43]. Similarly, the optimal solution is know for cylindri-
cal meshes for which one of the dimensions is greater than or equal to 2 and the
other dimension is greater than or eqaul to 3 [41]. Exhaustive search procedures
can be used to find optimal solutions for the CCMP on Q3 hypercubes [1]. This
result has been extended to Q4 [22], Q5 [3] and Q6 [4] hypercubes. The CCMP
has also been studied on general hypercubes [11] . Finally, exact algorithms exist
for complete bipartite graphs [23], complete tripartite graphs [2], and n-partite
graphs [2].

No exact algorithms exist for the CCMP on general graphs. Recently, the
practical interest of the CCMP has motivated researchers in the optimization
community to apply heuristic techniques to this problem. For instance [21] de-
scribes a Memetic Algorithm [31] for the CCMP. The authors propose six con-
structive heuristics to generate an initial population of solutions for their solution
method. The method includes a local search procedure that attempts to move ver-
tices from positions where the maximum cut occurs. The Memetic Algorithm was
evaluated with six types of graph instances: complete splits, join of hypercubes,
cones, toroidal meshes, and two random types. The procedure matched all known-
optimal solutions and produced the best-known solutions for all other instances,
establishing itself as the state-of-the-art for the CCMP.

1.3 Our contributions

The main contribution of this work is the development of a metaheuristic procedure
that includes sound fundamental as well as advanced search strategies for the
CCMP. We are able to show, through extensive computational experimentation,
that our proposal is competitive with the current state-of-the-art for solving the
CCMP. The method consists of a multistart search, where the starting points are
generated in greedy fashion and the improvement phase is based on neighborhoods
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and a tabu memory structure [17]. We use a set of preliminary tests to find the best
configuration of our procedure, i.e., to determine the best set of search parameter
values. Through this process, we are able to determine the contribution of the
various elements embedded in the proposed procedure.

After a set of tuning experiments to identify the best combination of parameter
values, we employ the resulting procedure configuration for competitive testing.
The test set consists of problem instances form the literature. Those instances
are grouped into two main categories, graphs with known structure and random
graphs. The results of these tests indicate that, in many cases, our proposed so-
lution method is able to find solutions of better quality than the state of the art
procedures, and in considerably less computational time. Furthermore, we show
that these differences are statistically significant.

The description of our work is organized as follows. Section 2 describes our al-
gorithmic proposals. Section 3 presents several advanced search strategies. Section
4 introduces the test set, describes the computational experiments, and discusses
the results. Conclusions and final thoughts are in Section 5.

2 Algorithmic proposal

Our solution method has two main components, a procedure to construct solution
and an improvement method based on tabu search (TS) [17]. We first provide
details of a procedure to construct initial solution (Section 2.1). Then, we discuss
how a local search operates on these initial solutions (see Section 2.2). This section
ends with a description of the TS mechanisms that help the local search escape
local optimal points.

2.1 Constructive procedure

Constructing a solution for the CCMP consists of performing two tasks: 1) as-
signing the vertices of the candidate graph to the vertices of the host graph (i.e.,
defining the domain and range of the ϕ function ); and 2) assigning the edges of
the candidate graph to a path in the host graph (i.e., defining the domain and
range of the ψ function).

Initially, all candidate vertices are unassigned. We number the host vertices
starting from the top vertex (i.e., the vertex that in a graphical representation
would be at 12 o’clock) and continuing clockwise. At each step, we select a can-
didate vertex and assign it to the next available host vertex. Since the host graph
is a cycle, without loss of generality, at each step of the procedure, we move se-
quentially in the clockwise direction. That is, the first candidate vertex is assigned
to host vertex 1, the second candidate vertex is assigned to host vertex 2, and so
forth. The first assignment is random. That is, a candidate vertex is randomly se-
lected and it is assigned to host vertex 1. After the first assignment, all unassigned
vertices in the candidate graph are evaluated with a greedy function to determine
the most attractive vertex to assign next. The greedy function to select the next
unassigned vertex from the candidate graph is inspired in previously published
ideas [30]. The construction ends after all candidate vertices have been assigned
to a host vertex.
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The greedy selection function to select the next vertex from the candidate graph
is defined as follows. Let A be the set of candidate vertices that have already been
assigned and let U be the set of unassigned candidate vertices. Let d(v) be the
degree of an unassigned candidate vertex v (v ∈ U) and let . Also, let dA(v) be
the number of assigned candidate vertices that are adjacent to v and dU(v) be the
number of unassigned vertices adjacent to v. That is,

dA(v) = |{u ∈ A : (v, u) ∈ EC}|

dNA(v) = |{u ∈ U : (v, u) ∈ EC}|.

Then, we define the greedy value g for an unassigned vertex v as:

g(v) = dA(v)− dU(v).

The g function measures the proximity of the candidate vertex under consider-
ation to the assigned candidate vertices versus to its proximity to the unassigned
candidate vertices. We would like to select the unassigned candidate vertex that,
relative to other unassigned candidate vertices, is closest to the candidate vertices
that have already been assigned. Therefore, the unassigned candidate vertex with
the largest g value is chosen to be assigned next. The greedy function is such that
it makes an unassigned candidate vertex very attractive if all vertices adjacent
to it have already been assigned. Conversely, an unassigned candidate vertex is
unattractive when none of its adjacent vertices has been assigned.

Algorithm 1 summarizes the greedy constructive procedure. The candidate
graph C(VC,EC) is the input to this procedure. Initially, all candidate vertices are
unassigned (step 2). Steps 3 to 4 make the assignment of a randomly selected
candidate vertex to host vertex 1. The assigned vertex is removed from the set of
unassigned candidate vertices (step 5). A for-loop is then executed (steps 6 to 10)
to assign all remaining candidate vertices in U. Step 7 evaluates all unassigned
candidate vertices to identify the one with the largest greedy value (with ties
broken arbitrarily). The chosen candidate vertex nextC is assigned to the next
available host vertex nextH (step 8). The assigned candidate vertex, nextC, is
removed from U (step 9). Once all candidate vertices are assigned, the procedure
returns ϕ, which contains the mapping of candidate vertices to host vertices 11.

Algorithm 1 Greedy construction

1: Procedure GreedyConstructive(C(VC,EC))
2: U← VC

3: nextC ← rand(U)
4: ϕ(nextC)← 1
5: U← U \ {nextC}
6: for all nextH > 1 do
7: nextC ← arg max

v∈U
g(v)

8: ϕ(nextC)← nextH
9: U← U \ {nextC}

10: end for
11: return ϕ



8 Sergio Cavero et al.

Figure 3 shows an example of the steps followed by the constructive procedure
for the graph introduced in Figure 1(a). For this graph, the construction is com-
pleted in six iterations (i.e., one for each vertex). As shown in Figure 3(a), the pro-
cedure starts with the random selection of candidate vertex C, which is assigned to
host vertex 1. In each step, we indicate which vertex is nextH and nextC. The first
one follows the numerical (clockwise) order. The second one is selected by comput-
ing the value of the g function. Figure 3(a) shows the g value for the vertices in U at
this step (i.e., A,B,D,E, and F). For instance, g(A) = dA(A)−dNA(A) = 0−4 = −4.
Similarly, g(B) = dA(B)− dNA(B) = 1− 2 = −1, and so forth. Once all the unas-
signed vertices have been evaluated, the greedy selection chooses the vertex with
the largest g value (with ties broken arbitrarily). The number of vertices evalu-
ated decreases by one at each step. In addition to the graphical representation of
the current partial solution, Figure 3 includes tables associated with the vertex
assignments, i.e, ϕ(C) = 1, ϕ(B) = 2, ϕ(D) = 3, ϕ(E) = 4, ϕ(A) = 5, and ϕ(F) = 6.

The ψ function can be derived from the ϕ mapping (see Figure 3(f)). The
domain of ψ is given by the edges of the candidate graph, while the range is given
by the paths in the host graph. Of the possible paths, we choose the shortest that
connects the end candidate vertices. The topology of the host graph restricts the
range of ψ to two possible paths per candidate edge, one clockwise and another
one counterclockwise (see Figure 1(d)). If there is a tie in the length of the two
possible paths, the procedure selects the clockwise path. Since ψ can be derived
from the ϕ mapping, we consider that ϕ is a full characterization of the solution
to the problem.

2.2 Local search

From a starting solution, a local search is an intensification strategy designed to
find the local optimum in a predefined neighborhood. Our Local Search (LS) is
defined in an insertion neighborhood. An insertion is a classical move in both graph
layout and permutation problems. It consists of removing a candidate vertex from
its current position in the host graph and inserting it in a different position. For
instance, Figure 4 depicts the move of vertex A from position 5 (i.e., ϕ(A) = 5)
to position 2. We denote this operation as ϕ′ = Insert(ϕ,A, 2), where ϕ′ is the
solution after the move. Figure 4 shows the solution before the insertion (ϕ) and
the solution after the insertion (ϕ′). The figure highlights the vertices from the
candidate and host graphs that are affected by the move. As customary in insertion
moves, the displaced elements must be shifted. In our context, the vertices can be
shifted in the clockwise or counterclockwise direction. Since the host graph is a
cycle, shifting in one direction or the other results in the same solution. In our
example, when candidate vertex A is moved to position 2, displaced vertices could
have shifted in the clockwise direction (i.e., B moves to 3, D to 4, and E to 5).
Instead, our moves are such that we always shift the displaced candidate vertices
in the counterclockwise direction, as shown in Figure 4.

Considering the aforementioned insertion moves, the neighborhood associated
with candidate vertex v of solution ϕ is defined as the solutions that can be reached
by the insertions of v in all positions in the host graph that are different from its
current position:
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Fig. 3: Example of the steps followed to construct a solution.
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Nϕ(v) = {Insert(ϕ, v, u) : ∀ u ∈ VH, i 6= ϕ(v)}

For a candidate graph with n vertices, the size of the complete neighborhood
(i.e., considering all candidate vertices) is n · (n− 1).

Algorithm 2 summarizes the steps of the local search with insert moves. The
input to this procedure is the candidate graph (C) and the initial solution (ϕ). The
procedure combines first and best improving strategies. For a candidate vertex v,
it finds the best insertion in Nϕ(v) (step 6). However, as soon as an insertion is
identified as able to improve the current solution (step 7), the search moves to the
solution that results after the insertion (step 8), the improvement flag is switched
to True (step 9), and the scanning of the candidate vertices starts again from this
new solution (step 10). The while loop (steps 3 to 13) is repeated until no insertion
of a candidate vertex is able to improve the current solution.

Algorithm 2 Local search

1: Procedure LocalSearchBestImprovement (C, ϕ)
2: improve ← True
3: while improve do
4: improve ← False
5: for all v ∈ VC do
6: ϕ′ ← arg min

ϕ′′∈Nϕ(v)
ccw(C, ϕ′′)

7: if ccw(ϕ′) < ccw(ϕ) then
8: ϕ← ϕ′

9: improve ← True
10: break
11: end if
12: end for
13: end while
14: return best
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2.3 Tabu search

Tabu Search (TS) is a metaheuristic originally introduced in 1977 [13] and later
formalized in [14] as a general method for solving hard optimization problems.
Many ideas and extensions are discussed in [15,16,17,18]. A recent review of the
strategies associated with tabu search are compiled in [24]. TS is a, so-called,
single-solution neighborhood search metaheuristic methodology. TS introduces the
concept of memory with the goal of making the best possible decisions based
on the previous information collected throughout the search, instead resorting to
randomization.

We add a simple tabu search short-term memory to the local search summa-
rized in Algorithm 2. The TS memory consists of recording a number of recently
visited solutions. A move (i.e., an insertion) is classified tabu if it transforms the
current solution into a tabu solution (i.e., a solution that is currently in the short-
term memory). Unlike TS designs that use memory based on attributes, in our
design it is not necessary to include an aspiration criterion, since no tabu move
can reach a solution that the search has not already visited. The size of the TS
memory (i.e., the number of tabu solutions) is the search parameter known as
TabuTenure.

Instead of stopping at the first local optimum (i.e., the first time that a move
cannot be found to improve the current solution) as in Algorithm 2, the search
is allowed to continue by selecting the nonimproving move that deteriorates the
objective function the least. This move is the “best” nonimproving move. Before
making a move, the current solution is added to the TS memory and the “oldest”
tabu solution is deleted. The oldest tabu solution is the one added TabuTenure

iterations ago. The search continues after a number of iterations without improve-
ment are executed. The number of nonimproving iterations used to stop is a search
parameter (NonImproving). Preliminary testing revealed TabuTenure = 0.2n as
an effective value for this search parameter. These experiments also showed that
the best results can be expected when NonImproving is set to 0.1n, with a mini-
mum value of 6 and a maximum value of 15. When the TS stops, a new solution is
generated with Algorithm 1. This process continues until a maximum time limit
is reached, as long as at least 10 but no more than 30 restarts are performed.

3 Advanced search strategies

We now discuss three advanced strategies that are part of our procedure. Al-
though these strategies were designed with the current context in mind, the ideas
behind them apply to heuristic searches in other settings. The first strategy deals
with landscapes where many solutions have the same objective function value. In
this case, the objective function value alone does not provide enough information
to find effective search directions. A secondary evaluation is able to differentiate
solutions for which objective function values are the same. The second strategy
explores computationally efficient ways of calculating move values. This is partic-
ularly important in large neighborhoods. The third one also tackles efficiency but
from the point of view of reducing the number of moves to evaluate.
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3.1 Secondary solution evaluation

In heuristic search, a flat landscape condition occurs when large fractions of the
solution space have the same objective function value [36,37]. This means that
structurally different solutions may be associated with the same value of the ob-
jective function. Determining search directions becomes a very difficult task when
decisions are based only on the change of the objective function value produced
by a move. Finding a meaningful way of differentiating solutions with the same
objective function value is important because the structure of one solution may be
more promising than the structure of another in terms of improving the incumbent
solution later in the search.

Flat landscapes are typically associated with minmax or maxmin problems [9,
35], that is, those problems where the objective is to minimize a maximum value
or to maximize a minimum value. To overcome this difficulty, researchers have
proposed the use of one or more secondary solution evaluations. These evaluations
are only activated when solutions have the same objective function value and they
are designed to indicate preferences regarding the structure of the solutions being
compared [33,35].

The secondary evaluation that we employ is based on ideas presented in [33]
and [35]. As our problem formulation indicates, the CCMP is an optimization
problem that has the goal of finding a solution that minimizes the maximum cut
produced by the assignment of candidate vertices to a host graph. It is possible for
multiple solution configurations to have the same maximum cut. When comparing
two solutions with the same maximum cut (i.e., the same objective function value),
we are interested in knowing which one of the two has a better “improvement
potential” if a move (or series of moves) could reduce the current maximum cut.
The improvement potential can be defined as the difference between the maximum
cut and the the second largest cut.

We use the improvement potential concept to differentiate solutions with the
same objective function value. In particular, if two solutions have the same objec-
tive function value, we calculate the difference between the largest cut (i.e., the
objective function value) and the second largest cut. The solution with the larger
difference is deemed better (i.e., the solution has the larger improvement potential
of the two solutions under consideration). If this calculation is not able to differ-
entiate the solutions, then we calculate the difference between he second largest
cut and the third largest cut. We do this until the result of the calculation is able
to distinguish between the two solutions.

3.2 Efficient move calculation

The exploration of a solution neighborhood usually is the most computational in-
tensive element in search procedures. Neighborhood searches require the evaluation
of moves to determine what to do next. Developing efficient ways of calculating
move values is critical in heuristic search. We propose an efficient calculation of
the value of the Insert move that we defined in Section 2.2. The main idea con-
sists of determining the contribution to the objective function value of the edges
corresponding to candidate vertices that are reassigned by the Insert move. The



MS for the Cyclic Cutwidth Minimization Problem 13

5

E

4

D
3

C

2

B

1

A

𝑝(𝐵,𝐶)

𝑝(𝐵,𝐸)𝑐5

𝑐4

𝑐3

𝑐1

𝑐2

Insert(𝜑, C, 2)
5

E

4

D
3

B

2

C

1

A

𝑝(𝐵,𝐶)

𝑝(𝐵,𝐸)

𝑐5

𝑐4

𝑐3

𝑐1

𝑐2

step cut c1 c2 c3 c4 c5

0 (a) 1 1 0 2 3
1 Remove -1 -1 0 0 -1
2 Add 0 +1 +1 +1 0
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Fig. 5: (a) Solution before the move Insert(ϕ,C, 2). (b) Solution after the move
Insert(ϕ,C, 2). (c) Efficient revaluation of the objective function.

contribution to the objective function of candidate vertices that are not reassigned
does not change.

We illustrate the move evaluation with the example depicted in Figure 5. Figure
5(a) shows the solution before the move of vertex C to position 2, characterized
by Insert(ϕ,C, 2). Figure 5(b) shows the solution after Insert(ϕ,C, 2). The move
evaluation consists of first deleting the paths associated with the edges adjacent
to vertices B and C, which are the only vertices that change positions after the
move. We also delete the contribution of these paths to the objective function
calculation. Then, new paths are assigned to these edges and the contribution of
these paths is added to the objective function. The table in Figure 5(c) shows
these calculations. Step 0 shows the cuts in the current solution. Step 1 shows the
contributions that are removed and step 2 shows the contributions that are added.
The cut values associated with the new solution are shown in step 3. These values
are obtained by adding the corresponding values in the previous steps.

3.3 Search regions of interest

Exhaustive neighborhood searches become increasingly impractical when the size
of the neighborhood grows either polynomially or exponentially with the size of
the problem. In our case, the entire neighborhood of a solution is O(n2). To com-
plement the quick move calculation described in the previous subsection, we add a
strategy to focus the search on regions of interest. These regions are reached by a
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set of promising moves and therefore the strategy consists of identify such moves.
This partial exploration of the entire neighborhood is similar to the strategy of
moving to the first improving solution, which has been documented to work well in
multi-start settings [19]. Our neighborhood search combines the two strategies and
in addition we embed the notion of a partial exploration that focuses on regions
of interest (ROI).

The ROI of a candidate vertex v, denoted by ROI(v), is the subset of host
vertices such that if v were to be assigned to any of them, the current objective
function value might change. That is, ROI(v) is the set of host vertices that could
cause a reassignment of paths associated with the edges of v. Clearly, the idea
here is to avoid changing the assignments of candidate vertices to positions that
will cause no changes in the path assignments (and therefore no changes in the
objective function value). The exploration of the regions of interests is then done
in two steps, we first identify ROI(v) for all v, and then we evaluate all the moves
associated with inserting v in all the host vertices in ROI(v). The best move is
selected.

4 Experimental results

Before describing our computational experiments and discussion or results, we
introduce the instances in our test set (Section 4.1). Preliminary experiments are
described in Section 4.2. These experiments are devoted to adjust the parameters
of our solution procedure and also to analyze the contribution of the proposed
search strategies. We compare the best configuration with the state of the art in
Section 4.3.

4.1 Instances

We use the following set of instances from the literature in our computational tests
[21].

– Small graphs: the number of vertices and edges in these random graphs varies
between 16 and 24, and between 18 and 49, respectively. There are 84 instances
in this set.

– Harwell-Boeing graphs: these graphs arise from a wide variety of problems
in scientific and engineering disciplines. The selected problems are a diverse
subset of the original Harwell-Boeing set [10] . Particularly, we have selected
the 38 graphs used in [21]. These graphs have sizes between 39 and 685 vertices
and from 46 to 3720 edges.

– Regular graphs: these subset includes four different types of graphs (Complete
Split Graph, Toroidal Mesh, Join of Hypercubes, and Cone Graph) with a
predefined and well-known structure, but with an unknown optima. This set
includes a total of 57 graphs with a number of vertices ranging from 12 to 1000
and a number of edges ranging from 46 to 6225.

Our experiments do no include the set of regular graphs with known optimal
solutions included in [21]. These graphs are such that do not provide insightful
results in comparative testing.
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4.2 Preliminary experiments

Our preliminary experiments with a random sample consisting of 10% of all our
problem instances (i.e., 18 graphs) have the goal of identifying the best values for
the search parameters as well as assess the merit of the proposed search strategies
and mechanisms.

The procedure to construct solutions described in Section 2.1 is not totally
deterministic. The first candidate vertex to be assigned is chosen at random. Also,
when the greedy value is the same for all unassigned candidate vertices, ties are
broken arbitrarily. Therefore, it is interesting to observe the performance of the
procedure when constructing more than one solution. Table 1 reports the average
value of the objective function (Avg.), the deviation of the best solution in the
current run with respect to the overall best within the experiment (Dev.(%)), the
number of best solutions found in the experiment (#Best) and the time in seconds
(CPU Time (s)) when applying the procedure to construct 1, 5, 10, 20, 30, 40, and
50 solutions. Note that we are not comparing against the best known solutions
but against the best solutions found within this experiment. The results in Table
1 show that the best solutions for the 18 instances in the sample are found when
the procedure is run 50 times. The improvement is significant from executing the
procedure one time to executing it fifty times. However, the difference in solution
quality is negligible after executing the procedure twenty times.

Iterations 1 5 10 20 30 40 50

Avg. 60.61 57.28 55.00 54.17 54.11 54.06 53.94
Dev. (%) 32.82 12.83 6.20 0.33 0.28 0.17 0.00
#Best 3 9 11 15 16 17 18
CPU Time (s) 0.004 0.010 0.015 0.024 0.032 0.041 0.048

Table 1: Performance of the constructive procedure based on the number of iter-
ations.

We then compared the performance of our greedy construction (Greedy) and
a totally random construction (Random). Table 2 reports the results of runs with
a time limit of one second for each graph. As expected, the number of random
constructions is larger than the number of greedy constructions. The difference
is that the greedy procedure evaluates each unassigned candidate vertex before
selecting it. The solution quality indicators favor the greedy constructions over a
totally random approach.

The second preliminary experiment is devoted to testing the impact of the
advanced strategies introduced in Section 3. We start by running the local search
of Section 2.2 and reporting the results in Table 3 (LS). The table compares these
results with the outcomes from running LS with the efficient move evaluation of
Section 3.2 (LS+E) and the results from focusing on regions of interest of Section
3.3 (LS+E+ROI). Since the local search follows a strictly descent pattern, the
secondary evaluation of Section 3.1 does not play a role. Recall that the secondary
evaluation is used to distinguish between moves that result in no change of the
objective function value.
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Random Greedy

Avg. 87.22 53.06
Dev. (%) 113.00 9.46
#Best 4 14
Avg. #Cons. 151098.83 55025.72

Table 2: Comparison between random and greedy constructions.

LS LS+E LS+E+ROI

Avg. 43.61 43.61 43.61
#Best 18 18 18
CPU Time (s) 591.98 35.93 0.53
Avg. #Sol. 4312427.50 4312427.50 60463.78

Table 3: Contribution of advanced strategies to the local search.

Greedy LS+E+ROI TS

Avg. 60.61 43.61 43.06
Dev. (%) 41.03 3.15 0.11
#Best 0 12 17
CPU Time (s) 0.01 0.51 2.14

Table 4: Performance differences between the procedure components and the full
procedure.

Table 3 reveals that all variants are able to reach the same solution quality.
Moving from LS to LS+E, we observe the decrease of one order of magnitud in
computational time to explore the same number of solutions. The neighborhood
reduction strategy associated with ROI is able to further reduce the computational
burden (by two addional orders of magnitud). We point out that all variants were
run starting from the same initial solution.

To adjust the two parameters associated with the tabu search elements in our
procedure, we performed a full factorial design with values that we made dependent
on the graph size. In particular, for the tabu tenure we tested 5%, 10%, 20%, 30%,
and 40% of n, where n is the number of vertices in the candidate graph. We tested
the same percentages for the maximum number of iterations without improvement,
and limited the value to be within a minimum (6 iterations) and a maximum (15
iterations). The experiment identified 20%n as the best setting for tabu tenure
and 10%n as the best setting for the number of iterations without improvement.

Our final preliminary experiment explores the increase in solution quality when
going from simple greedy constructions (Greedy) to the local search with advanced
strategies (LS+E+ROI) and to the tuned procedure that includes TS elements
(TS). Table 4 reports the results. As expected, adding local search results in a
noticeable improvement in solution quality. The embedding of tabu search ele-
ments results in additional quality improvement, although the difference between
LS+E+ROI and TS is significantly smaller than the solution quality difference
between Greedy and LS+E+ROI.
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TS MA

Random
graphs

Small Instances (84)

Avg. 3.90 3.98
Dev. (%) 0.00 1.92
#Best 84 78
CPU Time (s) 0.32 15

Harwell-Boeing (38)

Avg. 67.26 70.71
Dev. (%) 2.40 12.09
#Best 31 10
CPU Time (s) 187.59 4580.61

Regular-
structured
graphs

Complete Split Graph (21)

Avg. 217.76 217.34
Dev. (%) 0.18 0.00
#Best 13 21
CPU Time (s) 994.16 2548.43

Join of Hypercubes (9)

Avg. 80.89 80.34
Dev. (%) 0.27 0.00
#Best 7 9
CPU Time (s) 56.08 406.89

Toroidal Mesh (17)

Avg. 30.24 30.24
Dev. (%) 1.47 1.24
#Best 13 16
CPU Time (s) 142.31 1898.71

Cone Graph (10)

Avg. 154.80 154.90
Dev. (%) 0.10 0.13
#Best 9 8
CPU Time (s) 80.32 1596.80

Total

Avg. 57.24 57.94
Dev. (%) 0.69 3.59
#Best 157 142
CPU Time (s) 177.42 1568.42

Table 5: Comparison with the state of the art.

4.3 Competitive Testing

In our competitive testing, we compare our tuned procedure with the one proposed
in [21], the memetic algorithm that we mention in the literature review. Table 5
shows the results of this test. The results are grouped by set and graph type
(i.e., random or structured).TS refers to our proposed method and MA refers to
the memetic algorithm in [21]. We use the same metric as before, where average
deviation form best (Dev.) is calculated considering the collective-best solutions
found with either TS or MA. The ”Total” section at the bottom of the table
provides averages across all graph types.

The general observations from examining this table are that:

– The TS solutions are found in about one order of magnitude less time than
MA

– TS’s performance is better on random graphs than on structured graphs
– For all problem types, TS solutions are on average closer to the best solutions

(maximum deviation of 1.47%) than the MA solutions (maximum deviation of
12.09%)

We performed two statistical tests with the goal of identifying significant per-
formance differences. Specifically, we use Wilcoxon’s signed rank test [46] to iden-
tify difference between the objective function values of the best solutions found by
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TS and MA. We apply the one-tail version of this paired test to random graphs
and structured graphs separately. Our null hypothesis is that there is no difference
in the median of the objective function values, while the alternative hypothesis is
that the median of one set of values is smaller than the other. The first test with
all 122 random graphs results in a p-value of 0.0008. Therefore, we can confidently
reject the null hypothesis in favor of the alternative hypothesis that the median
of the TS objective function values is less than the median of the MA values. The
Wilcoxon test with all 57 structured graphs results in a p-value of 0.0069. This
also indicates a strong rejection of the null hypothesis in favor of concluding that
the median of the MA objective function values for structured graphs is less than
the median of the TS values. We point out that while the Wilcoxon tests detect
significant difference on the median values, the corresponding t-test for paired
sample means result in p-values of 0.032 and 0.106 for random and structured
graphs, respectively. This means that, in the case of random graphs, we could still
reject the null hypothesis at a reasonable level of significance, say 5%. However,
we would have to accept a Type I error of over 10% if we would like to reject the
null hypothesis for the structured graphs in favor of concluding that the average
MA objective function values for structured graphs is less than the TS average.

We believe that the solid performance of MA on structured graphs is due to
the six different ways in which solutions are constructed to initialize the search.
At least one of this constructions can be customized to exploit a particular regular
structure and give the procedure the advantage of starting the search at high-
quality initial point. Customization of a solution-construction procedure is not
possible for graphs without a regular structure, such as as random graphs. Includ-
ing various forms of constructing solutions within a single procedure is indeed a
reasonable idea as long as the application can afford the price to be paid on the
increased computational effort.

Appendix A includes the individual results of our competitive tests. This could
help researchers to perform future comparisons.

5 Conclusions

We studied the Cyclic Cutwidth Minimization Problem consisting of embedding
a candidate graph into a cycle (host) graph in order to minimize the maximum
cut. This problem has been previously studied for specific classes of graphs with
a regular structure. However, work on general candidate graphs is sparse. We can
point to only one recent heuristic approach for general graphs. The approach in
the literature is a population-based metaheuristic from the family of memetic al-
gorithms. We took a different approach and developed a single-solution, neighbor-
hood search. In the process of creating an effective and efficient solution method,
we adapted three strategies that have general applicability:

1. Efficient move value calculation.
2. Secondary move evaluation to distinguish moves that the primary evaluation

(based on the objective function) is not able to distinguish.
3. Neighborhood search space reduction via regions of interest.

Our work establishes some new benchmarks for the Cyclic Cutwidth Minimiza-
tion Problem and provides validation for strategies that promise to accelerate the
execution of heuristic searches without sacrificing solution quality.
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35. E. G. Pardo, N. Mladenović, J. J. Pantrigo, and A. Duarte. Variable formulation search
for the cutwidth minimization problem. Appl. Soft Comput., 13(5):2242–2252, May 2013.

36. E. Pinana, I. Plana, V. Campos, and R. Martı. Grasp and path relinking for the matrix
bandwidth minimization. European Journal of Operational Research, 153(1):200–210,
2004.

37. M. G. C. Resende, R. Mart́ı, M. Gallego, and A. Duarte. Grasp and path relinking for the
max–min diversity problem. Computers & Operations Research, 37(3):498–508, 2010.

38. M. G. C. Resende and Andrade D. V. In Method and system for network migration
scheduling. United States Patent Application Publication. US2009/0168665, 2009.

39. F.R. Rios. Complete graphs as a first step toward finding the cyclic cutwidth of the n-cube.
Cal State Univ., San Bernardino McNair Scholar’s Program Summer Research Journal,
1996.
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Appendix A Individual results

These are the results of our competitive testing. These values were used to calculate
the summary presented in Table 5.

Small Instances

TS MA
Instance ccw CPUt (s) Dev. (%) ccw CPUt (s) Dev. (%)
p17 16 24 5 0.27 0.00 5 <15 0.00
p18 16 21 4 0.20 0.00 4 <15 0.00
p19 16 19 3 0.26 0.00 3 <15 0.00
p20 16 18 4 0.20 0.00 4 <15 0.00
p21 17 20 3 0.12 0.00 3 <15 0.00
p22 17 19 3 0.24 0.00 3 <15 0.00
p23 17 23 4 0.39 0.00 4 <15 0.00
p24 17 29 5 0.39 0.00 6 <15 20.00
p25 17 20 3 0.20 0.00 3 <15 0.00
p26 17 19 3 0.16 0.00 3 <15 0.00
p27 17 19 3 0.30 0.00 3 <15 0.00
p28 17 18 3 0.18 0.00 3 <15 0.00
p29 17 18 3 0.16 0.00 3 <15 0.00
p30 17 19 3 0.20 0.00 3 <15 0.00
p31 18 21 3 0.22 0.00 3 <15 0.00
p32 18 20 3 0.32 0.00 3 <15 0.00
p33 18 21 3 0.17 0.00 3 <15 0.00
p34 18 21 3 0.32 0.00 3 <15 0.00
p35 18 19 3 0.09 0.00 3 <15 0.00
p36 18 20 3 0.24 0.00 3 <15 0.00
p37 18 20 4 0.14 0.00 4 <15 0.00
p38 18 19 3 0.15 0.00 3 <15 0.00
p39 18 19 3 0.26 0.00 3 <15 0.00
p40 18 32 6 0.68 0.00 6 <15 0.00
p41 19 20 3 0.16 0.00 3 <15 0.00
p42 19 24 4 0.18 0.00 4 <15 0.00
p43 19 22 3 0.22 0.00 3 <15 0.00
p44 19 25 4 0.35 0.00 4 <15 0.00
p45 19 25 4 0.23 0.00 4 <15 0.00
p46 19 20 3 0.16 0.00 3 <15 0.00
p47 19 21 3 0.19 0.00 3 <15 0.00
p48 19 21 3 0.14 0.00 3 <15 0.00
p49 19 22 3 0.21 0.00 3 <15 0.00
p50 19 25 3 0.29 0.00 3 <15 0.00
p51 20 28 4 0.56 0.00 5 <15 25.00
p52 20 27 4 0.34 0.00 4 <15 0.00
p53 20 22 3 0.27 0.00 3 <15 0.00
p54 20 28 5 0.32 0.00 5 <15 0.00
p55 20 24 3 0.14 0.00 3 <15 0.00
p56 20 23 3 0.30 0.00 3 <15 0.00
p57 20 24 4 0.33 0.00 4 <15 0.00
p58 20 21 3 0.07 0.00 3 <15 0.00
p59 20 23 4 0.37 0.00 4 <15 0.00
p60 20 22 3 0.63 0.00 4 <15 33.33
p61 21 22 3 0.27 0.00 3 <15 0.00
p62 21 30 5 0.34 0.00 5 <15 0.00
p63 21 42 7 0.62 0.00 7 <15 0.00
p64 21 22 3 0.17 0.00 3 <15 0.00
p65 21 24 3 0.39 0.00 3 <15 0.00
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TS MA
Instance ccw CPUt (s) Dev. (%) ccw CPUt (s) Dev. (%)
p66 21 28 5 0.42 0.00 5 <15 0.00
p67 21 22 3 0.07 0.00 3 <15 0.00
p68 21 27 4 0.26 0.00 4 <15 0.00
p69 21 23 3 0.19 0.00 4 <15 33.33
p70 21 25 4 0.26 0.00 4 <15 0.00
p71 22 29 4 0.38 0.00 4 <15 0.00
p72 22 49 9 1.26 0.00 9 <15 0.00
p73 22 29 4 0.38 0.00 4 <15 0.00
p74 22 30 5 0.51 0.00 5 <15 0.00
p75 22 25 4 0.32 0.00 4 <15 0.00
p76 22 30 4 0.84 0.00 5 <15 25.00
p77 22 37 6 0.56 0.00 6 <15 0.00
p78 22 31 5 0.37 0.00 5 <15 0.00
p79 22 29 5 0.39 0.00 5 <15 0.00
p80 22 30 5 0.38 0.00 5 <15 0.00
p81 23 46 8 0.45 0.00 8 <15 0.00
p82 23 24 4 0.25 0.00 4 <15 0.00
p83 23 24 4 0.17 0.00 4 <15 0.00
p84 23 26 4 0.27 0.00 4 <15 0.00
p85 23 26 4 0.32 0.00 4 <15 0.00
p86 23 24 3 0.22 0.00 3 <15 0.00
p87 23 30 4 0.28 0.00 4 <15 0.00
p88 23 26 4 0.16 0.00 4 <15 0.00
p89 23 27 4 0.33 0.00 4 <15 0.00
p90 23 35 5 0.41 0.00 5 <15 0.00
p91 24 33 5 0.33 0.00 5 <15 0.00
p92 24 26 4 0.40 0.00 4 <15 0.00
p93 24 27 4 0.40 0.00 4 <15 0.00
p94 24 31 4 0.49 0.00 5 <15 25.00
p95 24 27 4 0.44 0.00 4 <15 0.00
p96 24 27 3 0.38 0.00 3 <15 0.00
p97 24 26 4 0.36 0.00 4 <15 0.00
p98 24 29 4 0.66 0.00 4 <15 0.00
p99 24 27 4 0.14 0.00 4 <15 0.00
p100 24 34 5 0.41 0.00 5 <15 0.00
Avg. 3.90 0.32 0.00 3.98 <15 1.92

Harwell-Boeing

TS MA
Instance ccw CPUt (s) Dev. (%) ccw CPUt (s) Dev. (%)
494 bus 25 288.88 25.00 20 3934 0.00
662 bus 31 306.09 0.00 38 18010 22.58
685 bus 37 304.98 0.00 50 18007 35.14
arc130 122 302.89 0.00 143 2841 17.21
ash292 34 309.38 0.00 47 5102 38.24
ash85 14 13.37 0.00 16 295 14.29
bcspwr01 4 0.45 0.00 5 80 25.00
bcspwr02 5 1.46 0.00 5 88 0.00
bcspwr03 10 18.36 0.00 11 512 10.00
bcspwr04 36 306.27 2.86 35 6755 0.00
bcspwr05 25 82.35 0.00 26 4429 4.00
bcsstk01 25 12.03 0.00 27 100 8.00
bcsstk02 561 8.42 2.75 546 164 0.00
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TS MA
Instance ccw CPUt (s) Dev. (%) ccw CPUt (s) Dev. (%)
bcsstk04 302 410.32 0.00 311 12814 2.98
bcsstk05 113 165.78 0.00 114 2988 0.88
bcsstk06 254 2125.71 18.14 215 22232 0.00
bcsstk22 10 43.15 0.00 11 550 10.00
can 144 25 53.82 25.00 20 1472 0.00
can 161 45 84.09 0.00 48 656 6.67
can 292 67 309.42 0.00 105 10625 56.72
curtis54 11 6.20 0.00 12 75 9.09
dwt 209 47 147.80 0.00 55 6368 17.02
dwt 221 27 90.53 0.00 28 9260 3.70
dwt 234 12 8.40 0.00 14 1080 16.67
dwt 245 32 140.78 0.00 38 3575 18.75
fs 183 1 113 303.52 0.00 136 7774 20.35
gent113 70 187.25 0.00 80 1932 14.29
gre 115 25 33.82 0.00 28 1028 12.00
gre 185 46 79.24 9.52 42 3554 0.00
ibm32 15 3.40 0.00 15 60 0.00
impcol b 44 15.69 0.00 47 278 6.82
impcol c 33 34.09 0.00 41 1494 24.24
lns 131 24 18.29 0.00 25 748 4.17
lund a 107 221.78 8.08 99 3918 0.00
lund b 100 300.58 0.00 101 3048 1.00
saylr3 46 302.45 0.00 60 18000 30.43
west0132 48 84.28 0.00 62 117 29.17
will57 11 2.96 0.00 11 100 0.00
Avg. 67.26 187.59 2.40 70.71 4580.61 12.09

Complete Split

TS MA
Instance ccw CPUt (s) Dev. (%) ccw CPUt (s) Dev. (%)
CompleteSplit K4 K10 13 0.92 0.00 13 29 0.00
CompleteSplit K4 K15 17 0.48 0.00 17 50 0.00
CompleteSplit K4 K20 23 2.63 0.00 23 68 0.00
CompleteSplit K4 K30 33 5.27 0.00 33 122 0.00
CompleteSplit K4 K50 53 16.71 0.00 53 278 0.00
CompleteSplit K4 K100 103 98.15 0.00 103 103 0.00
CompleteSplit K5 K5 10 0.93 0.00 10 20 0.00
CompleteSplit K5 K10 16 1.20 0.00 16 37 0.00
CompleteSplit K5 K20 29 3.26 0.00 29 89 0.00
CompleteSplit K5 K50 68 15.71 0.00 68 309 0.00
CompleteSplit K5 K100 133 117.84 0.00 133 879 0.00
CompleteSplit K6 K15 27 1.81 0.00 27 80 0.00
CompleteSplit K6 K50 81 30.88 1.25 80 477 0.00
CompleteSplit K6 K100 156 145.45 0.65 155 1446 0.00
CompleteSplit K10 K15 50 5.09 0.00 50 156 0.00
CompleteSplit K10 K50 139 91.92 0.78 138 787 0.00
CompleteSplit K10 K100 264 310.32 0.38 263 2604 0.00
CompleteSplit K20 K50 302 310.33 0.33 301 2342 0.00
CompleteSplit K20 K100 552 925.71 0.18 551 7523 0.00
CompleteSplit K50 K50 940 2705.05 0.21 938 18059 0.00
CompleteSplit K50 K100 1564 16087.62 0.06 1563 18059 0.00
Avg. 217.76 994.16 0.18 217.33 2548.43 0.00
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Torodial Mesh

TS MA
Instance ccw CPUt (s) Dev. (%) ccw CPUt (s) Dev. (%)
ToroidalMC3xC3xC3 14 0.52 0.00 14 58 0.00
ToroidalMC3xC3xC4 17 1.22 0.00 17 81 0.00
ToroidalMC3xC3xC5 17 1.73 0.00 17 108 0.00
ToroidalMC3xC3xC10 17 20.20 0.00 17 296 0.00
ToroidalMC3xC4xC4 20 2.43 0.00 20 118 0.00
ToroidalMC3xC4xC5 20 7.30 0.00 20 167 0.00
ToroidalMC3xC4xC10 22 56.54 10.00 20 536 0.00
ToroidalMC3xC5xC5 23 7.38 0.00 23 308 0.00
ToroidalMC3xC5xC10 23 89.24 0.00 23 951 0.00
ToroidalMC3xC10xC10 38 300.66 0.00 46 6310 21.05
ToroidalMC4xC4xC4 26 5.82 0.00 26 215 0.00
ToroidalMC4xC4xC5 26 18.04 0.00 26 432 0.00
ToroidalMC4xC4xC10 26 115.00 0.00 26 1198 0.00
ToroidalMC4xC5xC5 32 31.46 6.67 30 992 0.00
ToroidalMC4xC5xC10 32 260.36 6.67 30 1693 0.00
ToroidalMC5xC5xC5 37 50.13 0.00 37 668 0.00
ToroidalMC10xC10xC10 124 1451.31 1.64 122 18147 0.00
Avg. 30.24 142.31 1.47 30.24 1898.71 1.24

Join of Hypercubes

TS MA
Instance ccw CPUt (s) Dev. (%) ccw CPUt (s) Dev. (%)
Hypercube Q2+Q3 12 1.02 0.00 12 29 0.00
Hypercube Q2+Q4 23 2.25 0.00 23 63 0.00
Hypercube Q2+Q5 46 10.77 0.00 46 204 0.00
Hypercube Q3+Q3 21 2.92 0.00 21 55 0.00
Hypercube Q3+Q4 40 7.11 0.00 40 118 0.00
Hypercube Q3+Q5 79 34.47 0.00 79 375 0.00
Hypercube Q4+Q4 76 11.67 0.00 76 260 0.00
Hypercube Q4+Q5 147 132.50 1.38 145 752 0.00
Hypercube Q5+Q5 284 302.05 1.07 281 1806 0.00
Avg. 80.89 56.08 0.27 80.33 406.89 0.00

Cones

TS MA
Instance ccw CPUt (s) Dev. (%) ccw CPUt (s) Dev. (%)
Cone10 10 26 1.58 0.00 26 76 0.00
Cone10 15 39 4.64 0.00 39 195 0.00
Cone10 20 51 3.67 0.00 51 207 0.00
Cone10 50 126 46.89 0.00 127 868 0.79
Cone15 15 58 17.40 0.00 58 197 0.00
Cone15 20 77 18.98 0.00 77 477 0.00
Cone15 50 190 162.52 0.00 191 1924 0.53
Cone20 20 102 9.65 0.99 101 599 0.00
Cone20 50 252 226.61 0.00 252 2810 0.00
Cone50 50 627 311.24 0.00 627 8615 0.00
Avg. 154.80 80.32 0.10 154.90 1596.80 0.13
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