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We present a combined analytical approach and numerical study on the stability of a ring
bound to an annular elastic substrate, which contains a circular cavity. The system is
loaded by depressurizing the inner cavity. The ring is modeled as an Euler–Bernoulli beam
and its equilibrium equations are derived from the mechanical energy which takes into
account both stretching and bending contributions. The curvature of the substrate is
considered explicitly to model the work done by its reaction force on the ring. We dis-
tinguish two different instabilities: periodic wrinkling of the ring or global buckling of the
structure. Our model provides an expression for the critical pressure, as well as a phase
diagram that rationalizes the transition between instability modes. Towards assessing the
role of curvature, we compare our results for the critical stress and the wrinkling wave-
length to their planar counterparts. We show that the critical stress is insensitive to the
curvature of the substrate, while the wavelength is only affected due to the permissible
discrete values of the azimuthal wavenumber imposed by the geometry of the problem.
Throughout, we contrast our analytical predictions against finite element simulations.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Wrinkling is a stress-driven mechanical instability that occurs when a stiff and slender surface layer, bonded to a
compliant substrate, is subject to compression. This universal instability phenomenon is found in numerous natural and
technological/engineering examples, over a wide range of length scales, including carbon nanotubes (Lourie et al., 1998),
pre-stretched elastomers used in flexible electronics applications (Kim et al., 2011), human skin (Chen and Yin, 2010), drying
fruit (Yin et al., 2009), surface morphology of the brain (Budday et al., 2014) and mountain topographies generated due to
tectonic stresses (Price and Cosgrove, 1990; Huddleston and Lan, 1993).

Over the past decade, there has been an upsurge of interest in the study of the mechanics of wrinkling, along with a
change of paradigm in regarding surface instabilities as an opportunity for functionality, instead of a first step in the route to
structural failure (Genzer and Groenewold, 2006; Li et al., 2012). The first mechanical studies of wrinkling were motivated
nical Engineering and Civil & Environmental Engineering, Massachusetts Institute of Technology, #1-
9, USA

té des Sciences, Université Libre de Bruxelles (ULB), Bruxelles 1050, Belgium.
ering, University of Ljubljana, Slovenia.

www.sciencedirect.com/science/journal/00225096
www.elsevier.com/locate/jmps
http://dx.doi.org/10.1016/j.jmps.2016.02.004
http://dx.doi.org/10.1016/j.jmps.2016.02.004
http://dx.doi.org/10.1016/j.jmps.2016.02.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2016.02.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2016.02.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2016.02.004&domain=pdf
mailto:preis@mit.edu
http://dx.doi.org/10.1016/j.jmps.2016.02.004


R. Lagrange et al. / J. Mech. Phys. Solids 89 (2016) 77–9578
by the stability of sandwich panels (Allen, 1969), used in lightweight structural applications, in which the core acts as a soft
substrate for the much stiffer skin. More recently, Bowden et al. (1998) showed how the wrinkling of a thin film on an
elastomeric substrate can be used to produce complex self-organized patterns. Their seminal work has instigated the
realization of wrinkling through several different actuation mechanisms, including thermal mismatch (Huck et al., 2000),
tissue growth/atrophy (Ben Amar and Goriely, 2005; Li et al., 2011a; Budday et al., 2014), swelling by a liquid (Chan and
Crosby, 2006b) or vapor solvent (Breid and Crosby, 2009), and pneumatics (Terwagne et al., 2014). The opportunities in
applications opened by such a wide range of external stimuli have enabled the usage of wrinkling in photonics (Kim et al.,
2012), optics (Chan and Crosby, 2006a), self-assembly (Yoo et al., 2002), microfluidics (Yin et al., 2012) and morphogenesis
(Efimenko et al., 2005).

In order to provide a theoretical background to these recent developments, several authors have built on the pioneering
work of Allen (1969), who first provided close form solutions for the critical stress and wavelength obtained when an
initially straight beam, adhered to an infinite plane substrate, is placed under a state of uniaxial compression. Chen and
Hutchinson (2004) extended this work to consider the case of a plate adhered to a flat substrate under equi-biaxial com-
pression and performed a nonlinear analysis of the Föppl–von Kármán (Landau and Lifshitz, 1959; Timoshenko and Gere,
1961). Huang et al. (2005) further refined these efforts by considering the effect of a finite substrate. Both studies showed
the existence of multiple buckling modes associated with the same value of critical stress. The stability of these modes
under different loadings conditions has been addressed by Audoly and Boudaoud (2008a,b,c), who produced a stability
diagram covering the evolution from low to high values of overstress. However, experiments by Cai et al. (2011) found
disagreement at low values of overstress, suggesting that a finite intrinsic curvature of their experimental system, even if
small, may play an important role in dictating pattern selection.

Early studies of wrinkling on curved substrates, as in the flat configuration, were also motivated by a structural problem;
in this case, in the context of the stability of the outer shell of rockets (Kachman, 1959; Seide and Weingarten, 1961; Seide,
1962). More recent studies that consider instabilities as a possible source of functionality have led to applications of curved
configurations in adhesion (Kundu et al., 2011), microfluidics (Mei et al., 2010), morphogenesis of microparticles (Yin et al.,
2014), optics (Breid and Crosby, 2013) and aerodynamic drag reduction (Terwagne et al., 2014). Curvature also plays a
relevant role in the growth of biological systems (Li et al., 2011b). Despite these important emerging applications, the
mechanics of wrinkling on curved substrates remains poorly understood, when compared to the planar counterpart.

Systematic Finite Element simulations of wrinkling in curved systems have been performed (Yin et al., 2009; Chen and
Yin, 2010; Li et al., 2011c; Cao et al., 2012) that highlighted a complex pattern formation process. These numerical studies
also suggested the possibility for curvature to affect the selected patterns and modify the relevant characteristic length
scales, which calls for a robust theoretical backing. Analytical predictions are challenged by the difficulty of modeling the
stiffness of the substrate, even in two-dimensional configurations. Cheng (1996) and Cai et al. (2011) used the stiffness
provided by Allen (1969) for the flat case, such that their model therefore neglects the contribution of curvature on the
response of the substrate. Yin et al. (2009) used the prediction provided by Brush and Almroth (1975), which accounts for
curvature but does not consider its influence on the wrinkling wavelength and their prediction does not converge to the
classical planar case when the curvature tends to zero. As such, there is a need to quantify the effect of curvature on the
stiffness of the substrate and its subsequent influence on wrinkling.

Here, to the best of our knowledge, we provide the first analytical work that accounts for both the curvature of a (2D)
shell–substrate system, as well as the finite size of the substrate. As an initial step, we focus our study on a curved film
adhered to a cylindrical substrate, instead of dealing with non-zero Gaussian curvature geometries, which is left for a future
study. We assume axial-symmetry to further simplify the system to the 2D problem of a ring on an annular substrate.
Mechanical loading is applied by depressurizing a circular cavity inside the substrate, which places the system under a state
of compression. This geometry is motivated by recent experiments (Terwagne et al., 2014) that demonstrated the usage of
wrinkling on spherical samples for switchable and tunable aerodynamic drag reduction. In our simplified 2D system, we
solve the elasticity problem for the substrate and derive a close form expression for its stiffness, which is then used in the
stability analysis of the ring to quantify the buckling patterns.

The paper is organized as follows: In Section 2, we introduce our system along with its material and geometrical
parameters. We also describe the possible instability modes, and present a simplified phase diagram, with the aim of
providing physical insight on the problem. In Section 3, we then introduce the kinematics of the ring attached to the
substrate and determine the stiffness of the substrate. We proceed by defining a strain energy that includes both bending
and stretching of the ring, as well as the effect of the substrate. Energy minimization yields the equilibrium equations of the
problem. An asymptotic expansion is then used to calculate the principal solution and the bifurcation at the onset of in-
stability. In Section 4, we describe the finite element simulations that we have performed for this same system.

The results of our investigation are presented in Section 5. Throughout, we directly compare the analytical predictions to
the numerical simulations. We start with the fundamental solution and the critical conditions that lead to instability. We
then construct a phase diagram which rationalizes the dependence of the instability modes on the governing parameters.
The results for our system are then quantitatively compared to those for wrinkling of a film on a planar substrate, high-
lighting the effect of curvature. Finally, Section 6 summarizes our findings and provides perspectives for potential extensions
of our work in future studies.
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Fig. 1. (a) Schematic diagram of our system: a ring is bound to a curved substrate which contains a circular cavity. The system is loaded by applying a
pressure differential between the inside of the cavity and the outside of the ring. (b–d) Representative examples of the three possible instability modes of a
ring on a curved substrate which contains a cavity that is depressurized. (b) Wrinkling mode ( = −h 10 2 and ξ = 103), (c) global buckling mode ( = −h 10 2 and
ξ = 106) and (d) Biot mode ( = −h 10 2 and ξ = 102). (e) is a zoom in of (d) that exhibits the deformation of the surface of the inner cavity in the Biot mode.
The adjacent colorbar applies to pictures (b)–(e) and refers to the maximum principal component of the strain tensor of the mode, which has been
normalized by the maximum value of each configuration. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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2. Definition of the problem

We study the stability of a thin elastic ring, bound to an equally curved 2D substrate that contains an inner cavity, a
schematic diagram of which is presented in Fig. 1(a). The system is initially at equilibrium, with identical pressures inside
and outside of the sample. Motivated by recent experiments on spherical specimens (Terwagne et al., 2014), the system is
then loaded by applying a depressurization, P, to the inner cavity. The thickness of the ring is H, its Young's modulus EF and
its Poisson's ratio νF . We refer to ν= ( − )E E / 1F F F

2 as the reduced Young's modulus of the film. The substrate is made of a
linearly elastic material with Young's modulus ES, Poisson's ratio νS and reduced Young's modulus ν= ( − )E E / 1S S S

2 . The
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Fig. 2. Schematic phase diagram of the instability modes of the system, obtained for a critical value of the pressure differential: (i) wrinkling of the ring or
(ii) global buckling of the structure (shaded regions). The primary parameters that govern this transition are the stiffness and thickness ratios: ξ = E E/F S
and h¼H/R, respectively. The depicted examples from FEM simulations are for an incompressible film and substrate, ν ν= = 0.5F S . They were obtained for
R¼100 units of length and ES¼1 units of pressure, while varying H and EF. The colorbar refers to the maximum principal component of the strain tensor of
the mode, which has been normalized by the maximum value of each configuration. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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thickness of the substrate is −R R0, where R0 is the radius of the inner cavity.
For convenience, we now introduce new rescaled quantities to reduce the number of parameters of the problem. As such,

we use R and EF to normalize lengths and pressures and define

β ξ= = = =
( )

h
H
R

R
R

E
E

p
P
E

, , , ,
1

F

S F

0

as the dimensionless thickness, cavity size, stiffness ratio, and pressure, respectively.
The principal solution corresponds to an axisymmetric deformation that leads to a decrease of both the inner and outer

radii. As the depressurization increases, the onset of instability is reached. In Fig. 1(b) and (e) we show representative results
obtained from Finite Element Modeling (FEM), of the three possible instability configurations of the ring–substrate system,
for different values of the dimensionless ring thickness, h, and ratio of stiffness, ξ. For these results, all the other mechanical
properties were kept constant: Poisson's ratios of the film and substrate are ν ν= = 0.5F S , and the dimensionless size of the
cavity is β¼0.2. In the simulations, this is achieved by fixing R¼100 units of length and ES¼1 units of pressure, while
changing the values of H, R0 and EF accordingly. More details of our numerical simulations are provided in Section 4.

The first mode, a representative example of which is shown in Fig. 1(b) for = −h 10 2 and ξ = 103, corresponds to periodic
wrinkling of the film with a well defined wavelength. The displacements are localized in the region close to the film. The
second instability mode, for example at = −h 10 2 and ξ = 106 in Fig. 1(c), corresponds to a global buckling of the structure,
where both the ring and the cavity deform into an ellipse such that the wavelength is λ π= R.

In addition to these two instability modes (wrinkling and global buckling), we have also numerically observed an in-
stability on the inner surface of the cavity. However, this third mode does not affect the ring and is only found for low values
of cavity size and stiffness ratio (ξ = 102 and = −h 10 2 in Fig. 1(c) and (d)). This instability was first discussed by Biot (1965)
and we therefore refer to it as the Biot mode; it is local in nature and only depends on the compressive strain at the inner
surface. This type of instability mode has been recently studied in the case of elastomeric materials with voids by Michel
et al. (2007) and Cai et al. (2010). Understanding the specifics of this Biot mode is however outside the scope of our work
and we shall not take it into account in our analytical model and systematic numerical investigation.

A schematic phase diagram of our system is provided in Fig. 2. For low values of h and ξ, the ring wrinkles with a short
wavelength. As either h or ξ are increased, the wavelength also increases. Once these parameters reach a critical value,
represented by the dashed line in Fig. 2, the instability transitions from wrinkling to global buckling. In what follows, we
focus on rationalizing how the wavelength of the wrinkling mode, and the threshold value for the transition to global
buckling, evolve with the elastic and geometrical parameters of the system.
3. Analytical model

The ring is treated as an Euler–Bernoulli beam. The effect of the substrate is modeled as a restoring force that acts on the
ring and is determined by solving the elasticity problem of the substrate with adequate boundary conditions. Minimization
of the potential energy provides the equilibrium equations of the problem, which are solved using an asymptotic expansion
that yields the principal and bifurcated solutions.

3.1. Kinematics, energy formulation and equations of equilibrium

We model the ring as an extensible Euler–Bernoulli beam made of a homogeneous and isotropic material. Polar co-
ordinates are used to track the position of the ring center-line, C. The initial configuration of the ring, prior to depressur-
ization, is assumed to be circular. The origin, O, is located at the center of the cavity, and the initial and equilibrium con-
figurations of an arbitrary point of C are represented by M0 and M, respectively. Vectors are expressed in the physical base
( )θe e,r , derived from the polar coordinates θ( )r, . The initial position of C is = ( )ROM , 00 , as shown in the inset of Fig. 1(a).
When the system is loaded by depressurizing the cavity, C deforms into a new configuration given by the position vector

θ θ= ( + ( ) ( ))R v uOM 1 , , where v and u are the dimensionless radial and orthoradial displacements, respectively.
The infinitesimal arclength of C in the initial and deformed configurations are denoted by =ds dOM0 0 and =ds dOM ,

respectively. Moreover, defining the tangent vector, = d dsT OM/ , allows us to express the curvature of C in the deformed
configuration as κ =R d dsT/ / . Here, κ is dimensionless and can be written in terms of v and u as

( )( ) ( )κ = + − + ′ + ″ + − − ′ + − + ′ ″ + ′ − + ( )u v v v v u u v u v u1 1 2 2
1
2

h. o. t ., 2
2 2 2 2

where the prime notation represents derivation with respect to θ and high order terms (h.o.t.) are neglected under the
assumption of small displacements and moderate rotations. We now define the elongation of the ring as =e ds ds/ 0 to
express the stretching deformation, η = ( − )e 1 /22 , in terms of v and u as

⎡⎣ ⎤⎦( ) ( )η = ′ + + − ′ + + ′ + ( )u v u v v u v
1
2

1 , 3
2 2 2
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so that the hoop stress in the film is σ η= EF0 .
Following Euler–Bernoulli beam theory (Timoshenko and Gere, 1961), the total energy of deformation of the ring is the

sum of a stretching energy S and a bending energy B,

∫= + = ( )
π

ds , 4S B

R

0

2

0

with

∫ η= ( )
π E H

ds
2

, 5aS

R
F

0

2
2

0

∫ ( )κ= −
( )

π E H

R
ds

24
1 ,

5bB

R
F

0

2 3

2
2

0

and is the energy of deformation per unit length of the initial configuration of the ring. Assuming that the reaction force of

the substrate derives from a potential ∫ π
W ds

R

0

2
0, the equilibrium states of the ring are the solutions of

∫δ δ δ+ − = ( )
π

W ds 0, 6S B

R

0

2

0

where δ is the variation of quantity , for an arbitrary displacement field δ δ( )R v u, , which is π2 periodic. The computation
of the variations in Eq. (6) leads to the Euler–Lagrange equations for the equilibrium of the ring,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

δ
δ

∂
∂

− ∂
∂ ′

′
+ ∂

∂ ″
″

− ∂
∂

=
( )v v v

W
v

0,
7a

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

δ
δ

∂
∂

− ∂
∂ ′

′
+ ∂

∂ ″
″

− ∂
∂

=
( )u u u

W
u

0,
7b

along with static boundary conditions that are naturally satisfied due to the π2 periodicity condition on the displacements v
and u. All derivative terms in Eq. (7b) are explicitly reported in Appendix A.

3.2. Asymptotic expansion and reactive force of the substrate

We seek a solution of Eq. (7) as an expansion of the form

( )( )ε θ ε= + + ( )v v A m Osin , 8a0
2

( )( )ε θ ε= + ( )u B m Ocos , 8b
2

where ( )v , 00 corresponds to a radial pre-buckling deformation and ε θ θ( ( ) ( ))A m B msin , cos represents an instability of azi-
muthal wavenumber m. From the requirement of π2 periodic functions v and u, m has to be an integer. Also, we consider

>m 1 since m¼1 corresponds to a solid body translation of the ring. The instability displacement field has amplitudes εA
and εB, where ε is a small parameter.

Before substituting Eq. (8) into Eq. (7) and solving at each order in ε, we first need to determine the work, δW , done by
the reaction force, σ τ= − ( + )⊥ ∥F e e , that the substrate exerts on the ring. The normal stress s and the tangential stress τ at
the interface between the ring and the substrate are computed by solving the corresponding two-dimensional elasticity
problem using an Airy function, with pressure P at =r R0 and the displacement field given by Eq. (8), at r¼R.

It is worth to note that in our computation, we enforce the continuity of the displacement and stress fields at the
interface ring/substrate, similar to Mei et al. (2011). This is a main difference with previous studies of wrinkling surfaces, e.g.
in Seide (1962), who assumed zero shear stress and continuity of the normal stress. Such an approach yields a stretching
energy in the ring much larger than the bending energy, in contradiction to what is expected in the wrinkling of a thin film
(Audoly and Boudaoud, 2008a). Our explicit solution for the boundary value problem of the substrate is reported in Ap-
pendix B.

In short, we find that the stresses s and τ at the interface are

σ ε θ γ= + ( ) −
( )E

k v k A m psin ,
9aF

0 0

τ με θ= ( )
( )E

B msin ,
9bF

with the following governing parameters:
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( )( )ν β

ν β ξ
=

− −

− + ( )
k

1 1

1 2
1

,
10a

S

S
0

2

2

⎛
⎝⎜

⎞
⎠⎟

( )ν
ξ

=
−

+
( )

k S S
B
A

1
2

1
,

10b
S

A B

⎛
⎝⎜

⎞
⎠⎟

( )
μ

ν
ξ

=
−

+
( )

S
A
B

T
1

2
1

,
10c

S
B B

( )
γ

β ν
ν β

=
−

− + ( )

2 1

1 2
.

10d
S

S

2

2

Here, k0, k, and μ are the dimensionless pre-wrinkling, wrinkling and shear stiffnesses of the substrate, respectively. The
coefficient γ quantifies the effect of pressure, p, on the ring through the term γ− p in Eq. (9a). The value of γ is smaller than
one, reflecting the fact that the transmitted pressure decreases within the substrate. There are however two exceptions for
which γ¼1: the limit where there is no substrate, β → 1, and the limit of a perfectly incompressible substrate, ν → 0.5S , in
which the volumetric pressure remains constant throughout the substrate. The quantities SA, SB and TB used in Eq. (10) are
functions of both the cavity size β and the azimuthal wavenumber m, and their full expressions are reported in Appendix B.

From the solution of the linear elasticity problem for the substrate (see Appendix B), the reaction force, F, has a constant
direction along er . However, based on physical intuition, one would expect the restoring force to change its direction as the
ring deforms. Accounting for this scenario in full would have required solving the elasticity problem for the substrate, with
nonlinear kinematics. Here, for simplicity, we assume that the magnitude of the restoring force is given by the solution of
the linear elasticity problem, while the direction of the force is given by the vectors ⊥e and ∥e . Depending on which con-
figuration of the ring is used (initial or deformed), two cases need to be considered to define the normal and tangential
vectors ⊥e and ∥e , respectively. If we define these vectors from the initial configuration, then ( ) = ( )θ⊥ ∥e e e e, ,r , so that the
reaction force F keeps a constant direction while the ring deforms. If we use the deformed configuration, then F is modeled
as a follower force whose direction changes with the ring deformation. In this case, ( ) = ( )⊥ ∥e e N T, , , where N is the inward
normal vector orthogonal to the ring center-line in its deformed state. In order to take both of these options into account in
the same model, we define a parameter, χ, which can take the values χ¼1 or χ¼0, when either the undeformed or de-
formed configurations are used. Thus, we express the reaction force and its elementary work per unit length of the ring as

⎡⎣ ⎤⎦( )( )σ τ χ σ τ χ= − ( + ) + + − ( )θF e e N T 1 , 11ar

( )δ δ δ= · + ( )θW R v uF e e . 11br

where · is the Euclidean dot product.

3.2.1. The principal solution: order 0 in ε
We now proceed to obtain the principal solution and the critical instability modes by substituting Eq. (8) into Eq. (7) and

solving the resulting equations for each order of ε. At order 0, Eq. (3) for the stretching deformation η yields η σ= =v E/ F0 0 0
and the linear approximation of the Euler–Lagrange equation (7a)

γ σ
=

+ +
=

( )
v

p

h h k E/12
,

12F
0 3

0

0

relates the dimensionless pressure, p, and the dimensionless hoop stress, σ E/ F0 , in the ring. Note that Eq. (7b) is auto-
matically satisfied at order 0 in ε. In the absence of a substrate, the ratio σ P/0 reads

⎜ ⎟⎛
⎝

⎞
⎠ ( )σ

= +
( )β→ P h

O hlim
1

,
131

0

and in the limit of the ring that is much stiffer than the substrate we obtain

⎜ ⎟⎛
⎝

⎞
⎠ ( )σ γ= +

( )ξ→∞ P h
O hlim ,

14
0

so that ( ) ( )< ≤σ
ξ

σ
β

σ
→∞ →lim lim

P P P1
0 0 0 . For ν = 0.5S , we have γ¼1 through the definition in Eq. (10d) and both limits in Eqs. (13)

and (14) are equal. Thus, the hoop stress in a very stiff ring lying on a soft incompressible substrate is the same as the hoop
stress in a ring with no substrate, which serves as a verification of the rationale thus far.

3.2.2. The instability: order 1 in ε
At order 1 in ε, the Euler–Lagrange equations (7) write
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( )( )+ + + = ( )͠ ͠a p a A b p b B 0, 15a1 1 1 1

( )( )+ + + = ( )͠a p a A b p b B 0, 15b2 2 2 2

where ai, a͠i, bi and
∼
bi are functions of the azimuthal wavenumber m, the stiffness ratio ξ, the cavity size β and the substrate

Poisson's ratio νS, respectively, reported in full in Appendix C. The linear system in Eq. (15) has a nontrivial solution when its
determinant vanishes, which for a given value of m occurs at the dimensionless pressure

= =
− +

+ − − ( )

͠
͠

͠
͠

͠
͠

p
P
E

a b b a

a b a b b a b a
.

16m
m

F

1 2 1 2

1 2 1 2 1 2 1 2

The critical azimuthal wavenumber and the dimensionless critical pressure can now be obtained from Eq. (16) by mini-
mizing over all possible values of m:

⎡⎣ ⎤⎦ ( )= ( )= …
m p p, min .

17c c m m2,3,

For the general case, this minimization must be performed numerically. However, in the absence of the substrate, we obtain
that mc¼2 and Eq. (16) simplifies to

( )( ) ( )
( )χ χ

= = −
−

−
−

+
( )β β→ →

p p h h O hlim lim
1

4
4

4
.

18
c1 1 2

3
2

5 7

The term of order h3 corresponds to the classical dimensionless critical pressure for a ring with no substrate (Lévy, 1884;
Carrier, 1947; Timoshenko and Gere, 1961; Combescure, 1981). The term in h5 is a correction also reported by Atanackovic
(1998). In the limit of a ring much stiffer than the substrate, we also have mc¼2, with
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so that ( ) ≤ ( ) <ξ β→∞ →p plim lim 0c c1 . Again, for ν = 0.5S , we observe that the limits equal, corroborating the physical intuition
that as the stiffness ratio ξ increases, the effect of the substrate becomes negligible.

3.3. Critical stress, wavelength and comparison to wrinkling on a planar substrate

To determine the effect of curvature on the instability, we compare the critical hoop stress, sc, in the ring, given by Eq.
(12) with =p pc, as well as the wavelength λ π= R m2 /c c of the wrinkling mode, against their counterparts for an initially
planar film on a plane substrate of infinite thickness (Chen and Hutchinson, 2004):
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where ν ν= ( − ) ( − )⁎
E E4 1 / 3 4S S S S

2 is the effective stiffness of the substrate. Together, Eqs. (20) and (12) yield
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and, in the limit of absence of the substrate, Eq. (21a) reduces to
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where νS is Poisson's ratio of the substrate in the planar case.
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In Section 5.4, we shall make use of Eqs. (21) and (22) to further quantify the sensitivity of the stress and wavelength to
the curvature of the substrate.
4. Numerical simulations

In Section 5, we will contrast the predictions from the above analysis with the results of a series of finite element
simulations performed using the commercial package Abaqus, with the BUCKLE analysis, which provides the buckling load
and the corresponding eigenmodes.

As in the analytical study, the cylindrical structure was modeled as an annulus of a soft substrate with a stiffer thin film
adhered to its exterior, under plane strain conditions. The bonding between the substrate and the film is assumed to be
perfect, such that both share nodes. Negative pressure is applied on the interior surface to model the effect of the pressure
differential between the inner surface of the annulus (the cavity) and the exterior of the system. The buckling analysis
provides the value of the critical pressure, pc, as well as the corresponding critical mode. Rigid body motions are removed by
Fig. 3. Pre-instability hoop stress, s0, in the ring, normalized by the pressure, P, as a function of the dimensionless ring thickness, h¼H/R. Cavity sizes are
(a) β¼0.2, (b) β¼0.5 and (c) β¼0.8. Poisson's ratio of the substrate is ν = 0.5S . Analytical predictions are given by Eq. (12) as solid lines and FEM results are
plotted as data points. The legend (bottom right) is common to all three plots.
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constraining the displacement of two points on the film.
Both substrate and film are modeled as incompressible linearly elastic materials, ν ν= = 0.5S F . These results were

compared to additional simulations using a Neo-Hookean model but no difference was observed given the low values of
strain involved. The substrate was modeled using quadrilateral plane strain elements. Due to the incompressibility, the
corresponding hybrid element, CPE4H, was used. The film was modeled using B21 beam elements. In order to account for
the effect of plane strain, the stiffness of the beam is defined as ν( − )E / 1F F

2 .
All of the results presented were obtained using 1000 elements in the circumferential direction, and ( − )R R150 0 ele-

ments in the radial direction. The mesh size was validated with a convergence analysis. By way of example, differences less
than 0.5% in critical pressure were obtained when comparing results for a mesh with twice the elements in each direction,
even in the cases of wrinkling with the shorter wavelengths. The deviations between the two meshes were, however, larger
(∼5%) for the case when the critical buckling mode is a Biot instability, due to the infinite number of wavelengths associated
to the same buckling mode. However, as stated in Section 2, this mode shall not be studied in detail as we focus on the
wrinkling and global buckling loads.

To test the validity of using beam theory to describe the ring in our problem, we also performed numerical simulations
with 2D solid elements (CPE4H, the same used for the substrate) and found excellent agreement with the simulations using
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Fig. 4. Dimensionless critical pressure | | = | |p P E/c c F versus the dimensionless ring thickness h¼H/R, for several stiffness ratios ξ = E E/F S and cavity sizes β:
(a) β¼0.2, (b) β¼0.5 and (c) β¼0.8. Theory (lines) is given by Eq. (17). Poisson's ratio of the substrate is ν = 0.5S . The legend (bottom right) is common to all
three plots.
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beam elements. However, in order to achieve such agreement, the mesh needs to be greatly refined, resulting in a significant
increase in computational cost. Attempts to use a mesh size similar to that of our previous simulations showed clear dis-
agreement. Given the excellent agreement between the two versions – either using CPE4H (with a fine mesh) or B21 for the
ring – as well as the significantly lower computational cost of the B21 elements, we have decided to use beam elements for
the ring in our analysis.
5. Results

Having introduced our analytical and numerical methods, we now present the results of a systematic exploration of the
mechanical response of our system for different geometric and material parameters. Throughout, we provide a direct
comparison between analytical results and numerical simulations, finding good agreement. A few instances of discrepancy
will also be discussed.

For the geometric parameters, we have varied the cavity size, β = R R/0 , and the dimensionless thickness, =h H R/ . Three
representative values were chosen for β (depicted in the insets of Fig. 3(a)–(c)): a small cavity, β¼0.2; a cavity with size half
of the external radius, β¼0.5; and a large cavity, β¼0.8. Moreover, h was varied in the range 10�3 to 10�1. This parameter
has two different physical interpretations. On one hand, for a substrate with given curvature, i.e. fixed R, increasing h is
equivalent to increasing the thickness of the ring. On the other hand, for a ring of given thickness H, the value of h decreases
with the curvature, R1/ .

For the material properties, we have considered values for the stiffness ratio between the film and the substrate,
ξ = ¯ ¯E E/F S , spanning over five orders of magnitude, from 102 to 107. The substrate is taken to be incompressible, ν = 0.5S , since
most of the relevant experiments that have motivated our study (Bowden et al., 1998; Huck et al., 2000; Yu and Jiang, 2010;
Terwagne et al., 2014) use nearly incompressible elastomeric substrates. Moreover, it is important to note that, even if the
analytical model has been derived assuming a general value of νS, it is expected to be less accurate for increasing deviations
from incompressibility. This was analyzed by Cai et al. (2011), who showed that for the wrinkling of plates deviations when
ν = 0.3S are of just a few percent.

In the presentation of our results, we first consider the effect of h and ξ on the hoop-stress and on the critical pressure.
Then, we rationalize the transition from wrinkling to global buckling, shown in Fig. 1. We finally compare the critical stress
and wavelength of the wrinkling mode to their planar substrate counterparts and discuss the effect of curvature.

5.1. Hoop stress prior to wrinkling

In Fig. 3, we plot the hoop stress in the ring, normalized by the pressure, σ P/0 , as a function of the dimensionless
thickness, h¼H/R. We find that the hoop stress decreases monotonically with the dimensionless thickness, and increases
with both the stiffness ratio and the cavity size. When the ring is much stiffer than the substrate (i.e. ξ → ∞), the hoop stress
scales as σ ∼ ( )−P H R/ /0

1, with a prefactor given by Eq. (14). For a given thickness of the ring and a given cavity size, the hoop
stress in the ring decreases as the curvature of the substrate increases. This observation is consistent with the classic result
for the hoop stress, σ = PR H/0 , for a depressurized thin-walled cylindrical pressure vessel. This result can be recovered from
Eq. (12) by taking γ¼1, =k 00 and performing a Taylor expansion in h, about 0.

5.2. Critical pressure

In Fig. 4, we plot the dimensionless critical pressure, | | = | |p P E/c c F , as a function of the dimensionless thickness, h, and
observe two different regimes. For low values of h, the ring wrinkles with an azimuthal wavenumber ⪢m 2c , with a critical
pressure | |pc that increases with h. When h reaches a threshold value, hn, the wavenumber decreases suddenly to mc¼2; the
nature of the instability changes from a wrinkling to a global buckling mode. In this regime, there is a clear asymptote as
ξ → ∞, given by Eq. (19), which corresponds to the buckling of a ring with no substrate.

Depending on the model used for the reaction force of the substrate (constant direction force, χ¼1, or follower force,
χ¼0, see Section 3.2), Eq. (11) yields two different analytical predictions, shown in Fig. 4 as a solid line for χ¼0, and a
dashed line for χ¼1. We note that the agreement between FEM simulations and analytical predictions is superior for χ¼0,
in particular for the global mode. In other words, it is better to model the reaction force of the substrate as a pressure field
which remains normal to the ring center-line C as it deforms, than as a force with constant direction. Thus, from now on, all
analytical results will be only presented for χ¼0.

Despite the overall good agreement between the analytical and numerical results, there are noticeable discrepancies in
the global modes for low values of the stiffness ratio. The reason is that, for ξ = 102, the strains in the substrate can become
significant, such that the assumptions for our linear theory are no longer valid (see Appendix B). A particularly extreme case
is the appearance of Biot modes for β¼0.2 and ξ = 102. These modes, although possible, only occur in a small region of our
parameter space and, as mentioned above, are beyond the scope of this work.

In short, our model exhibits limitations if the ring and the substrate have comparable stiffness, or when there is a Biot
mode (small cavity). Apart from this extreme combination of parameters, rarely observed in experimental configurations,
the model performs successfully.



Fig. 5. (a) Phase diagram in the ξ( )h, parameter space, showing the transition boundary, hn, fromwrinkling to global buckling, for β¼0.5. (b) Phase diagram
for β¼0.2 to β¼0.8. Solid lines are analytical predictions and dotted lines correspond to the numerical fit ξ = f h f

2
1. (c) Fitting coefficients, f1 and f2, as

functions of β. (d) Azimuthal wavenumber of the wrinkling mode for = ⁎h h , as a function of β. Poisson's ratio of the substrate is ν = 0.5S .
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5.3. Phase diagram

We proceed by focusing on the transition from wrinkling to global buckling, towards first constructing a phase diagram
in the ξ( )h, parameter space and then quantifying the dependence of the boundary, ξ( )⁎h , between the two modes on the
size of the cavity, β. Given that we do not have a closed form expression for hn, we use a numerical method which tracks any
jump from mc¼2 to >⁎m 2c in Eq. (17), when h is decreased.

In Fig. 5(a), we plot hn as a function of ξ, for β¼0.5. The boundary between modes is consistent with a power-law,
ξ∼⁎ −h 3, which divides the phase diagram into a wrinkling domain ( < ⁎h h ) and a global buckling domain ( > *h h , shaded

region). Again, there is good agreement between numerical and analytical solutions.
In Fig. 5(b), we extend the phase diagram to cavity sizes from β¼0.2 to β¼0.8. We predict that the power-law with

exponent �3, mentioned above for β¼0.5, is still valid as β increases, even if there are some deviations towards the higher
values. To quantify the appropriateness of the �3 power-law, we fit a curve of the form ξ = f hf

2
1 to the analytically calculated

boundaries. In Fig. 5(c) we plot the fitting parameters f1 and f2 as a function of β. We find that the exponent is ≈ −f 31 for
β < 0.7, and then decreases rapidly to a value of ≈ −f 4.251 for β¼0.8. The decrease of the prefactor f2 is more pronounced
and reflects the fact that hn decreases as β increases.



Fig. 6. (a) Critical stress sc normalized by its planar substrate counterpart, σPlane, as a function of the dimensionless ring thickness h¼H/R. (b) Di-
mensionless critical normal force versus planar substrate counterpart. Analytical predictions (solid lines) are given by Eq. (21a) and FEM results are shown
as data points. Insets are sketches of the wrinkling and global buckling modes. The cavity size is β¼0.5 and the Poisson's ratio of the substrate is ν = 0.5S .
The legend is common to both plots.
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The evolution of ⁎mc (i.e. azimuthal wavenumber of the wrinkling mode for = ⁎h h ) as a function of β and ξ is presented in
Fig. 5(d). We observe that ⁎mc increases with β, while it is nearly insensitive to ξ. For example, for β¼0.5, we find that =⁎m 9c

for ξ > 102 and =⁎m 10c for ξ = 102. Predictions for ξ > 102 are in relatively good agreement with finite element simulations,
which have shown that =⁎m 10c . For ξ = 102, FEM simulations yield =⁎m 15c , pointing out, once again, the limitation of our
analytical approach in the limit when the stiffness of the ring and the substrate become comparable.

5.4. Comparison of wrinkling in our curved system with that on infinite planar substrate

Thus far, we have shown that the ring may wrinkle or buckle globally, depending on the curvature and stiffness of the
substrate. We now focus on the wrinkling mode of the ring, with the aim of comparing the critical stress and wavelength of
our curved system to their counterparts for a infinite planar substrate. We shall center our discussion of this comparison for
β¼0.5. In Appendix D, we report the results for β¼0.2 and β¼0.8, which are qualitatively similar.

In Fig. 6(a), we plot σ σ/c Plane given by Eq. (21a), as a function of h. For < ⁎h h (wrinkling domain), we find that σ σ ≈/ 1c Plane , in
agreement with the FEM simulations. To further quantify how close to unity is this ratio, in Fig. 6(b) we plot the di-
mensionless critical normal force σ h E/c F as a function of the planar result, σ h E/Plane F . We obtain a line with unit slope,
indicating that the substrate curvature has no significative effect on the critical stress for wrinkling. From this observation,
and using Eq. (12) with σ σ= Plane0 , we write the following approximation for the dimensionless critical pressure:

( )γ
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+

+
( )

p
h k

E
O h ,

23c
Plane

F

0 3

with k0 and γ given by Eq. (10). Finally, back to Fig. 6(a), for > ⁎h h (global buckling domain), we find that σ σ/c Plane first
decreases with h, then reaches a local minimum and eventually increases as a power-law with slope 2, towards the
asymptotic limit given by Eq. (22). The evolution of σ σ/c Plane in the global buckling domain is also reproduced well by FEM
simulations.

We now investigate the effect of curvature on the wavelength of the instability mode. In Fig. 7(a), we plot λ λ/c Plane, given
by Eq. (21b), as a function of h. Focusing on the wrinkling domain, we find that λ λ ≈/ 1c Plane , in agreement with FEM si-
mulations. In Fig. 7(b), once again, we quantify how close to unity this ratio is by plotting the critical wavelength λc as a
function of the planar result, λPlane. To first approximation, noting the large dynamic range (at least two orders of magnitude)
in both axes of the plot, we find a line with unit slope that passes through the origin, suggesting that the substrate curvature
has no significative effect on the wavelength of the wrinkling mode. The only deviations arise from the discrete nature of the
wavenumber, since the geometry of the ring enforces π2 periodic wrinkling modes. To highlight this phenomenon, in Fig. 7
(c), we plot the critical azimuthal wavenumber mc, given by Eq. (17), as a function of h and we superimpose the planar
substrate result (dashed line), π λ=m R2 /Plane Plane. We find that mc is a decreasing stair function of h. The deviation in wa-
velength between the curved and planar cases scales as λ λ λ(| − |) ∼ m/ 1/c Plane Plane , which is maximum for ⁎mc . As shown
previously in Fig. 5(d), ⁎mc increases with β, hence the deviation λ λ λ(| − |)/c Plane Plane is maximum for a small cavity size. By way
of example, forβ¼0.5, Fig. 5(d) indicates that =⁎m 9c , leading to a maximum deviation λ λ λ(| − |) ≈/ 10%c Plane Plane , that rapidly
decreases as m increases.



Fig. 7. (a) Critical wavelength, λc, normalized by its planar substrate counterpart, λPlane, as a function of the dimensionless ring thickness h¼H/R. Analytical
predictions (solid lines) are given by Eq. (21b). (b) Zoom of the wrinkling domain by plotting λc versus λPlane. (c) Azimuthal wavenumbermc of the wrinkling
mode as a function of h. Analytical predictions (solid lines) are given by Eq. (17). Dotted lines show mc for the planar substrate case. The insets in (a) and
(b) are sketches of the wrinkling and global buckling modes. The inset in (c) is a zoom in showing the difference in mc for the curved and planar substrates.
The cavity size is β¼0.5 and Poisson's ratio of the substrate is ν = 0.5S . FEM results shown as data points. The legend (bottom right) is common to all three
plots.
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6. Conclusion

We have considered the two-dimensional problem of a ring bound to an elastic substrate which contains a cavity that is
depressurized. An energy formulation was used to derive the Euler–Lagrange equations that govern the equilibrium of the
ring, and solved them via an asymptotic expansion. As an improvement to previous results in the literature, our analytical
approach accounts for the effect of curvature in modeling the reaction force of the substrate. These analytical results were
compared with numerical simulations.

We first studied the principal solution, obtaining an expression for the hoop stress in the ring as a function of the applied
pressure. We then performed a stability analysis of the problem to determine the critical pressure, Pc, and the corresponding
instability mode. Depending on the dimensionless thickness and stiffness ratio (h and ξ) we have identified two different
regimes: local wrinkling of the ring, and global buckling of the structure. The boundary between both regions of instability
was described via a detailed phase diagram, which quantifies the value of h and ξ at which the transition between in-
stabilities occurs and takes into account the cavity size, β. Our results can be used as a design guideline to target a desired
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mode. Finally, we have shown that the critical stress for wrinkling and the resulting wavelength do not depend significantly
on the curvature of the substrate. However, curvature imposes a discretization of the wrinkling wavelength due to the
periodic closing conditions of the ring.

Our study focused on a 2D curved system which exhibits instability modes analogous to the cylindrical pattern found for
uniaxial compression of a film on a flat infinite substrate. Considering more complex loading conditions (e.g. also introducing axial
loading) or shells with non-zero Gaussian curvature should lead to more complex patterns that deserve to be investigated further.
Having validated the FEM analysis, as well as carefully considering the elastic response of the curved substrate, extending the study
to these other scenarios and addressing the issue of pattern selection is an exciting avenue for future research.
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Appendix A. Derivative terms in Euler–Lagrange equation

The terms in the Euler–Lagrange equation for the equilibrium of the film, Eq. (7b), are
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Appendix B. Response of the substrate

In this appendix we consider the boundary value problem of the substrate, subjected to the ring displacement
θ θ( ( ) ( ))R v u, , v and u given by Eq. (8), at the interface r¼R between the ring and the substrate and to the pressure P at

β= =r R R0 . The substrate is assumed to be in a state of plane strain. We note α ν= −3 4 S and introduce the shear modulus
ν= ( − )G E 1 /2S S . The components of the stress in the substrate are represented by srr, σ θr , and the displacement field is

( )θU U,r . The 2D problem of elasticity is solved by finding an Airy function of the form (Michell, 1899),

( )( ) ( )ϕ θ ε θ= + ( ) + + + + ( )
+ − + −r B r B r A r A r A r A r m, ln sin , B.1m

m m m m
1

2
2 1

2
2

2
3 4

where Ai and Bi are unknown constants determined by the boundary conditions

( )σ θ = − ( )R P, , B.2arr 0

( )σ θ = ( )θ R , 0, B.2br 0

( ) ( )θ θ= ( )U R Rv, , B.2cr

( ) ( )θ θ= ( )θU R Ru, , B.2d

which are assumed to apply at =r R0 and r¼R. The first two equations stand for the continuity of the stress at the boundary
of the cavity, whereas the last two stand for the continuity of the displacement at the interface between the substrate and
the ring.

The stress and displacement fields resulting from the Airy function equation (B.1) are (Barber, 2002)
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Applying the boundary conditions Eq. (B.2) to Eq. (B.3) yields a linear system for Ai and Bi, with solution
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Substituting Ai and Bi into Eq. (B.3) yields the stress at the interface r¼R
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The dimensionless stress at the interface and the dimensionless stiffness parameters are obtained from Eq. (B.5), by
dividing it with EF ,
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as indicated in Eq. (10).
We note that in the case of an inextensible wrinkling mode, =A B m/ , the stiffness K simplifies to

∼
K given by
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which, for a substrate with no cavity, leads to the limiting case
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and, for an infinite plane substrate, yields

⎛
⎝⎜

⎞
⎠⎟( ) ( )ν

ν
π
λ

= =
−

− ( )
͠

β→∞ →
K K Elim lim

4 1
3 4

,
B.11R

Plane S
S

S0

2

in agreement with Audoly and Boudaoud (2008a).
Appendix C. Terms of the linear stability analysis

The terms ai, a͠i, bi and
∼
bi that appear in Eq. (16) are
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where γ, k0, SA, SB and TB were given in Appendix B.
Appendix D. Influence of the cavity size

In Figs. D1 and D2, we plot the h dependence of σ σ/c Plane and λ λ/c Plane, for cavity sizes β¼0.2 and β¼0.8, respectively. These
plots are qualitatively similar to those obtained for β¼0.5 in Figs. 6 and 7, and discussed in Section 5.4 of the main text.
Fig. D1. (a) Critical stress sc normalized by its planar substrate counterpart σPlane, as a function of the dimensionless ring thickness h¼H/R. Analytical
prediction is given by Eq. (21a). (b) Critical wavelength λc normalized by its planar substrate counterpart λPlane, as a function of h. Analytical prediction is
given by Eq. (21b). The insets are sketches of the wrinkling and global buckling modes. The cavity size is β¼0.2 and Poisson's ratio of the substrate is
ν = 0.5S . The legend is common to both plots.

Fig. D2. (a) Critical stress sc normalized by its plane substrate counterpart σPlane, as a function of the dimensionless ring thickness h¼H/R. Analytical
prediction is given by Eq. (21a). (b) Critical wavelength λc normalized by its plane substrate counterpart λPlane, as a function of h. Analytical prediction is
given by Eq. (21b). The insets are sketches of the wrinkling and global buckling modes. The cavity size is β¼0.8 and Poisson's ratio of the substrate is
ν = 0.5S . The legend is common to both plots.
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